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Abstract. In the setting of a variety X admitting a tilting bundle T we consider the problem
of constructing X as a quiver GIT quotient of the algebra A := EndX (T )op. We prove that
if the tilting equivalence restricts to a bijection between the skyscraper sheaves of X and the
closed points of a quiver representationmoduli functor for A = EndX (T )op then X is indeed
a fine moduli space for this moduli functor, and we prove this result without any assumptions
on the singularities of X . As an application we consider varieties which are projective over
an affine base such that the fibres are of dimension 1, and the derived pushforward of the
structure sheaf on X is the structure sheaf on the base. In this situation there is a particular
tilting bundle on X constructed by Van den Bergh, and our result allows us to reconstruct
X as a quiver GIT quotient for an easy to describe stability condition and dimension vector.
This result applies to flips and flops in the minimal model program, and in the situation of
flops shows that both a variety and its flop appear as moduli spaces for algebras produced
from different tilting bundles on the variety. We also give an application to rational surface
singularities, showing that their minimal resolutions can always be constructed as quiver GIT
quotients for specific dimension vectors and stability conditions. This gives a construction
of minimal resolutions as moduli spaces for all rational surface singularities, generalising
the G-Hilbert scheme moduli space construction which exists only for quotient singularities.

1. Introduction

1.1. Overview

Any variety X equipped with a tilting bundle T induces a derived equivalence
between the bounded derived category of coherent sheaves on X and the bounded
derived category of finitely generated leftmodules for the algebra A := EndX (T )op.
This situation is similar to the case of an affine variety Spec(R) where we can con-
struct the commutative algebra R = EndX (OX )op and there is an abelian equiva-
lence between coherent sheaves on Spec(R) and finitely generated left R-modules.
However, whereas in the affine case we can recover the variety Spec(R) from the
algebra R, it is not so clear how to recover the variety X from the algebra A. One
possibility is to present A as the path algebra of a quiver with relations, construct
a moduli space of quiver representations for some dimension vector and stability
condition, and attempt to relate this moduli space back to X .
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While this approach may not work in general there are many examples where
this is known to be successful, such as del Pezzo surfaces [14,25], minimal reso-
lutions of Kleinian singularities [8,15,27], and crepant resolutions of Gorenstein
quotient singularities in dimension 3 [5,12], which lead us to hope it may work in
some other interesting settings.

In this paper we will determine conditions for X to be a fine moduli space
for the quiver representation moduli functor FA, (Sect. 2.6), and this will allow
us to prove that X is a quiver GIT quotient for a specific stability condition and
dimension vector in a large class of examples. These examples include applications
to the minimal model program and to resolutions of rational surface singularities.

This problem was also considered by Bergman and Proudfoot [2], who study
embeddings of closed points and tangent spaces to show that a smooth variety is
a connected component of the quiver GIT quotient for ‘great’ stability condition
and dimension vector. However, their approach cannot be extended to singular
varieties and it can be difficult to identify which conditions are ‘great’. Themethods
developed in this paper have the advantages of applying to singular varieties, such
as those occurring in the minimal model program, and allowing us to identify a
specific stability condition and dimension vector in applications.

1.2. Comparing moduli functors

In developing methods to understand quiver representation moduli functors we are
inspired by the following result of Sekiya and Yamaura [34].

Theorem 1.2.1. ([34, Theorem 4.20]) Let B be an algebra with tilting module T .
Define A = EndB(T )op, suppose that both A and B are presented as path algebras
of quivers with relations, and let FA and FB denote quiver representation moduli
functors on A and B for some choice of stability conditions and dimension vectors.
Then if the tilting equivalences

Db(B-mod) Db(A-mod)

RHomB (T,−)

T ⊗L

A (−)

restrict to a bijection between FB(C) and FA(C) then FB is naturally isomorphic
to FA.

This leads us to the idea of working with a moduli functor for which X is a fine
moduli space instead of working with X itself, and we then prove the following
variant of Sekiya and Yamaura’s result.

