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ABSTRACT 

The NF-B signaling cascade relays external signals essential for B-cell growth and survival. 

This cascade is frequently hijacked by cancers that arise from the malignant transformation of 

germinal center (GC) B cells, underscoring the importance of deciphering the function of NF-B 

in these cells. The NF-B signaling cascade is comprised of two branches, the canonical and 

alternative NF-B pathways, mediated by distinct transcription factors. The expression and 

function of the transcription factors of the alternative pathway, RELB and NF-B2, in late B-cell 

development is incompletely understood. Using conditional deletion of relb and nfkb2 in GC B 

cells, we here report that ablation of both RELB and NF-B2, but not of the single transcription 

factors, resulted in the collapse of established GCs. RELB/NF-B2 deficiency in GC B cells was 

associated with impaired cell cycle entry and reduced expression of the cell-surface receptor 

ICOSL that promotes optimal interactions between B and T cells. Analysis of human tonsillar 

tissue revealed that plasma cells and their precursors in the GC expressed high levels of NF-

B2 relative to surrounding lymphocytes. In accordance, deletion of nfkb2 in murine GC B cells 

resulted in a dramatic reduction of antigen-specific antibody-secreting cells, while deletion of 

relb had no effect. These results demonstrate that the transcription factors of the alternative NF-

B pathway control distinct stages of late B-cell development, which may have implications for 

B-cell malignancies that aberrantly activate this pathway.         
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SIGNIFICANCE 

In many human B-cell cancers, a complex signaling cascade called nuclear factor-B (NF-B) is 

abnormally activated by genetic mutations. The uncontrolled activity of NF-B due to genetic 

mutations promotes the formation B-cell tumors. The NF-B cascade is comprised of two 

distinct pathways. We here define the role of one of these routes, called the alternative NF-B 

pathway, in the normal cells from which these B-cell tumors are derived, namely germinal center 

B cells or plasma cells. We found that the inactivation of the alternative NF-B pathway led to 

the loss of germinal center B cells and impaired plasma cell development. Understanding the 

role of this pathway in normal cells may provide important insights into how aberrant activation 

promotes B-cell tumors. 
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INTRODUCTION 

During T-cell-dependent immune responses, B cells diversify their antigen-receptors by somatic 

hypermutation (SHM) of the immunoglobulin variable region (IgV) genes (1). SHM and selection 

of B cells with increased antigen-affinity occurs within GCs. The efficiency of the GC reaction is 

enhanced by topological and temporal segregation of proliferation and SHM within the dark 

zone (DZ) and antigen-selection within the light zone (LZ) (2-4). Recirculation of GC B cells 

between these zones result in the generation of high-affinity, often isotype-switched memory B 

cells and plasma cells (PCs) (2-5). The GC reaction is critical for immunity; however, errors 

during SHM and class-switch recombination can lead to genetic aberrations that promote 

lymphomagenesis (6, 7). Recently, genetic mutations resulting in constitutive activation of the 

NF-B signaling cascade were identified in a large fraction of GC-derived B-cell lymphomas and 

multiple myeloma (MM) (8-16). 

Activation of NF-B signaling results in the transcription of NF-B target genes that 

regulate many cellular processes including cell survival and proliferation (17, 18). The NF-B-

signaling cascade comprises two branches, the canonical and alternative (or noncanonical) NF-

B pathways, which activate specific NF-B transcription factor subunits that occur mainly as 

heterodimers. Canonical NF-B pathway activation leads to the nuclear translocation of c-REL, 

RELA and p50, while alternative pathway activation causes nuclear translocation of RELB and 

p52. In normal cells, NF-B activation is transient and tightly controlled. Conversely, constitutive 

NF-B activation due to genetic alterations in NF-B pathway components is pathogenic (8, 9). 

Mutations affecting multiple different NF-B signaling components have been identified in 

several GC-derived B-cell malignancies which can lead to the constitutive activation of the 

canonical and/or alternative NF-B pathways (8-16). The selection of these mutations implies 
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that NF-B-signaling may have an important biological role during normal GC B-cell 

development that is “hijacked” in tumors (7, 8).  

Distinguishing the functions of the canonical and alternative NF-B pathways by 

studying upstream regulators may be complicated by the possibility of pathway crosstalk. 

