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Abstract. In this work, we model extreme waves that oc-
cur due to Mach reflection through the intersection of two
obliquely incident solitary waves. For a given range of in-
cident angles and amplitudes, the Mach stem wave grows
linearly in length and amplitude, reaching up to 4 times
the amplitude of the incident waves. A variational approach
is used to derive the bidirectional Benney–Luke equations,
an asymptotic equivalent of the three-dimensional potential-
flow equations modelling water waves. This nonlinear and
weakly dispersive model has the advantage of allowing
wave propagation in two horizontal directions, which is
not the case with the unidirectional Kadomtsev–Petviashvili
(KP) equation used in most previous studies. A variational
Galerkin finite-element method is applied to solve the sys-
tem numerically in Firedrake with a second-order Störmer–
Verlet temporal integration scheme, in order to obtain stable
simulations that conserve the overall mass and energy of the
system. Using this approach, we are able to get close to the
4-fold amplitude amplification predicted by Miles.

1 Introduction

Offshore structures such as wind turbines, ships and plat-
forms are designed to resist loads and stresses applied by
winds, currents and water waves. These three factors can
cause damage or destroy these structures when their effect
is underestimated. Designers and engineers must take into
account the effect of not only each of these phenomena sepa-
rately, but also their interaction, which can increase their ad-
verse effects. In this work, we focus on the impact of extreme
waves created from the propagation of an obliquely incident
solitary wave along the side of a ship (a wave–structure inter-

action) or its impact with another identical obliquely incident
wave (a wave–wave interaction). These two cases are math-
ematically equivalent since reflection at a rigid wall (rep-
resented here by the ship’s side) is modelled through the
boundary condition of no normal flow at the wall, which is
equivalent to the intersection of two identical waves travel-
ling in opposite directions, in which case a virtual wall is
formed. The study of extreme, freak or rogue waves resulting
from reflection at a wall or interaction of waves has spawned
different theories in the last 50 years, some of which are sub-
sequently reviewed.

The objective of the present work is to apply a theory first
introduced by Miles (1977a, b) and based on experiments
from Perroud (1957), where he described analytically the be-
haviour of an incident solitary wave interacting with a wall.
For a specific range of angle of incidence ϕi and scaled am-
plitude ai of the wave, the reflection of the soliton may result
in three wave fronts: the incident and reflected waves (of re-
spective amplitudes ai and ar), as well as a Mach stem wave
(of amplitude aw) propagating along the wall with an increas-
ing length (see Fig. 1).

This theory holds in the case of small-but-finite wave am-
plitude, shallow-but-finite water depth, and weak nonlinear-
ity, that is,

ϕ2
i =O(ε), ai =O(ε), for any ε�O(1), (1)

and is based on an interaction parameter, first defined as

κ =
ϕi
√

3ai
, (2)

which enables the prediction of the amplitude and direction
of propagation of each wave front. The most important ob-
servation is the transition at κ = 1 from a regular reflection
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Figure 1. Top: top view of a channel containing an incident solitary
wave propagating in the x direction with amplitude ai. The side wall
is oblique and makes an angle ϕi with the x direction. Bottom: top
view of the reflection pattern when the incident wave impacts upon
the wall. The pattern is composed of three waves: (1) the incident
wave, (2) a reflected wave of amplitude ar that forms an angle ϕr
with the angle perpendicular to the wall, and (3) a Mach stem wave
propagating along the wall with amplitude aw and an angle ϕw with
the wall.

(κ ≥ 1) to a Mach reflection (κ < 1), which has led to the
following definition of the stem-wave amplification,

αw =


4

1+
√

1− κ−2
, for κ ≥ 1,

(1+ κ)2, for κ < 1,
(3)

so that αw = aw/ai is the quotient of the stem-wave and
incident-wave amplitudes. Equation (3) shows that at the
transition point where κ = 1 the stem wave may grow up to 4
times the amplitude of the incident wave, leading to extreme
loading on offshore structures. The aim of the present study
is to develop a (numerical) model that can accurately simu-
late the evolution of the stem wave so that the distance and
direction of propagation required to reach the 4-fold ampli-
tude can be estimated. A challenging aspect is that it takes a
long time and large distance of propagation before the stem
wave reaches its maximum amplitude, which was a limiting
factor in previous experimental and numerical studies. Ko-
dama et al. (2009) extended Miles’ theory to the Kadomtsev–
Petviashvili (KP) limit, in which the assumptions are

a0
H0
=O(ε),

(
H0
λ0

)2
=O(ε), tan2ϕi =O(ε), ε�O(1), (4)

whereH0, a0 and λ0 are the water depth, the wave amplitude
and wavelength, respectively. While the KP limit still consid-
ers shallow-but-finite depth and small-but-finite amplitudes,

the main difference with Miles’ theory concerns the condi-
tion on the angle ϕi. Yeh et al. (2010) explained that, in con-
trast to Miles’ theory, wherein the soliton propagates in one
direction only (the Korteweg–De Vries – KdV – limit), the
KP limit assumes a quasi-two-dimensional approximation,
and therefore the condition tan2ϕi =O(ε) cannot be simpli-
fied to ϕ2

i =O(ε) as in Miles’ assumptions. The quasi-two-
dimensional KP soliton is not a solution of the KdV equation,
but it can be transformed to an asymptotic KdV soliton via
some manipulations detailed in Yeh et al. (2010). However,
the width of the obtained KdV soliton is proportional to√

aKP

cos2ϕi
, (5)

with aKP the scaled amplitude of the initial KP soliton, and
it therefore depends on the angle ϕi. This is physically un-
realistic since the KdV soliton should have the same shape
whatever its direction of propagation. For this reason, Yeh
et al. (2010) brought a “high-order correction” to the solu-
tion, setting the amplitude of the KdV soliton to be

aKdV =
aKP

cos2ϕi
, (6)

so that its width depends on its amplitude aKdV, but not on
any angle. Taking this into account, they slightly modified
the definition (Eq. 2) of the interaction parameter κ to

κ =
tanϕi

cosϕi
√

3ai
, (7)

where ai = aKdV/H0 is the scaled amplitude of the incident
wave, leading to what we will hereafter identify as the “mod-
ified Miles’ theory” for the expected stem-wave amplifica-
tion:

αw =

{ 4
1+
√

1−κ−2
, for κ ≥ 1,

(1+ κ)2, for κ < 1,
(3)

with κ =
tanϕi

cosϕi
√

3ai
. (7)

Using this modified interaction parameter (7) in Eq. (3), they
found much better agreement between previous numerical
simulations (Funakoshi, 1980; Tanaka, 1993) and modified
Miles’ theory. Moreover, Kodama et al. (2009) showed that
the stem wave resulting from the interaction of two solitary
waves with small incident angles is an exact solution of the
KP equation. Solving this KP equation, they could describe
the exact solution depending on the angle of incidence and
the amplitude of the initial waves, and validate their theory
with numerical simulations (Kodama et al., 2009; Li et al.,
2011). Both the amplitude and length of the stem wave in-
deed followed their predictions in the case of regular and
Mach reflection. The numerical scheme could not simulate
the highest amplitudes that Miles predicts for κ ≈ 1. Re-
cently, Ablowitz and Curtis (2013) studied Mach reflection
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for the Benney–Luke approximation, showing that, in that
case, modified Miles’ theory applies asymptotically, leading
to amplifications of up to 3.9.