Theorem. (Theorem 4.0.1) Let π : X → Spec(R) be a projective morphism of
varieties. Suppose X is equipped with a tilting bundle T , define A = EndX (T )op,
and suppose that A is presented as a quiver with relations. Let FA be a quiver rep-
resentation moduli functor on A for some dimension vector and stability condition.
Then if the tilting equivalences
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Db(Coh X) Db(A-mod)

RHomX (T,−)

T ⊗L

A (−)

restrict to a bijection between FX (C) and FA(C) then FX is naturally isomorphic
to FA.

We recall the definitions of themoduli functorsFA andFX in Sects. 2.6 and 2.7,
and note in “Appendix 7” that [34, Theorem 4.20] should be stated for the functor
defined in Sect. 2.6 rather than the functor originally defined in [34, Section 4.2].
The moduli functor FX is similar to the Hilbert functor of one point on a variety,
which is well-known to be represented by X , but for completeness we provide a
proof in this setting.

Proposition. (Proposition 4.0.2) Let π : X → Spec(R) be a projective morphism
of varieties. Then there is an natural isomorphism between the functor of points
HomSch(−, X) and the moduli functor FX . In particular X is a fine moduli space
for FX with tautological object �∗OX on X ×Spec(C) X where � is the diagonal
inclusion.

Combining these two results we have a method to show when a variety X
with tilting bundle T can be recovered via quiver GIT as a fine moduli space for
representations of the algebra A = EndX (T )op.

Corollary 1.2.2. Let π : X → Spec(R) be a projective morphism of varieties.
Suppose X is equippedwith a tilting bundle, T , define A = EndX (T )op, and suppose
that A is presented as a quiver with relations. Let FA be a quiver representation
moduli functor on A for some indivisible dimension vector d and generic stability
condition θ . Then if the tilting equivalences

Db(Coh X) Db(A-mod)

RHomX (T,−)

T ⊗L

A (−)

restrict to a bijection between the skyscraper sheaves on X and the θ -stable A-
modules with dimension vector d then X is a fine moduli space for FA and the
tautological bundle is the dual of the tilting bundle T .

1.3. Applications

To give an application of this theorem we need a class of varieties with tilting
bundles and well-understood tilting equivalences. We consider the situation arising
in following theorem of Van den Bergh.
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Theorem 1.3.1. ([37, Theorem A]) Let π : X → Spec(R) be a projective mor-
phismofNoetherian schemes such thatRπ∗OX ∼= OR andπ has fibres of dimension
≤ 1. Then there are tilting bundles T0 and T1 = T∨

0 on X such that the derived equiv-
alences RHomX (Ti ,−) : Db(Coh X) → Db(Ai -mod) restrict to equivalences of
abelian categories between −iPer(X/R) and Ai -mod, where Ai = EndX (Ti )op.

This gives us a large class of varieties withwell-understood tilting equivalences.
We recall the definition of −iPer(X/R) for i = 0, 1 in Definition 5.2.1. We then
show that in this situation there is a particular choice of dimension vector dT0 and
stability condition θT0 such that X occurs as the quiver GIT quotient of A0.

Corollary. (Corollary 5.2.4) Suppose we are in the situation of Theorem 1.3.1 and
that X and Spec(R) are both varieties. Then X is the fine moduli space for the
quiver representation moduli functor of A0 = EndX (T0)op for dimension vector
dT0 and stability condition θT0 .

See Sect. 5.1 for the definitions of θT0 and dT0 . We note they are easy to define
and depend only on a decomposition of T into indecomposable summands.

1.4. Applications to the minimal model program

The class of varieties in the above corollary includes flips andflops of dimension 3 in
theminimalmodel program. In the setting of smooth, projective threefold flopswere
constructed as components of moduli spaces and shown to be derived equivalent
in the work of Bridgeland [4], and this work was extended to include projective
threefold with Gorenstein terminal singularities by Chen [9]. These results were
reinterpreted more generally via tilting bundles by Van den Bergh [37]. We can
now reinterpret these results once again by combining Corollary 5.2.4 with Van
den Bergh’s results.