Therefore, focusing on the downstream transcription factor subunits may help to clarify the 

specific roles of the separate NF-B pathways. Towards this aim, early work on human 

lymphoid tissue revealed that nuclear translocation of canonical NF-B subunits within GCs 

occurred only within a subset of cells in the LZ (19). By ablating the canonical NF-B 

transcription factors c-REL or RELA specifically in GC B cells, we recently showed that c-REL 

was essential for GC maintenance, whereas RELA was required for PC development (20). The 

expression, activation status and function of the alternative NF-B transcription factors RELB 

and p52 in GC B cells remain largely unknown. Due to the diverse functions of the alternative 

NF-B pathway in a range of cell types, mice with constitutional knockout of either relb or nfkb2 

(the gene encoding the p100/p52 precursor, referred to as NF-B2, from which p52 is generated 

upon activation) have severe defects in lymphoid organization (21-23), thus hampering the 

analysis of GC B-cell development in these mice. We here determined the expression pattern of 

the alternative NF-B subunits in human lymphoid tissue and investigated their roles during GC 

B-cell development in vivo by crossing conditional relb and/or nfkb2 alleles to mice that express 

Cre-recombinase in GC B-cells. We found that RELB and NF-B2 were jointly required to 

maintain the GC B-cell reaction while the development of antigen-specific PCs was impaired 

upon deletion of only nfkb2 in GC B-cells. 

 

RESULTS 
 

Expression and activation of alternative NF-B subunits in human GC B cells. The 

expression and activation of the alternative NF-B subunits in GC B cells has not been 
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investigated. Since CD40-stimulation strongly activates both NF-B pathways (24, 25), the 

CD40-CD40L interaction occurring between LZ B cells and T-follicular helper cells (Tfh cells) is 

expected to activate alternative NF-B signaling. Indeed, Western-blot analysis of human 

tonsillar GC B cells cultured on CD40L-expressing fibroblasts demonstrated p100ĺp52 

processing (Fig. 1A, left) and thus alternative pathway activation. This was accompanied by the 

downregulation of the GC master regulator BCL6, an event believed to occur during LZ 

selection (7), and resulted in nuclear translocation of p52 along with the canonical subunit p50 

(Fig. 1A, right). In accordance with the in vitro findings, nuclear translocation of p52 could be 

observed in vivo in tonsillar GCs within LZ B cells by immunofluorescence (IF) analysis (Fig. 

1B). Thus, nuclear translocation of p52 was detected within a small subset of LZ B cells and 

therefore suggests that the alternative NF-B pathway may have a functional role in LZ B cells. 

 Interestingly, we observed strong staining of p100/p52 in PCs localizing in the tonsillar 

subepithelium that were identified by staining for the major PC regulator BLIMP1 (26, 27), 

relative to lymphocytes at the border of the subepithelium (Fig. 1C, top). The same staining 

pattern was observed in BLIMP1+ PC precursors in the LZ of tonsillar GCs (Fig. 1C, bottom). 

These observations may point towards a potential role of the alternative NF-B pathway in the 

development of normal PCs and their precursors in the GC. The large amount of NF-B2 in the 

cytoplasm may predispose BLIMP1+ plasma cell precursors and plasma cells to undergo strong 

signaling via the alternative NF-B pathway upon stimulation. Alternative pathway activation 

was observed via strong p100ĺp52 processing in two MM cell lines (Fig. 1D), and to a lesser 

extent in a cell line corresponding to diffuse large B-cell lymphoma (DLBCL), where mutations 

leading to activation of the alternative pathway have been observed in a subset of cell lines and 

primary cases (13, 15). Of note, Western-blot analysis revealed that the canonical NF-B 

subunit c-REL was expressed at dramatically lower levels in the MM lines compared to the 

DLBCL lines (Fig. 1D). A low expression of c-REL relative to surrounding lymphocytes appears 
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to also be a feature of normal PC precursors in the LZ (Fig. 1E, right), as identified by strong 

staining for IRF4 which at high expression levels promotes PC differentiation along with BLIMP1 

(27, 28). In contrast, cytoplasmic p100/p52 expression is increased in several IRF4+ cells (Fig. 

1E, left), similar to the corresponding BLIMP1 staining (Fig. 1c, bottom). Collectively, these data 

suggest that relative to mature B cells, PCs and their precursors in the GC are characterized by 

a distinct expression pattern of NF-B subunits; high expression of NF-B2 and low expression 

of c-REL.  