The purpose of the present work is to derive and ap-
ply a stable numerical scheme able to estimate the solution
over a long distance of propagation, in order to model high-
amplitude waves and to confirm the transition from regular
to Mach reflection happening for κ ≈ 1. We develop a model
similar to the one of Benney and Luke (1964), which is an
asymptotic approximation of the potential-flow equations for
small-amplitude and long waves. Whilst it has the advantage
of conserving both the nonlinear and dispersive properties
of the waves (essential to the modelling of a freak wave,
for instance), it does not require a mesh moving vertically
with the free surface since the model is reduced to the hor-
izontal plane. Pego and Quintero (1999) derived these mod-
ified Benney–Luke equations and Bokhove and Kalogirou
(2016) recently used them to simulate a soliton splash re-
sulting from a wave running in a restricted channel. Their
simulations were in reasonably good agreement with experi-
ments, which confirms that the Benney–Luke approximation
is an accurate model of water waves. The present approaches
are necessary to determine how, in future work, we can im-
pose the line solitons on the wave makers to generate a 4-fold
amplified wave in the middle of a wave basin and measure its
impact on offshore structures. The variational technique used
in the present approach enables us to express the equations
as a Hamiltonian system to which robust time integrators can
be applied (Hairer et al., 2006; Gagarina et al., 2016). The
space and time Galerkin finite-element method used to dis-
cretize the present model ensures the overall conservation of
mass, energy and momentum, which are essential in the high-
amplitude and long-distance propagating waves studied here.

The remainder of this paper is organized as follows: the
modified Benney–Luke-type model is derived from the vari-
ational principle for an inviscid and incompressible fluid
(Luke, 1967) in the potential-flow approximation, using the
small-amplitude and small-dispersion scaling of Pego and
Quintero (1999). In order to apply modified Miles’ theory
and verify our numerical results against Kodama’s exact so-
lution, the KP limit is obtained from the Benney–Luke ap-
proximation, leading to a new variational principle for KP. A
careful scaling is then defined to obtain an asymptotic soli-
ton solution of our present model, based on the exact so-
lution of the KP equation from Kodama et al. (2009). The
corresponding interaction parameter is consequently derived,
leading to another version of modified Miles’ theory (Eqs. 3
and 7), later used to compare our numerical simulations with
respect to Miles’ expectations. The finite-element method is
then used to discretize the equations in space together with
the second-order Störmer–Verlet temporal scheme that en-
sures stable simulations. Results are finally discussed and
compared to the expectations.

Figure 2. Three-dimensional water-wave domain with rest depth
H0, velocity potential φ(x,y,z, t), total depth h(x,y, t) and free
surface deviation η(x,y, t).

2 Water-wave model

2.1 Introduction

Our water-wave model is derived using a variational ap-
proach that ensures conservation of mass, momentum and
energy. In a basic sea state with extreme waves, these con-
servation properties are essential given the different length
scales involved. Starting from Luke’s variational principle
for an inviscid fluid with a free surface (Luke, 1967), a model
similar to the one derived by Benney and Luke (1964) for
small-amplitude and long waves is obtained. The (numeri-
cal) method developed by Bokhove and Kalogirou (2016)
is used to derive the relevant variational principle for our
Benney–Luke model. This asymptotic model conserves the
nonlinear and dispersive properties of the sea waves, which
enables comparison with the Kadomtsev–Petviashvili (KP)
model for which the modified Miles’ theory as expressed in
Eqs. (3) and (7) applies.

2.2 From Luke’s variational principle to the
Benney–Luke set of equations

Water-wave equations are often adequately described by the
potential-flow approximation. In the absence of vorticity, the
fluid velocity u= (ux,uy,uz) can be expressed as the gradi-
ent of the so-called velocity potential φ(x,y,z), such that
u=∇φ. The deviation from the surface at rest H0 is de-
fined by η(x,y, t) so that the total depth h(x,y, t) can be
expressed as h(x,y, t)=H0+η(x,y, t) (cf. Fig. 2). We con-
sider a flat sea bed lying at z= 0, with vertical walls at
∂�b, where�b is the horizontal plane of the bed coordinates
�b = {0≤ x ≤ Lx,0≤ y ≤ Ly}. Luke (1967) described an
inviscid and incompressible fluid with a free surface in the
potential-flow approximation through the following varia-
tional principle:

T∫
0

∫
�b

H0+η(x,y,t)∫
0

[
∂tφ+

1
2
|∇φ|2+

1
2
(∂zφ)

2

+g(z−H0)
]

dzdx dy dt, (8)
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where g is the acceleration of gravity. The gradient ∇ is de-
fined on �b only, such that ∇ = (∂x,∂y)T is the horizontal
gradient. The velocities at the walls and sea bed are assumed
to be zero, that is, n · ∇φ = 0 on ∂�b, with n the outward
horizontal normal and ∂zφ = 0 at z= 0. The boundary con-
ditions at the free surface z= h and the equations of motion
in the domain � are obtained from Eq. (8) as

∇
2φ+ ∂zzφ = 0 in �, (9a)

∂tη+∇φ · ∇η− ∂zφ = 0 at z= h, (9b)

∂tφ+
1
2
|∇φ|2+

1
2
(∂zφ)

2
+ gη = 0 at z= h, (9c)

n · ∇φ = 0 on ∂�b, (9d)
∂zφ = 0 at z= 0. (9e)

The amplitude parameter ε = a/H0� 1, with a the am-
plitude of the waves, and the small dispersion parameter
µ= (H0/λ0)

2
� 1, with λ0 the horizontal wavelength, have

been introduced by Milewski and Keller (1996) and Pego and
Quintero (1999) to scale Eq. (8). The scaled variational prin-
ciple is

0= δ

T∫
0

∫
�b

1+εη̂∫
0

[
ε∂t̂ φ̂+

ε2

2
|∇̂φ̂|2+

1
2
ε2

µ
(∂ẑφ̂)

2
]

dẑ

+
1
2
ε2η̂2 dx̂ dŷ dt̂ , (10)

where

x̂ =

√
µ

H0
x, ŷ =

√
µ

H0
y, ẑ=

1
H0
z,

t̂ =

√
gH0µ

H0
t, η̂ =

1
εH0

η and φ̂ =

√
µ

εH0
√
εH0

φ. (11)

This scaling focusses on small-amplitude long waves. From
now on, the hats on the variables introduced in Eq. (11) are
omitted.

To derive the Benney–Luke model, the velocity potential φ
is expanded in terms of the sea-bed potential φ(x,y,0, t)=
8(x,y, t) and the dispersion parameter µ as in Bokhove and
Kalogirou (2016):

φ(x,y,z, t)=8(x,y, t)+µ81(x,y,z, t)

+µ282(x,y,z, t)+ . . .. (12)

Combining this expansion with the system of Eq. (9) and
retaining terms up to second order, Eq. (12) becomes (see
Bokhove and Kalogirou, 2016, for details)

φ =8−
µ

2
z218+

µ2

24
z2128+O(µ3). (13)

Substituting Eq. (13) into the variational principle Eq. (10)
yields the variational principle under the Benney–Luke ap-

proximation

0= δ

T∫
0

∫
�b

[
η∂t8+

µ

2
∇η · ∂t∇8+

1
2
(1+ εη)|∇8|2

+
µ

3
(18)2+

1
2
η2
]

dx dy dt. (14)

Arbitrary variations in both8 and η, together with boundary
conditions n · ∇8= 0 and n ·1∇8= 0 at ∂�b, lead to the
Benney–Luke equations

δη :∂t8−
µ

2
∂t18+

ε

2
|∇8|2+ η = 0, (15a)

δ8 :∂tη−
µ

2
∂t1η+∇ · ((1+ εη)∇8)

−
2
3
µ128= 0. (15b)

Equation (15) will be solved numerically as explained in
Sect. 4. However, to test our Benney–Luke model on mod-
ified Miles’ theory (Eqs. 3 and 7), it must first be compared
to the KP theory for which Kodama et al. (2009) have shown
that modified Miles’ theory holds.