It is immediate fromCorollary 5.2.4 that ifπ : X → Spec(R) is either a flipping
or flopping contraction with fibres of dimension ≤ 1 then both X and its flip/flop
can be reconstructed as finemoduli spaceswith tilting tautological bundles. Further,
in the case of flops, the following corollary shows that both X and its flop can be
constructed as quiver representation moduli spaces arising from tilting bundles on
X .

Corollary. (Corollary 5.3.2) Suppose we are in the situation of Corollary 5.2.4
and that π : X → Spec(R) is a flopping contraction with flop π ′ : X ′ → Spec(R).
Then X is the quiver GIT quotient of the algebra A0 = EndX (T0)op for dimension
vector dT0 and stability condition θT0 with tautological bundle T

∨
0 , and the flop X ′

is the quiver GIT quotient of the algebra A1 = EndX (T1)op for dimension vector
dT1 and stability condition θT1 .

This fits into a general philosophy of having a preferred stability condition
defined by a tilting bundle and realising all minimal models via quiver GIT by
changing the tilting bundle rather than changing the stability condition.
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1.5. Applications to resolutions of rational surface singularities

Minimal resolutions of affine rational surface singularities automatically satisfy the
conditions of Corollary 5.2.4 hence provide another class of examples.

Corollary. (Example 5.4.2) Suppose that X is a variety and thatπ : X → Spec(R)

is the minimal resolution of a rational surface singularity. Then there is a tilting
bundle T0 on X such that X is the fine moduli space of A0 = EndX (T0)op for
dimension vector dT0 and stability condition θT0 with tautological bundle T

∨
0 .

For quotient surface singularities this result was already known when either
G < SL2(C) [15], or when G was a cyclic or dihedral subgroup of GL2(C) [11,39,
41,42], but is new in other cases. In particular, for quotient surface singularities the
minimal resolution is known to have moduli space interpretation as G-Hilb(C2),
see [21,22], but in general the tautological bundle is not tilting. This corollary
extends a similar moduli space interpretation to minimal resolutions of all rational
surface singularities such that the tautological bundle is tilting.

1.6. Outline

In Sect. 2 we recall a number of preliminary definitions and theorems relating to
tilting bundles and quiver GIT which we will need in later sections. Section 3
consists of a collection of preliminary lemmas which form the bulk of the proofs of
our main results. We then prove our main results in Sect. 4, and give an application
to a class of examples motivated from the minimal model program, and also to
resolutions of rational singularities, in Sect. 5. “Appendix 7” notes and corrects a
small error in the results of [34].

2. Preliminaries

In this section we recall a number of definitions and theorems we will use later, in
particular relating to tilting bundles and Quiver GIT.

2.1. Geometric and notational preliminaries

We begin by giving some geometric and notational preliminaries. Throughout this
paper all schemes will be overC and a variety will be a scheme which is separated,
reduced, irreducible and of finite type over C. In the introduction we stated our
results for varieties projective over an affine base, but in fact we will prove our
results in the generality of schemes, X , arising from projective morphisms π :
X → Spec(R) of finite type schemes over C. Such schemes are quasi-projective
over C, and hence separated, so are a slight generalisation of varieties projective
over an affine base in that they may not be reduced or irreducible. For an affine
schemeSpec(R)wewill letOR denoteOSpec(R).Wedenote the category of coherent
sheaves on a scheme X by Coh X , we denote the skyscraper sheaf of a closed point
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x ∈ X by Ox , and for a locally free sheaf F ∈ Coh X we let F∨ denote the dual
HomX (F ,OX ). For an algebra A we let Aop denote the opposite algebra of A, and
A-mod denote the category of finitely generated left A-modules.

2.2. Derived categories and tilting

We recall the definitions of tilting bundles on schemes and several notions related
to derived categories that we will make use of later.

Consider a triangulated C-linear category C with small direct sums. A sub-
category is localising if it is triangulated and also closed under all small direct
sums. A localising subcategory is necessarily closed under direct summands [32,
Proposition 1.6.8]. An object T ∈ C generates if the smallest localising category
containing T is C.

Definition 2.2.1. Let C be a triangulated category closed under small direct sums.
An object T in C is tilting if:

(i) ExtkC(T, T ) = 0 for k 
= 0.
(ii) T generates C.
(iii) The functor HomC(T,−) commutes with small direct sums.