 

Combined GC B cell-specific deletion of relb and nfkb2 impairs the GC reaction. To 

determine the in vivo role of RELB and NF-B2 during GC B-cell development, we crossed 

conditional relb and nfkb2 alleles (29) to CȖ1-Cre mice (30), either alone or in combination, to 

delete the genes in GC B cells. Expression of CȖ1-Cre is induced upon T cell-dependent 

immunization, resulting in the Cre-mediated deletion of loxP-flanked genes in the majority of GC 

B cells (30). relbfl/flCȖ1-Cre, nfkb2fl/flCȖ1-Cre or relbfl/flnfkb2fl/flCȖ1-Cre mice and the 

corresponding heterozygous and CȖ1-Cre control mice were immunized with sheep red blood 

cells (SRBCs) to induce a robust GC response. 14d following immunization, the fractions of 

splenic CD95hiPNAhi GC B cells in relbfl/flCȖ1-Cre and nfkb2fl/flCȖ1-Cre were not significantly 

different from those in the controls (Fig. 2A, left&middle). In contrast, the fraction of splenic GC 

B cells in relbfl/flnfkb2fl/flCȖ1-Cre mice was markedly reduced in comparison to relbfl/+nfkb2fl/+CȖ1-

Cre and CȖ1-Cre mice 14d post-immunization (Fig. 2A, right). In accordance, 

immunohistochemistry (IHC) revealed reduced BCL6+ GCs within B-cell follicles in 

relbfl/flnfkb2fl/flCȖ1-Cre mice compared to controls at d14 post-immunization (Fig. 2B). Together, 

these findings demonstrate that single ablation of either RELB or NF-B2 in GC B cells had no 

significant impact on the GC reaction. Instead, combined ablation of RELB and NF-B2 in GC B 
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cells strongly impaired the GC reaction, demonstrating that both subunits of the alternative NF-

B pathway are required for GC maintenance. 

To define the temporal kinetics of the impaired GC reaction observed in 

relbfl/flnfkb2fl/flCȖ1-Cre mice, we determined the fractions of splenic GC B cells at various time-

points following immunization with SRBCs. 7d post-immunization, the fraction of GC B cells in 

relbfl/flnfkb2fl/flCȖ1-Cre mice was comparable to that observed in the controls (SI Appendix, Fig. 

S1A). Since the conditional relb and nfkb2 alleles were constructed such that Cre-mediated 

recombination of loxP-sites is accompanied by expression of an enhanced-GFP (eGFP) (29), it 

was possible to trace the gene-deleted GC B cells by flow cytometry for eGFP expression. 

Analysis for eGFP expression in GC B cells from relbfl/flnfkb2fl/flCȖ1-Cre and relbfl/+nfkb2fl/+CȖ1-

Cre mice revealed single peaks of expression (SI Appendix, Fig. S1A, bottom right), indicating 

that the vast majority of GC B cells have deleted the relb and nfkb2 alleles at d7. GC B-cell 

development therefore occurred normally in relbfl/flnfkb2fl/flCȖ1-Cre mice up to d7 of the GC 

reaction, after which GC B cells were progressively lost.  

 To investigate the possibility of a selective loss of a particular GC B-cell subpopulation, 

we determined the fractions of CXCR4hiCD86lo DZ and CXCR4loCD86hi LZ B-cell fractions (31) 

over time (SI Appendix, Fig. S1B). Statistically significant differences in the DZ and LZ B-cell 

fractions between relbfl/flnfkb2fl/flCȖ1-Cre and CȖ1-Cre control mice were observed; however, 

these differences were minor and do not point towards a preferential loss of a specific GC B-cell 

subpopulation. Thus, these data suggest that RELB and NF-B2 are required for the 

maintenance of both DZ and LZ subpopulations past d7 of the GC reaction. 

 

Identification of genes controlled by the alternative NF-B subunits RELB and NF-B2 in 

GC B cells. To identify the biological programs controlled by RELB and NF-B2 that are 

required for GC maintenance, we isolated GC B cells from relbfl/flnfkb2fl/flCȖ1-Cre and CȖ1-Cre 
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control mice 7d post-immunization and conducted an RNA-seq analysis. We reasoned that 

gene expression changes that ultimately contribute to the loss of relb/nfkb2-deleted GC B cells 

at later time-points would already be detectable in these cells at d7. Splenic eGFP+ GC B cells 

were flow cytometrically sorted from two relbfl/flnfkb2fl/flCȖ1-Cre mice, and GC B cells were 

isolated from three CȖ1-Cre mice 7d post-immunization with SRBCs, and subjected to RNA-seq 

analysis. Reduced transcript counts of the relb and nfkb2 genes were identified in GC B cells 