2.3 From the Benney–Luke set of equations to the
Kadomtsev–Petviashvili equation

The Kadomtsev–Petviashvili equation for small-amplitude
solitons can be derived from the Benney–Luke variational
principle Eq. (14) and Eq. (15) through the transformations

X =

√
ε

µ
(x− t), Y =

ε
√
µ
y, τ = ε

√
ε

µ
t, 9 =

√
ε

µ
8

and η = η. (16)

Substituting scalings Eq. (16) into Eq. (15a), η can be ex-
pressed from 9 as

η =9X − ε9τ −
ε

2
9XXX −

ε

2
(9X)

2
−
ε2

2

(
9y
)2
+
ε2

2
9τXX

−
ε3

2
9XYY +

ε3

2
9τYY . (17)

Substituting Eq. (16) into the transformed variational princi-
ple Eq. (14) yields

0= δ

T∫
0

∫
�b

[
η(ε9τ −9X)+

ε

2
ηX (ε9τX −9XX)

+
ε2

2
ηY (ε9τY −9XY )

+
1
2
(1+ εη)

(
(9X)

2
+ ε(9Y )

2
)

+
ε

3

(
(9XX)

2
+ ε2(9YY )

2
)
+

1
2
η2
]

dX dY dτ. (18)
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Subsequent elimination of η using Eq. (17) and truncation
to O(ε2) gives the variational principle for KP in terms of
η ≈9X:

0= εδ

T∫
0

∫
�b

[
9X9τ +

1
2
(9X)

3
−

1
6
(9XX)

2

+
1
2
(9Y )

2
]

dX dY dτ (19a)

= ε

T∫
0

∫
�b

δ9

[
−29Xτ − 39X9XX −

1
3
9XXXX

−9YY ] dX dY dτ. (19b)

Note that we consider an infinite plane, with 9 vanishing at
the boundaries |X,Y | →∞, such that the boundary terms
arising from the integration by parts vanish in Eq. (19b).
Since δ9 is arbitrary, the variational principle Eq. (19) yields
the following equation for the leading-order scaled potential
9:

29Xτ + 39X9XX +
1
3
9XXXX +9YY = 0. (20)

From Eq. (17), at leading order in O(ε), η can be expressed
as η =9X and, therefore, taking the partial derivative of
Eq. (20) with respect to X leads to the KP equation for η:[

2ητ + 3ηηX +
1
3
ηXXX

]
X

+ ηYY = 0. (21)

A solution of the KP Eq. (21) is found by substituting the
following soliton solution ansatz, the form inspired by Yeh
et al. (2010) Eq. (9), into Eq. (21):

η(X,Y,τ)= Asech2 [B (X+Y tanϕ−Cτ)] , (22)

where ϕ is the angle of incidence, A is the amplitude of the
soliton, and B and C are coefficients to be determined via
direct substitution. The KP soliton is then found to be

η(X,Y,τ)= Asech2

[√
3
4
A(X+Y tanϕ−Cτ)

]
, (23)

with C =
1
2
A+

1
2

tan2ϕ, B =
√

3A/4 and A the prescribed
amplitude. Using Eq. (17) at leading order, i.e. η =9X, the
solution for 9 thus becomes

9(X,Y,τ)=

√
4
3
A

[
tanh

(√3
4
A(X+Y tanϕ−Cτ)

)
+ 1

]
. (24)

3 Comparison with modified Miles’ theory and
Kodama’s exact solution

3.1 Introduction to Kodama’s exact solution

Kodama et al. (2009) have studied the reflection pattern for
“symmetric V -shape initial waves consisting of two semi-

Figure 3. O-type and (3142)-type solitons as represented by Ko-
dama et al. (2009). Top: evolution (from left to right) of the O-type
soliton, consisting of two line solitons with different amplitudes and
angles with respect to the y axis. As it propagates, the shape of this
soliton remains unchanged. Bottom: evolution (from left to right)
of the (3142)-type soliton, consisting of two line solitons travelling
in the x direction with different angles and amplitudes. As the soli-
ton propagates, a new line soliton is created at the intersection of
the two initial line solitons, leading to a stem wave. Figure obtained
from Kodama et al. (2009). ©IOP Publishing. Reproduced with per-
mission. All rights reserved.

infinite line solitons with the same amplitude”, in a system
of coordinates (X̃, Ỹ , τ̃ ) related to our system of coordinates
Eq. (16) (X,Y,τ ) via

X̃ =

(
3
√

2

)1/3

X, Ỹ =

(
3
√

2

)2/3

Y, η̃ =
1
3

(
3
√

2

)4/3

η

and τ̃ =
√

2τ. (25)

They solved the KP equation[
4η̃τ̃ + 6η̃η̃X̃ + η̃X̃X̃X̃

]
X̃
+ 3η̃Ỹ Ỹ = 0, (26)

for which the surface deviation solution η̃ is given by

η̃ = Ãsech2

√ Ã
2

(
X̃+ Ỹ tan ϕ̃− C̃τ̃

) , (27)

where Ã is the amplitude of the soliton, ϕ̃ is the angle of
incidence at the wall, and C̃ is a constant defined as C̃ ≡
1
2
Ã+

3
4

tan2ϕ̃. They showed that in this specific case, the tran-
sition from regular to Mach reflection occurs when

tan ϕ̃ =
√

2Ã. (28)
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Moreover, Kodama et al. (2009) defined exactly the incident,
reflected and stem solitons resulting from the interaction as a
O-type soliton in the case where tan ϕ̃ >

√

2Ã, and a (3142)-
type soliton in the case where tan ϕ̃ <

√

2Ã. The O-type soli-
ton consists of two line solitons travelling in the x direction,
each having a specific amplitude and angle with respect to the
y axis (see Fig. 3). The (3142)-type soliton consists of two
other line solitons, also travelling in the x direction with their
own amplitudes and angles with respect to the y axis, but this
soliton also has the property of being non-stationary, i.e. that
while it propagates along the x axis, a new line soliton is
progressively created and grows parallel to the y axis at the
intersection of the two initial line solitons. In the case of both
O-type and (3142)-type solitons, one of the line solitons can
be associated with the incident solitary wave presented in the
introduction, the second line solitons with the reflected wave
(with a different amplitude and angle), and the intersection
of the two line solitons as the stem wave, growing in length
only when the angle of the incident wave is smaller than the
critical angle (Eq. 28). These two solitons are represented
in Fig. 3, obtained from Kodama et al. (2009). A compari-
son between these theoretical solitons and those obtained nu-
merically from the V-shape initial soliton showed very good
agreement, confirming that the incident, reflected and stem
waves described by Miles are indeed asymptotically equiva-
lent to the O-type and (3412)-type solitons, depending on the
initial angles. In the case of a symmetric initial pattern, that
is, for two initial line solitons of equal amplitude and angle
of incidence, Kodama et al. (2009) gave the expression of the
maximal amplitude of the intersection wave as

amax =


1
2 (tan ϕ̃+

√

2Ã)2 for tan ϕ̃ <
√

2Ã,
4Ã

(1+
√

1− 2Ã
tan2ϕ̃

)

for tan ϕ̃ ≥
√

2Ã. (29)

Since the condition tan ϕ̃ =
√

2Ã is equivalent to Miles’ con-
dition κ = 1, we can define the interaction parameter corre-
sponding to the KP Eq. (26) as

κ̃ =
tan ϕ̃
√

2Ã
. (30)

Substitution of the interaction parameter (Eq. 30) into the
amplification expectations (Eq. 29) indeed yields Miles’ pre-
dictions (Eq. 3) for αw = amax/Ã.

3.2 Application to the present Benney–Luke model

In Sect. 2.3, the Benney–Luke model was reduced to the KP
Eq. (21). This equation for the surface deviation η is slightly
different from the one used by Kodama et al. (2009) and in-
troduced in Eq. (26). In order to compare our numerical so-
lutions to Kodama et al. (2009)’s result Eqs. (29)–(30), our
KP Eq. (21) is (re)scaled using the coefficients introduced in
Eq. (25), which yields Eq. (26) used by Kodama et al. (2009).