from relbfl/flnfkb2fl/flCȖ1-Cre compared to CȖ1-Cre mice (SI Appendix, Fig. S2A), and the 

relbfl/flnfkb2fl/flCȖ1-Cre and CȖ1-Cre samples clustered into two separate groups in an 

unsupervised analysis (SI Appendix, Fig. S2B). Since a monoclonal antibody was available for 

the surface molecule CD36, a putative fatty acid translocase (32), we could confirm reduced 

protein expression of CD36 on eGFP+ GC B cells from relbfl/flnfkb2fl/flCȖ1-Cre mice in 

comparison to GC B cells from CȖ1-Cre mice and eGFP+ GC B cells from relbfl/+nfkb2fl/+CȖ1-Cre 

mice (Fig. 3A). Together, these observations validate the robustness of the RNA-seq data set.  

 Differentially expressed sequence analysis (DESeq) of RELB/NF-B2-proficient vs. 

RELB/NF-B2-deficient GC B cells identified 59 transcripts with greater than 2.5-fold reduced 

expression and 84 transcripts with greater than 2.5-fold increased expression in the relb/nfkb2-

deleted B cells at a significance threshold of p<0.01 (for the identity of the corresponding genes, 

fold-change and p values, see Datasets 1&2). Transcripts with reduced expression could be 

assigned to functional categories, with genes involved in the immune response and metabolism 

representing the largest categories (SI Appendix, Fig. S2C; for the identity of the genes, see 

Dataset 1). The metabolism category was largely comprised of two groups of genes with 

presumptive roles in either protein or lipid metabolism.  

We next used gene set enrichment analysis (GSEA) (33) to further investigate the gene 

expression changes among the genotypes. The largest group of signatures enriched in the 

control cells vs. RELB/NF-B2-deficient cells was associated with cell cycle regulation (Fig. 3B 
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and Dataset 3), suggesting that RELB/NF-B2 may control genes involved in proliferation. To 

test this possibility, we cultured RELB/NF-B2-deficient B cells purified from relbfl/fl nfbk2fl/flCD19-

Cre mice and control B cells isolated from CD19-Cre mice with CD40 and IL-4, a combination 

that provides a strong proliferative signal and activates the alternative pathway via CD40. By 

analyzing the proliferation profile of these cells at d3 of stimulation, we found that a significantly 

smaller fraction of eGFP+RELB/NF-B2-deficient B cells entered the cell cycle in comparison to 

control B cells (Fig. 3C). Of note, the relb/nfkb2-deleted B cells that were able to enter the cell 

cycle appeared to proliferate slightly more than controls. Together, the data suggest that 

RELB/NF-B2-deficient B-cells have a reduced ability to enter the cell cycle, which may 

contribute to the loss of RELB/NF-B2-deficient GC B cells over time that we observed in vivo.  

To investigate whether RELB/NF-B2-deficient GC B cells proliferate less than WT GC 

B cells in vivo, we assessed BrdU incorporation at day 10. At day 10, a reduction in relb/nfkb2-

deleted vs. WT GC B cells is already evident (SI Appendix, Fig. S3A). We chose this time-point 

for analysis since it is in-between day 7 (when relb/nfkb2-deleted GC B cells are present at 

normal frequencies; SI Appendix, Fig. S1A) and day 14 (when relb/nfkb2-deleted GC B cells are 

greatly reduced; Fig. 2). We observed a trend towards decreased BrdU-incorporation in 

relb/nfkb2-deleted vs. WT GC B cells identified as CD19+GL7hi cells (SI Appendix, Fig. S3C, for 

gating strategy see SI Appendix, Fig. S3B). We believe these differences are minor since the 

percentage of GFP+ cells is variable between different mice (SI Appendix, Fig. S3D), which 

could reflect counterselection against relb/nfkb2-deleted GC B cells. Since the BrdU protocol 

involves fixation, we were unable to specifically measure BrdU incorporation in GFP+ GC B 

cells, which could dilute the actual difference in the fraction of cells that have incorporated BrdU. 

The second largest group of signatures identified in the GSEA analysis was associated 

with the metabolism of proteins (Fig. 3B). In addition, when we compared our RNA-seq data set 

to a library of normal and pathological lymphoid gene expression signatures (34), five signatures 
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were found to be enriched in RELB/NF-B2-proficient vs. deficient GC B cells (SI Appendix, Fig. 

S4), including a ribosomal protein signature and two X box-binding protein-1 (XBP1)-associated 

gene expression signatures. XBP-1 is required for the unfolded protein response and is 

essential for the development of PCs capable of secreting large amounts of antibodies (26, 27). 

This suggests that in GC B cells, the alternative NF-B subunits may be required to set up a 

program that allows for the efficient production of proteins and facilitates antibody secretion, 

presumably in GC B cells destined to become plasmablasts (see below).         

Finally, we have previously shown that deletion of the gene encoding the canonical NF-

B subunit c-REL (rel) in GC B cells leads to the involution of GCs (20) similar to what we 

observed upon relb/nfkb2 deletion, suggesting that c-REL and the alternative NF-B subunits 

exert non-redundant functions during the GC reaction. In support of this notion, genes with 

reduced expression in relb/nfkb2 or rel-deleted GC B cells vs. controls were found to be largely 

mutually exclusive (Fig. 3D), indicating that the different canonical and alternative NF-B 

subunits control distinct transcriptional programs within the same GC context. 

 

RELB/NF-B2-deficient GC B cells have reduced cell-surface expression of ICOSL. The 

interaction between inducible T-cell co-stimulator (ICOS), expressed on Tfh cells, and ICOS 

ligand (ICOSL), expressed on GC B cells, promotes the selection of high-affinity B cells (35). 

The expression of ICOSL is regulated by the alternative NF-B subunits in response to B-cell 

activating factor (BAFF) receptor (BAFF-R)-stimulation (36) and also CD40-stimulation (29) in 

murine B cells. To determine the extent to which the deletion of relb and nfkb2 in GC B cells 

affects ICOSL expression on GC B cells in vivo, we stained splenic mononuclear cells from 

relbfl/flnfkb2fl/flCȖ1-Cre and CȖ1-Cre control mice for ICOSL and GC markers 10d following 

SRBC immunization. eGFP+RELB/NF-B2-deficient GC B-cells from relbfl/flnfkb2fl/flCȖ1-Cre mice 

showed a slight but significant reduction in the surface expression of ICOSL compared to WT 
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GC B-cells and eGFP–RELB/NF-B2-proficient GC B cells from the same mice (Fig. 3E; SI 

Appendix, Fig. S2D). Reduced cell-surface expression of ICOSL on RELB/NF-B2-deficient GC 

B cells may impair optimal GC B cell–Tfh cell interactions within the GC, which may contribute 

to their gradual disappearance after d7 of the GC reaction. 

 

Deletion of nfkb2 in GC B cells impairs the development of antigen-specific PCs. The 

combined deletion of relb and nfkb2 resulted in the involution of established GCs and, as 

expected, PCs in relbfl/flnfkb2fl/flCȖ1-Cre mice were also reduced compared to relbfl/+nfkb2fl/+CȖ1-

Cre and CȖ1-Cre mice (SI Appendix, Fig. S5). The deletion of relb or nfkb2 alone in GC B cells 

did not however affect GC B-cell maintenance upon SRBC immunization (Fig. 2A) or 

immunization with 4-hydroxy-3-nitrophenyl-acetyl coupled to keyhole limpet hemocyanin (NP-

KLH) (SI Appendix, Fig. S6). Therefore, to determine whether RELB or NF-B2 are required for 

the generation of antigen-specific PCs in the GC reaction in vivo, we immunized relbfl/flCȖ1-Cre 

or nfkb2fl/flCȖ1-Cre and the corresponding control mice with NP-KLH and performed ELISA and 

ELISPOT analysis. 28 days post-immunization, we found that whereas deletion of relb in GC B 

cells did not significantly reduce NP-specific IgG1 serum levels or the number of NP-specific 

IgG1 antibody-secreting cells (ASCs) in the spleen and bone marrow (Fig. 4A), GC-specific 

deletion of nfkb2 led to a ~3-fold reduction in NP-specific IgG1 serum levels and an 8-10-fold 

reduction in ASCs compared to the control mice (Fig. 4B). This defect does not appear to be 

due to the loss of plasma cells, as we were able to detect eGFP+, and therefore nfkb2-deleted, 

CD138+ plasma cells (see SI Appendix, Fig. S7&8). While the basis for this observation remains 

to be determined, these results provide functional evidence for a biological role of NF-B2, 

which is highly expressed in PCs and their precursors, in the development of PCs that cannot 

be complemented by other NF-B subunits.   
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DISCUSSION 

In agreement with previous work using bone-marrow chimeras (21, 23), we found that GC B-cell 

development proceeds normally in mice with GC B cell-specific ablation of either RELB or NF-

B2 alone. In contrast, combined ablation of RELB and NF-B2 resulted in the progressive loss 

of GC B cells. Therefore, RELB and NF-B2 are jointly required for the maintenance of the GC 

reaction. 