Using the same transformations Eq. (25) in the KP soliton so-
lution Eq. (27), we can obtain a solution for our KP Eq. (26)
in terms of the original variables (X,Y,τ,η) introduced in
Eq. (16), given by

η = 3
(

3
√

2

)−4/3

Ãsech2

√ Ã
2

((
3
√

2

)1/3

X− C̃
√

2τ

+

(
3
√

2

)2/3

Y tan ϕ̃

)]
. (31)

The connection between the above solution (Eq. 31) and the
previously presented solution (Eq. 23) can be established by
applying the following transformations in Eq. (31):

A= 3
(

3
√

2

)−4/3

Ã, C =

(
4
3

)1/3

C̃

and tanϕ =
(

3
√

2

)1/3

tan ϕ̃, (32)

with C =
1
2
A+

1
2

tan2ϕ, yielding the solution (Eq. 23) de-
rived in Sect. 2.3. Therefore, applying scaling (Eq. 32) to
the critical condition (Eq. 28) yields the critical condition for
Eq. (21) and solution Eq. (23), given by

tanϕ =
√

3A. (33)

We then apply scaling Eq. (16) to transform solution Eq. (23)
for η back to the original Benney–Luke approximation
Eq. (15) used in our simulations, in which case the asymp-
totic solutions for η and 8 become

η(x,y, t)= Asech2

[√
3ε
4µ
A
(
x− x0+

√
ε(y− y0) tanϕ

+(t − t0)(1−Cε))] , (34a)

8(x,y, t)=

√
4µ
3ε
A

[
tanh

(√
3ε
4µ
A(

x− x0+
√
ε(y− y0) tanϕ

+ (t − t0)(1−Cε)
))
+ 1

]
, (34b)

where the soliton has been localized around the position
(x0,y0) at time t = t0. Finally, by setting

ai = A, tanϕi =
√
ε tanϕ

and Ĉ =
1
2
ai+

1
2ε

tan2ϕi, (35)

the solutions (34) of the Benney–Luke equations can be
rewritten as
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Figure 4. Schematic plan showing the link between the scaling of the three systems of equations involved in the derivation of the exact
solution and critical condition for which Miles’ and Kodama’s predictions hold in the Benney–Luke approximation.

η(x,y, t)= aisech2

[√
3ε
4µ
ai (x− x0

+(y− y0) tanϕi+ (t − t0)(1− Ĉε)
)]
, (36a)

8(x,y, t)=

√
4µ
3ε
ai

[
tanh

(√
3ε
4µ
ai(

x− x0+ (y− y0) tanϕi

+ (t − t0)
(

1− Ĉε
)))
+ 1

]
. (36b)

This solution is used as an initial condition at time t = 0 in
the simulations. Condition Eq. (33) defines the following re-
lation between ϕi, ai and ε in our Benney–Luke scaling, for
Eq. (15):

tanϕi =
√

3εai. (37)

This condition is equivalent to Miles’ condition κ = 1 and
therefore we can define our Benney–Luke interaction param-
eter as

κBL =
tanϕi
√

3εai
. (38)

Note, however, that taking into account the remark from Ko-
dama (2010) about the quasi two-dimensionality of the KP
limit, as explained in the introduction, the interaction param-
eter defined in Eq. (38) must be corrected to

κBL =
tanϕi

cosϕi
√

3εai
(39)

in order to satisfy Miles’ prediction Eq. (3). As shown in
the potential-flow Eq. (9) for the Benney–Luke approxi-
mation, the small-amplitude parameter ε is defined as ε =

a/H0. Therefore, in the specific case where ai = 1 and ε =
aKdV/H0, the interaction parameter Eq. (7) is recovered. The
diagram in Fig. 4 summarizes the equations and solutions de-
rived thus far, in each scaling. In the next section, we explain
how the Benney–Luke system of equations is discretized in
both space and time in order to be solved numerically.

4 Numerical implementation

As a first step in the computational solution, the Benney–
Luke model needs to be discretized in space and time, on a
meshed domain. This section explains the methods used to
discretize the domain and the equations.

4.1 Space discretization: finite-element method (FEM)

A continuous Galerkin finite-element method is used to dis-
cretize the solutions in space. The variables η and 8 are ap-
proximated by the finite-element expansions

ηh(x,y, t)= ηi(t)ϕi(x,y)

and 8h(x,y, t)=8j (t)ϕj (x,y), (40)

where the subscript h denotes the discretized form of the so-
lutions with basis functions ϕj (x,y), and i,j ∈ [1,N ] with
2N unknowns. The Einstein notation for the implicit sum-
mation of repeated indices is used. To avoid the second-
order derivative in the fourth term of the variational principle
Eq. (14), the auxiliary variable

q(x,y, t)=−
2
3
18(x,y, t) (41)

is introduced, so that, in the variational principle Eq. (14),
the term

µ

3
(18)2 can be written as
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µ

3
(18)2 = µ

(
2
3
(18)2−

1
3
(18)2

)
= µ

(
−

2
3
∇18 · ∇8−

3
4
(
2
3
18)2

)
= µ

(
∇q · ∇8−

3
4
q2
)
, (42)

which leads to the variational principle

0= δ

T∫
0

∫
�b

[
η∂t8+

µ

2
∇η · ∂t∇8+

1
2
(1+ εη)|∇8|2

+µ

(
∇q · ∇8−

3
4
q2
)
+

1
2
η2
]

d�b dt. (43)

In keeping with Eq. (40), the second-order Galerkin expan-
sion for q is now expressed as

qh(x,y, t)= qi(t)ϕi(x,y). (44)

Substituting expansions Eqs. (40) and (44) into the varia-
tional principle Eq. (43) yields the space-discrete variational
principle

0= δ

T∫
0

∫
�b

[
ϕjηjϕi8̇i +

µ

2
ηj 8̇i∇ϕj · ∇ϕi

+
1
2
(1+ εϕjηj )8i8l∇ϕi · ∇ϕl

+µ

(
qi8j∇ϕi · ∇ϕj −

3
4
qiqjϕiϕj

)
+

1
2
ϕiϕjηiηj

]
d�b dt, (45)

with 8̇i the time derivative of8i . Its variation with temporal
end-point conditions δ8i(0)= δ8i(T )= 0 yields

0=

T∫
0

δ8i

∫
�b

[
−η̇jϕjϕi−

µ

2
η̇j∇ϕj · ∇ϕi

+(1+ εηjϕj )8l∇ϕi∇ϕl +µqj∇ϕi · ∇ϕj
]

d�b

+ δηi

∫
�b

[
ϕiϕj 8̇j +

µ

2
∇ϕi∇ϕj 8̇j

+
ε

2
ϕi8j8l∇ϕj∇ϕl + ηjϕiϕj

]
d�b

+ δqi

∫
�b

[
µ8j∇ϕi · ∇ϕj −

3
2
qjϕiϕj

]
d�b dt. (46)

A matrix form of Eq. (46) can be found in Bokhove and Kalo-
girou (2016). Rather than using this matrix form directly, we

accommodate only the spatial discretization using Firedrake
(Rathgeber et al., 2016; Balay et al., 2016, 1997; Dalcin et al.,
2011; Hendrickson and Leland, 1995), “an automated system
for the portable solution of partial differential equations us-
ing the finite element method (FEM)”. This automated sys-
tem uses the finite-element method to solve partial differen-
tial equations, and requires specification of the following:

– the domain in which the equations are solved, and the
kind of mesh to use (e.g. quadrilaterals, the spatial di-
mension);

– the order and type of polynomials used;

– the type of expansion for the unknowns (e.g. continuous
Galerkin, Lagrange polynomials);

– the function space of the unknowns and test functions;
and

– the weak formulations discretized in time.

In the present case the domain is defined as a horizontal chan-
nel ending in an oblique wall, and quadrilaterals are used for
its discretization (see details in Sect. 5.1.2). Here, we chose
to use quadratic polynomials to expand 8, q and η. The re-
sulting weak formulations implemented in Firedrake in terms
of 8h, qh and ηh are the following:

δ8h : 0=

T∫
0

∫
�b

[
−∂tηhδ8h−

µ

2
∇∂tηh · ∇δ8h

+ (1+ εηh)∇δ8h · ∇8h−µ∇qh
·∇δ8h]d�b dt, (47a)

δqh : 0=

T∫
0

∫
�b

µ

[
3
2
qhδqh−∇δqh · ∇8h

]
d�b dt, (47b)

δηh : 0=

T∫
0

∫
�b

[
δηh∂t8h+

µ

2
∇δηh · ∇∂t8h+ ηhδηh

+
ε

2
δηh∇8h · ∇8h

]
d�b dt. (47c)

The forms given in Eq. (47) are convenient since they high-
light the unknowns8h, qh and ηh as well as the test functions
δ8h, δqh and δηh. The final step is to discretize the equations
in time, with a second-order Störmer–Verlet scheme, as ex-
plained in the next section.