Among the alternative NF-B subunits, only RELB is a transcriptional activator. It was 

therefore perhaps surprising to observe that ablation of RELB alone did not impair the GC 

reaction, revealing redundancy between RELB and NF-B2 in GC B cells. This redundancy in 

the absence of either subunit may be explained by dimerization of the remaining transcription 

factor with subunits of the canonical NF-B pathway (37). It is clear, however, that redundancy 

does not exist between the canonical and alternative NF-B pathways, since the GC 

maintenance defect observed in the combined absence of RELB and NF-B2 was not 

compensated for by canonical NF-B subunits.  

Evidence suggests that CD40-stimulation by Tfh cells leads to activation of both the 

canonical and alternative NF-B pathways in LZ B cells. An additional signal that may activate 

the alternative pathway in LZ B cells is stimulation by BAFF (38). Recent work provides 

evidence that Tfh cells secrete BAFF locally to adjacent LZ B cells (39). Of note, while 

abolishing BAFF secretion by Tfh cells impaired the selection of high-affinity GC B cells, it had 

no impact on the maintenance of the GC reaction. This finding suggests that the inability of LZ B 

cells to transmit signals through the BAFF-R is unlikely to contribute to the loss of GCs 

observed upon GC B cell-specific deletion of relb and nfkb2. Since follicular dendritic cells may 

contribute to BAFF production in the GC (40), the conclusive determination of the function of 

BAFF signaling during the GC reaction would therefore require conditional deletion of the BAFF-

R in GC B cells. 
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GCs are believed to reach maturity at ~d7 of the GC reaction, the time-point at which 

DZ/LZ polarization has been established and when selection of high-affinity GC B-cell mutants, 

followed by cyclic reentry, is initiated (2, 3). It is clear that continuous or periodic signals are 

required for the maintenance of mature GCs, as the involution of established GCs has been 

observed upon inhibition of CD40-signaling (41). Via specific conditional gene deletion within 

GC B cells it has been shown that c-MYC, c-REL and NF-B-induced kinase (NIK), an upstream 

regulator of the alternative NF-B pathway that can also activate the canonical pathway (42, 

43), are all required for the maintenance of established GCs (20, 44-47). We here demonstrated 

that RELB and NF-B2 have a similarly critical role in this process. 

It is becoming increasingly clear that individual NF-B subunits have divergent roles in 

GC and post-GC development. In the case of the canonical subunits, RELA is dispensable for 

the GC reaction but promotes PC development, whereas c-REL is required for GC maintenance 

(20) similar to what we demonstrated here for the alternative NF-B subunits RELB and NF-

B2. Interestingly, however, gene expression profiling analysis revealed that the genes 

controlled by c-REL and RELB/NF-B2 are largely distinct. This finding suggests that the 

respective transcription factors regulate complementary biological programs that are 

independently required for the GC reaction to persist over time. Impaired cell proliferation and 

reduced cell-surface expression of ICOSL on LZ B cells may contribute to the progressive loss 

of RELB/NF-B2-deficient GC B cells. LZ B cells undergoing selection receive signals from Tfh 

cells that promote their survival and license cyclic reentry and division in the DZ. Our results 

suggest that LZ B cells lacking the alternative subunits may respond improperly to these 

signals, resulting in fewer cells reentering the cell cycle and seeding the GC over time. In 

addition, reduced cell-surface expression of ICOSL could lead to suboptimal interactions with 

Tfh cells, further depriving these cells of critical signals necessary for GC maintenance. 
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Several observations suggest a biological role for the alternative NF-B pathway in PCs. 

Our finding of strong protein expression of the NF-B2 subunit in tonsillar PCs is in accordance 

with a gene expression profile analysis that reported an upregulation of mRNA encoding NF-

B2 and RELB in human tonsillar and bone marrow PCs relative to other B-cell subsets (48). 

Moreover, murine plasmacytoma lines were characterized by the nuclear translocation of 

RELB/p52 (49). These observations are supported by the in vivo data reported here 

demonstrating a requirement for NF-B2 in PC development. The results of our GSEA analysis 

on RELB/NF-B2-deficient GC B cells raise the intriguing possibility that the alternative NF-B 

pathway may have a role in establishing a genetic program that facilitates the production of high 

amounts of antibodies in GC B cells destined to develop into PCs.           

 

 
 
MATERIAL AND METHODS 
 

Mice. The conditional relb and nfkb2 alleles, CȖ1-Cre and CD19-cre mice have been described 

(29, 30, 50). Mice were housed and treated in compliance with the guidelines of Columbia 

University. The animal protocol was approved by the institution’s IACUC. Mice were immunized 

with SRBCs or NP-KLH in complete Freund’s adjuvant as described (20). 

 

Cell culture. Discarded leftovers from routine tonsillectomies performed on children at 

Columbia-Presbyterian Medical Center were obtained. IRB approval was obtained for all 

procedures. Consent was not required since all patient identifiers were deidentified and 

specimens anonymized before use. Human GC B cells were isolated as described (51). Human 

GC B-cells and the CD40L expressing mouse feeder cell lines (52) were cultured in RPMI/10% 

FBS. P3HR1, SUDHL2 and JJN3 lines were cultured in Iscove’s-Modified Dulbecco’s Medium 

(IMDM)/10% FBS. U266 was cultured in IMDM/20% FBS, LY10 in IMDM with 15% human 
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serum (New York Blood Center). Murine B cells were purified and cultured with CD40 and/or IL-

4 as described (20). 

 

Immunoblot analysis. Cell lines or human GC B cells were subjected to immunoblot analysis 

as described (20).  For antibodies used, see Table S1. 

 

Flow cytometry. Spleen cell suspensions were stained and analyzed as described (20). For 

antibodies used, see Table S1. The CellTrace Violet Proliferation Kit (Thermo Fisher) was used 

for cell trace experiments. For the analysis of BrdU incorporation in GC B cells in vivo, mice 

were injected with 2 mg of BrdU and sacrificed 6h later. Staining for BrdU was conducted using 

the APC-BrdU kit (Becton Dickinson).  

Histology and immunohistochemistry. Spleen-sections (4m) were H&E-stained for 

morphological evaluation.  Immunohistochemical staining analysis was performed as described 

(20). For antibodies used, see Table S1. 

 

Immunofluorescence. For single-cell staining, cells were spun onto slides using a 

cytocentrifuge and fixed in 10% formalin for 20m followed by 20m of methanol fixation. Nuclear 

permeabilization was achieved via incubation with 0.2% triton/PBS. Cytospin slides were 

incubated with primary antibodies overnight followed by incubation with a Cy3-conjugated 

antibody. Slides were counterstained with DAPI (Molecular Probes). Images were acquired with 

an Eclipse E400 microscope (Nikon). Tissue sections were prepared and stained as described 

(51). For antibodies used, see Table S1. 

Gene expression analysis. B cells were isolated from spleens of relbfl/flnfkb2fl/flCȖ1-Cre and 

CȖ1-Cre mice as described (20). eGFP+CD95hiPNAhi GC B cells were flow-cytometrically sorted 

from splenic B-cells of relbfl/flnfkb2fl/flCȖ1-Cre mice and GC B cells were sorted from splenic B 
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cells of CȖ1-Cre mice. Total RNA was isolated using the Nucleospin RNA XS-isolation kit 

(Macherey-Nagel). NY Genome Center amplified RNA using the NuGEN Ovation RNA-Seq 

System V2 prior to RNA-sequencing. 35-40 million 2x50 bp paired-end reads were sequenced 

per sample on an HiSeq2500 (Illumina). DESeq analysis identified differentially expressed 

genes. Genes identified via RNA-seq analysis with reduced expression in RELB/NF-B2-

deficient GC B cells (Dataset 1) and genes identified via DNA microarray analysis with reduced 

expression in c-REL-deficient GC B cells (20) were compared after filtering out genes identified 

via the RNA-seq analysis that were not represented on the microarray. The overlap between the 

data sets was determined using Venny 2.1.0 available at 

http://bioinfogp.cnb.csic.es/tools/venny/index.html. GSEA (33) was used to identify signatures 

enriched in control vs. relb/nfkb2-deleted GC B cells. We screened the collection of signatures 

under the category CP:REACTOME, CP:KEGG, CP:BIOCARTA, BP:GO, MF:GO, CC:GO and 

signatures from a library of normal and pathological lymphoid gene expression signatures (34) 

to determine significant enrichment (FDR<25%, P≤ 0.05). 