4.2 Time discretization: second-order Störmer–Verlet
scheme

After incorporating the FEM expansions, the space-discrete
form of the variational principle Eq. (43) can be written in
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the Hamiltonian form

0= δ

T∫
0

[(
Mij +

µ

2
Aij

)
8i

dηj
dt
−H(8i,ηj )

]
dt, (48)

where Mij and Aij are the mass and stiffness matrices, re-
spectively defined as

Mij =

∫
�b

ϕiϕj dx dy and Aij =
∫
�b

∇ϕi · ∇ϕj dx dy, (49)

and the Hamiltonian is

H(φi,ηj )=
1
2
(Aij + εSijkηk)8i8j

+µ

(
Aijqi8j −

3
4

Mijqiqj

)
+

1
2

Mijηiηj , (50)

where

Sijk =
∫
�b

ϕk∇ϕi · ∇ϕj d�b. (51)

Note that dH/dt = 0 due to skew symmetry. Gagarina et al.
(2016) have shown that, for a generic Hamiltonian system in
the form

δL(P,Q, t)= δ
T∫

0

(
P

dQ
dt
−H(P,Q)

)
dt, (52)

here with P= {8i} and Q= {(Mij +µ/2Aij )ηj }, robust
variational time integrators conserving the overall mass and
energy can be formulated. To derive these time schemes,
P and Q are discretized on each time interval [tn, tn+1

] as
the approximated momentum Pτ and coordinate Qτ and ex-
panded with coefficients Pm and Qm and linear continuous
basis functions ψ̃m and ψm:

Pτ =Qmψ̃m(t), Qτ
=Qmψm(t). (53)

The linear basis functions ψ̃m and ψm are continuous within
each time interval, but admit discontinuities at the interface
between two time slots. Therefore, to discretize Eq. (52), the
notion of jumps [[.]] and averages {{.}}βα for a time-dependent
function d(t) must be introduced (Gagarina et al., 2016):

[[d]]|tn = d
n,−
− dn,+

and {{d}}βα |tn = αd
n,−
+βdn,+. (54)

The coefficients α and β are real numbers defined such that
α+β = 1 and α,β ≥ 0. The notation dn,± denotes the left
and right traces of d(t) at time tn, that is,

dn,± = lim
ε→0

d(tn± ε). (55)

Discretization of the variational principle Eq. (52) then yields
(Gagarina et al., 2016)

δLτ (Pτ ,Qτ , t)= δ

N−1∑
n=0

tn+1∫
tn

(
Pτ

dQτ

dt

−H(Qτ ,Pτ )
)

dt −
N−1∑
n=−1
[[Qτ
]]{{Pτ }}βα |tn+1

]
, (56)

where N is the number of finite time intervals [tn, tn+1
] that

divide the time domain [0,T ]. Gagarina et al. (2016) showed
that to obtain a second-order Störmer–Verlet scheme, P and
Q must be discretized with mid-point and trapezoidal rules,
respectively, that is,

Qτ
=
tn+1
− t

1t
Qn,+

+
t − tn

1t
Qn+1,−, (57)

Pτ =
2(t − tn)
1t

Pn+1/2
+
tn+ tn+1

− 2t
1t

Pn,+. (58)

Substituting Eqs. (57)–(58) into the discretized variational
principle Eq. (56) yields

δLτ (Pτ ,Qτ , t)= δ

[
N−1∑
n=0

(
Pn+1/2

(
Qn+1,−

−Qn,+
)

−
1t

2

(
H(Pn+1/2,Qn,+)+H(Pn+1/2,Qn+1,−)

))
−

N−1∑
n=−1

(
Qn+1,−

−Qn+1,+
)

(
2αPn+1/2

−αPn,++βPn+1,+
)]
. (59)

The variations of Eq. (59), when augmented by end-
point conditions δP0,−

= δ(2P−1/2
−P−1,+)= 0, δQ0,−

=

0, δPN,+ = 0 and δQN,+
= 0, yield the following scheme:

α
(
Qn+1,−

−Qn+1,+)
= β

(
Qn,−

−Qn,+
)

(60a)

Pn+1/2
= 2αPn+1/2

−αPn−1,+
+βPn,+

−
1t

2
∂H(Pn+1/2,Qn,+)

∂Qn,+
, (60b)

(1− 2α)Qn+1,−
+ 2αQn+1,+

=Qn,+

+
1t

2

(
∂H(Pn+1/2,Qn,+)

∂Pn+1/2

+
∂H(Pn+1/2,Qn+1,−)

∂Pn+1/2

)
, (60c)

βPn+1,+
= (1− 2α)Pn+1/2

+αPn,+

−
1t

2
∂H(Pn+1/2,Qn+1,−)

∂Qn+1,− . (60d)

Setting Pn = αPn,++βPn,− with α = 0 and β = 1 ensures
stability of the numerical scheme (Gagarina et al., 2016).
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Substituting these conditions into Eq. (60) yields the continu-
ity condition [[Q]]tn = 0 for Q in Eq. (60a), and the second-
order Störmer–Verlet scheme is recovered,

Pn+1/2
= Pn−

1t

2
∂H(Pn+1/2,Qn)

∂Qn
, (61a)

Qn+1
=Qn

+
1t

2

(
∂H(Pn+1/2,Qn)

∂Pn+1/2

+
∂H(Pn+1/2,Qn+1)

∂Pn+1/2

)
, (61b)

Pn+1
= Pn+1/2

−
1t

2
∂H(Pn+1/2,Qn+1)

∂Qn+1 , (61c)

with the stability condition

|ω1t | ≤ 2, (62)

where ω is the (maximum) frequency of the discrete waves.
Setting the vectors P= {8i} and Q=

{(
Mij +

µ
2 Aij

)
ηj
}
,

the variational principle Eq. (48) for Benney–Luke equa-
tions can therefore be discretized as in Eq. (61), leading to
Eq. (A1) in Appendix Sect. A. Since the space discretization
is performed internally within Firedrake, the weak formula-
tions Eq. (A1) can be implemented with the full form of the
variables 8h, qh and ηh and test functions δ8h, δqh and δηh
yielding the time discretization of Eq. (47), namely

0=
∫
�b

(
8
n+1/2
h −8nh

)
δηh

+
µ

2
∇δηh · ∇

(
8
n+1/2
h −8nh

)
+
1t

2

[
ηnhδηh+

ε

2
δηh∇8

n+1/2
h · ∇8

n+1/2
h

]
d�b, (63a)

0=
∫
�b

(
q
n+1/2
h δqh−

2
3
∇δqh · ∇8

n+1/2
h

)
d�b, (63b)

0=
∫
�b

(
ηn+1
h − ηnh

)
δ8h+

µ

2
∇δ8h · ∇

(
ηn+1
h − ηnh

)

−
1t

2

[(
(1+ εηnh)∇δ8h · ∇8

n+1/2
h −µ∇q

n+1/2
h · ∇δ8h

)
+

(
(1+ εηn+1

h )∇δ8h · ∇8
n+1/2
h −µ∇q

n+1/2
h · ∇δ8h

)]
d�b, (63c)

0=
∫
�b

(
8n+1
h −8

n+1/2
h

)
δηh+

µ

2
∇δηh · ∇

(
8n+1
h −8

n+1/2
h

)

+
1t

2

[
ηn+1
h δηh+

ε

2
δηh∇8

n+1/2
h · ∇8

n+1/2
h

]
d�b. (63d)

Time-step Eqs. (63a), (63b) and (63c) are implicit, while
Eq. (63d) is explicit. Although the equations are nonlinear,
the step Eqs. (63b), (63c) and (63d) are linear with respect to
the unknowns, qn+1/2

h , ηn+1
h and 8n+1

h , respectively. There-
fore, linear solvers are used to solve the three weak formu-
lations (Eq. 63b, c, d), which reduces the computational cost

by assembling the Jacobian matrix only once instead of com-
puting it at each time step. The implementation of such linear
and nonlinear solvers is straightforward in Firedrake, since
functions that solve weak formulations for specific unknown
and test functions already exist (Rathgeber et al., 2016; Balay
et al., 1997, 2016; Hendrickson and Leland, 1995; Dalcin
et al., 2011).

5 Numerical results

In this section, the domain is specified and discretized in or-
der to evaluate8 and η numerically. The numerical evolution
of the stem-wave amplitude is compared to the predictions
from our modified Miles’ theory Eqs. (3) and (39). Finally,
the angles of propagation of the reflected and stem waves are
measured and compared to the values predicted by theory.

5.1 Definition of the domain

5.1.1 Orientation of the channel

The interaction of two solitary waves can be modelled using
either two obliquely intersecting channels, with incident soli-
tons propagating along each channel (see scheme a in Fig. 5),
or from the reflection of a soliton at a wall with the no-normal
flow condition at the wall (see scheme b in Fig. 5). While the
first case a is more relevant to the theme of this paper, we
choose to model case b to reduce the size of the domain by
half and thus to reduce the computational cost. Since cases a
and b are mathematically equivalent, the results and conclu-
sions obtained with half of the domain will also be valid for
the intersection of two oblique channels.

The domain is described by the length of the wall Lw, the
length of the channel Lc, and the angle of incidence ϕi. The
channel should be long enough, compared to the wavelength
of the incident wave, in order for the boundaries to be far
enough from the initial soliton to be considered infinitely dis-
tant. From Eq. (34), the width of the initial soliton depends on
√

3ε/4µ, and since µ is set to 0.02 for every simulation, the
width of the soliton varies with ε from 2.5 (when ε = 0.20)
to 4 (when ε = 0.12). We set Lc = 5 to leave enough space
between the extremities of the soliton and the boundary of
the channel for every case, for the extremities to be consid-
ered infinitely distant from the soliton boundaries. To allow
the stem wave to grow and reach its maximal amplitude, the
wall also needs to be long compared to the wavelength. This
constraint was a limit in previous numerical and experimen-
tal studies (Tanaka, 1993; Li et al., 2011) since it requires
robust and stable numerical schemes and large wave basins.
We set the wall length to 200≤ Lw ≤ 600 depending on the
value of ε, that is, more than 100 times the incident-wave
width. When considering half of the domain represented in
Fig. 5b, we chose to set the wall in the x direction, in which
case the initial soliton must propagate in an oblique direc-
tion and is therefore equivalent to a KP soliton, as defined in
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Figure 5. Definition of the domains in the two cases described in the text: (a) intersection of two channels, with two obliquely incident
solitons interacting at a virtual wall, and (b) half of the domain with a soliton propagating in one channel and colliding with an oblique
wall. This wall is in the x direction (in which case the soliton has a two-dimensional propagation of direction) or oblique, in which case the
incident soliton propagates in the one-dimensional direction (x).

Figure 6. Soliton surface deviations obtained for an initial ampli-
tude ai = 1.0 and angle ϕi = π/6 rad. Blue: behaviour of the in-
cident (dashed line) and stem (full line) waves when the incident
soliton propagates in an oblique direction; red: behaviour of the in-
cident (dashed line) and stem (full line) waves when the incident
soliton propagates in one direction. The dashes lines essentially co-
incide after t > 30.

Eq. (36). Alternatively, we can let the initial soliton propa-
gate in the x direction, in which case the wall is oblique and
the expression of the KP-type soliton (Eq. 36) can be simpli-
fied to a KdV-type soliton propagating in the x direction, as
(Drazin and Johnson, 1989)

η(x,y, t)

= aisech2
[√

3ε
4µ
ai

(
x− x0+ (t − t0)

(
1− Ĉε

))]
, (64a)

8(x,y, t)=

√
4µ
3ε
ai

[
tanh

(√ 3ε
4µ
ai

(
x− x0+ (t − t0)(

1− Ĉε
)))
+ 1

]
. (64b)

The behaviour of the incident and stem waves in the cases
of an oblique incident soliton (Eq. 36) and a soliton prop-
agating in the x direction only (Eq. 64) are compared in
Fig. 6. The initial solitons have amplitude ai = 1.0, small-
amplitude parameter ε = 0.14 and small-dispersion param-
eter µ= 0.02. The angle between the direction of propaga-
tion of the solitons and the wall is ϕi = π/6 in both cases.
The dashed lines represent the evolution of the interpolated
amplitude of incident solitons with time. While the initial
amplitude was ai = 1.0 in both cases, we observe that both
amplitudes first increase before decreasing to an asymptotic
value slightly smaller than 1.0 (ai = 0.93). This behaviour
is not expected for solitons, which should keep a permanent
shape. However, we solve here the Benney–Luke equations
for which the KP soliton is only an asymptotic (and hence
not exact) solution because we recall that the transformation
(Eq. 16) from the Benney–Luke model to the KP theory is not
exact since it requires a truncation toO(ε2). In the numerical
simulations represented in Fig. 6, ε = 0.14, so the condition
ε�O(1) is respected only asymptotically; this is a possible
explanation of the observed variation in amplitude. Figure 6
shows that the incident KP and KdV-type solitons Eqs. (36)
and (64) converge, and that both do so to the same surface de-
viation, ai = 0.93. This same limit shows that the approxima-
tion error from Benney–Luke to the KP soliton is asymptoti-
cally the same as from Benney–Luke to KdV. The stem-wave
amplitudes (solid lines in Fig. 6) resulting from the interac-
tion of the KP-type (Eq. 36) and KdV-type (Eq. 64) initial
solitons with the wall are both amplified at the same speed
and with the same amplification factor, which confirms that
the KP-type and KdV-type initial solitons Eqs. (36) and (64)
give the same results. The small variations in the curves are
due to the mesh resolution which is not fine enough to resolve
a regular amplitude. However, the computed approximation
is sufficiently accurate to provide an estimate of the asymp-
totic amplitude of the stem wave. Since we have demon-
strated that the two types of initial solitons Eqs. (36) and (64)
evolve similarly to give the same results, subsequent simula-
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Figure 7. Domain discretization using quadrilaterals in Gmsh. In order to reduce computational requirements, mesh refinement is restricted
to only the region adjacent to the wall.

tions will be conducted using only a unidirectional soliton, as
defined by Eq. (64), which is a solution of both the KP and
KdV equations.

5.1.2 Mesh

In order to evaluate 8 and η at any position in the channel,
the domain is discretized using quadrilaterals. This is done
using the Gmsh mesh generator (Geuzaine and Remacle,
2009). Since the domain is large, we define a heterogeneous
mesh with areas of higher refinement along the wall, where
the solution needs to be more accurate. Moreover, the end
of the domain is truncated with a blunt wall instead of the
sharp angle, to avoid boundary quadrilaterals having internal
angles that are too acute. The final domain comprising dif-
ferent mesh refinements is presented in Fig. 7, in which the
insets show the aforementioned refined mesh and right-hand
boundary quadrilateral elements.