ELISA and ELISPOT. ELISA and ELISPOT-analysis for NP-specific IgG1 or NP-specific IgG1 

antibody-secreting cells, respectively, was conducted as described (20). 
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FIGURE LEGENDS 

Figure 1. Expression and activation of alternative NF-B subunits in normal and 

transformed human GC B cells and PCs. (A) Human tonsillar GC B cells ex vivo or following 

24h of co-culture on CD40L expressing feeders were subjected to Western blot analysis for 

p100/p52 and BCL6 (left) and IF analysis for p105/p50 and p100/p52 (right, red) and DAPI 

(blue). (B) IF analysis of tonsil sections for p100/p52 and DAPI or CD20 in the GC light zone 

(LZ). (B) IF analysis of tonsil sections for p100/p52, BLIMP1 and DAPI in the subepithelium and 

GC LZ. (D) Western-blot analysis of DLBCL and MM cell lines for p100/p52, RELB, c-REL, 

RELA and p105/p50. (E) IF analysis of tonsil sections for IRF4 and NF-B subunits (either 

p100/p52 or c-REL) in the GC LZ. 

Figure 2. Combined GC B cell-specific deletion of relb and nfkb2 impairs the GC reaction. 

(A) relbfl/flCȖ1-Cre, nfkb2fl/flCȖ1-Cre or relbfl/flnfkb2fl/flCȖ1-Cre mice and the corresponding 

heterozygous and CȖ1-Cre control mice were analyzed by flow cytometry 14d following 

immunization with SRBCs for CD95hiPNAhi splenic GC B cells. Summary of the frequencies of 

GC B cells (bottom).  Each symbol represents a mouse. Statistical significance was determined 

by Student’s t test (*, P<0.05; **, P<0.01). Data are shown as mean ± standard deviation (SD). 

(B) Spleen sections from the indicated genotypes were analyzed for the expression of BCL6 

and IgM via IHC. 

Figure 3. Identification of genes controlled by the alternative NF-B subunits RELB and 

NF-B2 in GC B cells. (A) relbfl/flnfkb2fl/flCȖ1-Cre mice and the corresponding heterozygous and 

CȖ1-Cre control mice were analyzed via flow cytometry 8-12d following immunization with 

SRBCs for the expression of CD36 on CD95hiCD38lo GC B cells. Summary of the corresponding 

median fluorescence intensities (MFI) (bottom). (B) GSEA was used to identify gene signatures 

that were enriched in GC B cells from CȖ1-Cre vs. relbfl/flnfkb2fl/flCȖ1-Cre mice. (Top) 

Representative example of a cell-cycle regulation signature. (Bottom) Gene sets showing 
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significant enrichment were grouped into functional categories. For the identity of the gene sets, 

see Dataset 3. (C) CellTrace Violet dilution in CD40+IL-4-stimulated B cells of the indicated 

genotypes (d3). (Top) Representative examples. Gates on the right identify non-dividing cells, 

gates on the left cells that have undergone divisions. (Bottom) Summary of the results. (D) Venn 

diagram showing the overlap of genes with reduced expression in RELB/NF-B2 or c-REL-

deficient GC B cells vs. controls. (E) relbfl/flnfkb2fl/flCȖ1-Cre mice and CȖ1-Cre control mice were 

analyzed via flow cytometry 10d following immunization with SRBCs for the expression of 

ICOSL on CD95hiCD38lo GC B cells. Summary of the corresponding MFI in GC B cells from 

CȖ1-Cre mice and eGFP+ and eGFP– GC B cells from relbfl/flnfkb2fl/flCȖ1-Cre mice (right). (A, C, 

E) Each symbol represents a mouse. Statistical significance was determined by Student’s t test 

(*, P<0.05; **, P<0.01). Data are shown as mean ± SD. 

Figure 4. Deletion of nfkb2 in GC B cells impairs the development of antigen-specific 

PCs. (A) relbfl/flCȖ1-Cre and (B) nfkb2fl/flCȖ1-Cre and the corresponding heterozygous and CȖ1-

Cre control mice were analyzed for NP9-specific IgG1 levels via ELISA (top left) and NP25-

specific IgG1 ASCs via ELISPOT (bottom) 28d following immunization with NP-KLH. Summary 

of the frequencies of NP25-specific IgG1 ASCs (right). Each symbol represents a mouse. 

Statistical significance was determined by Student’s t test (*, P<0.05; ***, P<0.001). Data are 

shown as mean ± SD.  