5.2 Amplification of the stem wave

The numerical amplification of the stem wave is compared
with the predictions of modified Miles’ theory applied to our
Benney–Luke model Eqs. (3) and (39), namely

αw =

{ 4
1+
√

1−κ−2
, for κ ≥ 1,

(1+ κ)2, for κ < 1,
(3)

with κ =
tanϕi

cosϕi
√

3εai
. (39)

The interaction parameter defined in Eq. (39) depends on
three parameters: the scaled amplitude of the incident soli-
ton ai, its angle of incidence ϕi, and the small-amplitude pa-
rameter ε. From Miles’ theory, a change in these parameters
will modify the behaviour of the reflected and stem waves.
Figure 8 shows a comparison between predictions Eqs. (3)

and (39) and numerical simulations for the maximal ampli-
fication of the stem wave. The amplitude and angle of inci-
dence of the initial soliton are the same for each of the sim-
ulations, with values ai = 1.0 for the amplitude and ϕi = 30◦

for the angle of incidence. Only the small-amplitude param-
eter ε changes in the different cases, taking values from 0.12
to 0.20, which leads to different interaction parameters and
thus different evolutions of the stem and reflected waves.
Variation of ε is an alternative choice to the one made in the
work of Ablowitz and Curtis (2013), where, for a specific ε,
they compute simulations with varying amplitude and angle
of incidence; this choice enabled them to show that the small-
amplitude parameter ε has only a weak impact on the amplifi-
cation of the stem wave for κ < 1 but limits the amplification,
with a decrease of O(ε) close to the resonant case κ = 1,
leading, for example, to a maximal wave amplification of 3.9
when epsilon= 0.1. Despite this asymptotic limitation in the
wave amplification, the purpose of the present simulations is
to model wave amplification in various sea states, with vari-
ous depths of water and characteristic wave heights, and we
do so by using different values of ε, recalling that the small-
amplitude parameter ε is the quotient between the charac-
teristic wave height and the water depth. Modelling various
sea states will allow the maritime industry to test wave im-
pact on a wider range of structures, since different structures
are used in different sea states. Moreover, the incident-wave
amplitude varies slightly when propagating along the basin,
which has a high impact on the predictions. Indeed, a small
change of orderO(10−2) in the incident-wave amplitude im-
plies a change of orderO(10−2) in the interaction parameter,
which can lead to a prediction variation of up to O(10−1)

near the transition case κ ≈ 1, in which the expected ampli-
fication varies dramatically. The amplification aw/ai is also
affected by a change in the incident amplitude ai. It is there-
fore necessary to use the accurate value for the incident am-
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plitude. In performing the computations required for Fig. 8,
we defined the maximal amplification as follows: when the
stem wave reaches its maximal amplitude awmax , we measure
the amplitude of the incident wave ai at the same x posi-
tion. The new incident amplitude ai is used to adjust the in-
teraction parameter and to compute the amplification of the
stem wave αw = awmax/ai. The grid refinement is 0.25×0.25
in the finest area (e.g. at the wall) and 0.4× 1.5 elsewhere.
The numerics follow the theoretical curve, but a slight dif-
ference between the present results and those expected from
modified Miles is noticeable. As alluded to beforehand, we
assume that this is due to the fact that the soliton used as
an incident wave is an asymptotic but not an exact solution
of the Benney–Luke equations. The scaling from Benney–
Luke to KP is not exact but asymptotic, with a truncation at
second order, which leads to a slight difference in the final
wave amplification. This observation agrees with the conclu-
sions of Ablowitz and Curtis (2013) on the asymptotic am-
plification of the stem wave in the case of the Benney–Luke
model. The shift is probably also increased by the mesh res-
olution, which could be optimized to get a better estimate of
the incident-wave amplitude in order to limit the error caused
by its approximation. New simulations with higher mesh res-
olution are expected to verify the current results. However,
the present Benney–Luke model still predicts the evolution
of the stem-wave amplitude very well, enabling it to reach
up to 3.6 times the initial amplitude. The stem-wave maximal
amplification is reached for κ = 0.9733, marginally smaller
than the κ = 1.0 predicted by Miles. While the model from
Kodama et al. (2009) is expected to predict the evolution of
the stem wave based on the KP equation perfectly, they were
unable to reach more than 3.2 times the initial amplitude in
their numerical simulations.

5.3 Angle of the stem and reflected waves

Miles’ theory also predicts different directions of propaga-
tion of the stem and reflected waves in the cases of regular
and Mach reflections. While in the first case, characterized
by κ ≥ 1, the angle of the reflected wave ϕr is expected to
be equal to that of the incident soliton ϕi, it should become
larger than ϕi in the case of Mach reflection, i.e. when κ < 1:{
ϕr = ϕi for κ ≥ 1,
ϕr > ϕi for κ < 1. (65)

Moreover, in the case of regular reflection, the stem wave is
expected to propagate along the wall with a constant length,
while for Mach reflection, its length should increase linearly,
making a non-zero angle ϕw with the wall:{
ϕw = 0 for κ ≥ 1,
ϕw > 0 for κ < 1. (66)

Predictions Eqs. (65) and (66) will be checked numerically
next.

Figure 8. Comparison between the expected amplification (solid
line) from Miles (Eq. 3) and our numerical results (symbols)
for different values of the interaction parameter κ , namely κ ≈

1.1265 (ε = 0.12), κ ≈ 1.0526 (ε = 0.14), κ ≈ 1.0077 (ε = 0.15),
κ ≈ 0.9989 (ε = 0.16), κ ≈ 0.9733 (ε = 0.17), κ ≈ 0.9345 (ε =
0.18), and κ ≈ 0.8692 (ε = 0.20).

5.3.1 Regular reflection

Figure 9 shows numerical results and predictions for the case
where κ = 1.12≥ 1. The wall makes an angle of 30◦ with the
direction of propagation of the initial solitary wave, hence
ϕi = 30◦. In the bottom-right plot of Fig. 9, there is an angle
of 60◦ between the reflected and stem waves, which means
that the angle ϕr between the reflected wave and the line per-
pendicular to the wall is equal to 30◦, that is, equal to ϕi. This
observation holds at any time, and therefore the expectations
(Eq. 65) for the reflected waves are satisfied in the case of
regular reflection. The stem wave propagates along the wall
without increasing in length, and therefore no angle can be
measured between the stem wave and the wall, i.e. ϕw = 0,
as predicted in Eq. (66) for regular reflection. These results,
together with Fig. 8 for the amplification of the stem wave,
confirm modified Miles’ theory in the case κ ≥ 1 for both the
reflected and stem waves.

5.3.2 Mach reflection

Figure 10 shows numerical results and schematic expecta-
tions for the propagation of the reflected and stem wave for
κ = 0.58< 1. In the bottom-right sub-figure, the angle be-
tween the incident and reflected waves can be measured, as
represented in the top-right sub-figure, in order to check that
ϕr is larger than ϕi. The total angle ϕr+ϕi measures 70◦, with
the initial incident angle set to ϕi = 30◦. Therefore, ϕr is 40◦,
which is indeed larger than ϕi, thereby agreeing with our pre-
dictions. The top-right sub-figure of Fig. 10 also shows that
the stem-wave length should increase linearly to form an an-
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Figure 9. Numerical results and predictions for the reflected and stem waves in the case of regular reflection, i.e. κ > 1. Top left: top view of
the numerical evolution of the incident, reflected and stem waves. Top right: schematic plan view of the expected evolution of the stem and
reflected waves at two different times t1 and t2 with t1 < t2. The stem wave should propagate along the wall with constant length. The angle
ϕr of the reflected wave is expected to be constant and equal to the incident-wave angle ϕi. Bottom centre: side view of the time evolution
of the incident, reflected and stem waves, highlighting the amplification of the stem-wave amplitude compared to the initial solitary-wave
height.

Figure 10. Numerical results and predictions for the reflected and stem waves in the case of Mach reflection, i.e. κ < 1. Top left: schematic
plan view of the numerical evolution of the incident, reflected and stem waves. Top right: top-view scheme of the predicted evolution of the
stem and reflected waves at two different times t1 and t2 with t1 < t2. The stem wave should grow linearly in length, leading to an angle
ϕw > 0 with the wall. The angle ϕr of the reflected wave is expected to be constant and larger than the incident-wave angle ϕi. Bottom
centre: side view of the time evolution of the incident, reflected and stem waves, highlighting the amplification of the stem-wave amplitude
compared to the initial solitary-wave height.

gle ϕw with the wall. In the bottom-right figure, a top view
of the numerical results at different times from t = 0.28 to
t = 1.12 highlights the increase in the stem wave’s length
as it propagates along the wall. The dashed orange line that
connects the solutions confirms that the wavelength increases
linearly.

6 Conclusions and discussions

The present model Eq. (15), together with the new scaled in-
teraction parameter Eq. (39), shows good agreement with the
predictions of Miles regarding the amplification of the stem
wave and the angles of the reflected and stem waves. Two
different regimes can be observed in the numerical results,
with different behaviours of the waves in the case of Mach
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Table 1. Prediction of the minimal distance needed by the stem wave to reach at least twice its initial amplitude in a sea state with charac-
teristic wave height a0 = 3 m. The dispersion parameter µ is set to 0.02, while the small-amplitude parameter ε varies from 0.12 to 0.20,
leading to different wave evolutions. The numerical distance needed to reach more than twice the incident-wave amplitude is measured from
the numerical simulations. The corresponding water depth, real distance of propagation and wavelength are computed from the definition of
ε, µ and scaling (11). These values are approximate.

ε

0.12 0.14 0.15 0.16 0.17 0.18 0.20

Numerical distance Ln 5.8 5.5 5.5 7.8 7.7 8.0 8.0
Water depth H0 (m) 25.00 21.43 20.00 18.75 17.65 16.67 15.00
Real distance Lr (m) 1025 833 778 1028 965 940 846
Wavelength λ0 (m) 176.78 151.52 141.42 132.58 124.78 117.85 106.07

and regular reflections, which confirms the conclusions ob-
tained by Ablowitz and Curtis (2013) regarding the ability
of the Benney–Luke model to predict reflection of obliquely
incident solitary waves. Our simulations do not allow de-
termination of the exact value of the interaction parameter
at the transition from Mach to regular reflection, but cur-
rently the maximal amplification is reached at κ = 0.9733,
which is very close to the predicted maximal amplification
at κ = 1.0. The maximal amplification obtained herein is
αw = 3.6, which is higher than the amplifications obtained
with most previous models and experiments (Kodama et al.,
2009; Li et al., 2011; Tanaka, 1993; Funakoshi, 1980), but
still slightly lower than the expected 3.9 amplification from
Ablowitz and Curtis (2013). This agrees with the conclusion
of Ablowitz and Curtis (2013) concerning the impact of ε on
the amplification near κ = 1. While they obtained the max-
imal amplification αw = 3.9 for ε = 0.10, our amplification
αw = 3.6 is obtained for ε = 0.17, which is larger than 0.1
and thus leads to a larger difference with Miles’ prediction
of αw ≈ 4. Moreover, thanks to the robust scheme, which en-
sures stable simulations over the large domain despite the
different length scales involved, used to derive and discretize
our equations, our model is the first model able to describe
numerically the dynamic development of the stem wave up
to such high amplitudes. Previous studies (Kodama et al.,
2009; Li et al., 2011; Tanaka, 1993; Funakoshi, 1980) were
not able to attain such high amplifications because of numer-
ical limitations such as insufficient computational resources.
Ablowitz and Curtis (2013) obtained the highest numerical
amplification αw = 3.9 by considering the final state, initial-
ized asymptotically using the KP two-line solution. This last
approach gives an accurate understanding of the asymptotic
maximal amplification of the stem wave with the Benney–
Luke model, but does not describe the development of the
stem wave along the wall. The description and understand-
ing of the wave propagation along the wall is however fun-
damental for application purposes. The present results, al-
though currently limited by computational resources, allow
us to consider the relevance of obliquely interacting solitary
waves in maritime engineering. More advanced simulations

should enable determination of the value of κ at the transition
from Mach to regular reflection and to reach higher amplifi-
cation of the stem wave.

There are some limits to the current model. As already
concluded in previous studies, the wave needs to propagate
over a long distance (relative to its wavelength) in order to
reach its maximal amplitude. Consequently, the numerical
domain needs to be large and the mesh fine enough to es-
timate the wave crests accurately. This numerical require-
ment increases the computational time. A compromise be-
tween the accuracy of the simulations and the running time
is therefore needed. This constraint is important because near
the transition from Mach to regular reflection a slight change
in the incident wave amplitude modifies dramatically the in-
teraction parameter and consequently the predictions of the
stem and reflected waves. Therefore, a careful analysis of the
numerical results must be made. For the same reason, sim-
ulations for κ ≈ 1 and large amplifications αw ≈ 4 are ex-
tremely difficult to obtain, since a slight change in the ini-
tial settings (ai, ε and ϕi) modifies completely the behaviour
of the resulting waves. Indeed, Li et al. (2011) conjectured
that the transition between Mach and regular reflection in the
neighbourhood of κ = 1 might appear gradually and not as
abruptly as expected from Miles’ predictions Eq. (66).

One may wonder how likely it is that solitary waves would
undergo reflection in an open ocean. Interaction of obliquely
incident waves on the sides of a ship leads to an increas-
ing wave amplitude, sometimes reaching the deck. This phe-
nomenon is called “green water” and has been studied ex-
perimentally and numerically by the Maritime Research In-
stitute Netherlands (MARIN) to limit the damage caused by
waves on ships (Buchner et al., 2014). When the incident
wave interacts with a ship moving downwind, the effective
ship length increases, leaving more time for the stem wave
to develop to its maximum amplitude. Peterson et al. (2003)
also studied the formation of extreme waves in shallow water
and explained under which conditions they are likely to oc-
cur and threaten ships. Kalogirou and Bokhove (2016) devel-
oped numerical models of waves impacting buoys and ships.
An extension of our oblique-wave interaction simulations to
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wave interactions with ships will be an interesting extension
of our present work.

The present model can also be used to predict the impact
of extreme (i.e. freak or rogue) waves on structures. Indeed,
when the stem wave reaches more than twice the amplitude
of the incident wave, it can be viewed as a freak wave since
it has similar properties in terms of nonlinearity, dispersivity
and high amplitude. Table 1 shows the distance required by
the stem wave to reach more than twice the incident-wave
amplitude in several cases parameterized by different values
of ε. For each value of the small-amplitude parameter ε, the
numerical (dimensionless) distance Ln required to reach at
least twice the amplitude of the initial wave has been mea-
sured from the simulations. Then, the definition of the small-
amplitude parameter ε = a0/H0 and the choice of a sea state
with characteristic wave height a0 = 3 m enables computa-
tion of the corresponding water depth H0. The physical dis-
tance Lr required by the wave to propagate up to twice the
characteristic wave height can then be obtained from scaling
Eq. (11), using Lr = Ln×H0/

√
µ. The value of the small-

dispersion parameter µ is set to 0.02 as in the results sec-
tion. Finally, the wavelength λ0 can be obtained from the
definition of the small-dispersion parameter µ= (H0/λ0)

2.
In a wave tank where waves can be generated in different di-
rections, the angle of propagation and initial profile of two
solitary waves can be defined from the asymptotically exact
solution Eq. (36) of our model Eq. (15), so that their inter-
action will lead to a stem wave. The evolution of the stem
wave can be predicted from the present model, so an off-
shore structure such as a scaled ship or a wind turbine can
be placed at a position where the stem wave will reach more
than twice the initial amplitude of the solitary waves. For in-
stance, a scaling of 1/10 between the values of H0, Lr and
λ0 in Table 1 and experiments leads to achievable incident-
wave amplitudes and distances of propagation in MARIN’s
shallow-water basin. From the amplitude of the stem wave at
a given position, the impact of the wave on structures can be
estimated and the predictions yielded by the model tests can
be validated. The model can help the maritime industry to
design safer offshore structures that can resist extreme-wave
impacts.

Finally, the present work can also be used as a starting
point for the modelling of the interaction of three obliquely
incident line solitons, which should lead to a 9-fold-amplified
resulting wave that can also be generated in wave tanks.1

7 Data availability

The implementation of our discretization of the Benney–
Luke equations is an example in Firedrake, www.firedrake.
org (Bokhove and Kalogirou, 2016). In addition, the ex-
panded program used to perform the numerical simulations
is archived using Zenodo: https://zenodo.org/badge/latestdoi/
79556994.

1O. Bokhove suggested this calculation to Y. Kodama, personal
communication, who performed the calculation using the KP equa-
tion at the “Rogue waves” international workshop held at the Max
Planck Institute in 2011, Dresden, Germany.
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Appendix A: Time discretization of the present
Benney–Luke model

The Störmer–Verlet scheme Eq. (61) is applied to the
variational principle Eq. (47) for Benney–Luke, with Q={(

Mij +
µ

2
Aij

)
ηi

}
and P= {8i}, leading to
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