For X a quasi-projective scheme let D(X) denote the derived category of quasi-
coherent sheaves on X , and Db(X) denote the bounded derived category of coherent
sheaves. For X a Noetherian quasi-projective scheme D(X) is closed under small
direct sums [33, Example 1.3], and D(X) is compactly generated with compact
objects the perfect complexes [33, Proposition 2.5]. We let Perf(X) denote the
category of perfect complexes on X . When X is smooth the category of perfect
complexes equals Db(X).

For an algebra A we let D(A) be the derived category of left modules over
A, and Db(A) the bounded derived category of finitely generated left A-modules.
When D(X) has tilting object a sheaf, T , then define A := EndX (T )op. When T is
a locally free coherent sheaf on X then T is a tilting bundle and this gives a derived
equivalence between D(X) and D(A).

Theorem 2.2.2. ([20, Theorem 7.6], [6, Remark 1.9]) Let X be a scheme that is
projective over an affine scheme of finite type, π : X → Spec(R), with tilting
bundle T on X and define A = EndX (T )op. Then:

(i) The functor T∗ := RHomX (T,−) is an equivalence between D(X) and D(A).
An inverse equivalence is given by the left adjoint T ∗ = T ⊗L

A (−).
(ii) The functors T∗, T ∗ remain equivalences when restricted to the bounded

derived categories of finitely generated modules and coherent sheaves.
(iii) If X is smooth then A has finite global dimension.

Moreover the equivalence T∗ is R-linear, and A is a finite R-algebra.
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2.3. Quivers and quiver GIT

We set our notation for quivers and then recall the definitions required for quiver
geometric invariant theory, following the definitions of King [26].

A quiver is a directedmultigraph.Wewill denote a quiver Q by Q = (Q0, Q1),
with Q0 the set of vertices and Q1 the set of arrows. The set of arrows is equipped
with head and tail maps h, t : Q1 → Q0 which take an arrow to the vertices that
are its head and tail respectively. We compose arrows from right to left, that is

b.a =
{
b.a if h(a) = t (b);
0 otherwise;

and we extend this definition to paths. We recall that there is a trivial path ei for
each vertex i ∈ Q0 and that these form a set of orthogonal idempotents.

We denote the path algebra by CQ, define S to be the subalgebra of CQ gener-
ated by the trivial paths, and define V to be the C-vector subspace of CQ spanned
by the arrows a ∈ Q1. Then S is a semisimple C-algebra, V is an Se := S ⊗C Sop-
module, and CQ = TS(V ) := ⊕

i≥0 V
⊗Si . Given � ⊂ CQ an Se-module we

define I (�) to be the two sided ideal in CQ generated by �. We then define

CQ

�
:= CQ

I (�)

and refer to it as the path algebra with relations �.
We can now recall the definitions required for quiver GIT.

Definition 2.3.1. Let Q = (Q1, Q0) be a quiver.

(i) A dimension vector for Q is defined to be an element d ∈ N
Q0 assigning a

non-negative integer to each vertex.
(ii) A dimension d representation of Q is given by assigning to each vertex i the

vector space Vi = C
d(i), to each arrow a a linear map φa : Vt (a) → Vh(a), and

to each trivial path ei the linear map idVi .
(iii) A morphism, ψ : (Vi , ρa) → (Wi , χa), between two finite dimensional rep-

resentations is given by a linear map ψi : Vi → Wi for each vertex i such that
for every arrow a we have χa ◦ ψt (a) = ψh(a) ◦ ρa .

(iv) The representation variety, Repd(Q), is defined to be the set of all represen-
tations of Q of dimension d, and we note that this is an affine variety.

We then suppose that the quiver has relations � defining the algebra A = CQ/�.

(v) A representation of the quiver with relations, (Q,�), is a representation of Q
such that the linear maps assigned to the arrows satisfy the relations among the
paths in the quiver. We recall that a representation of a quiver with relations
corresponds to a left CQ/�-module.

(vi) The representation scheme Repd(Q,�) is the closed subscheme of the affine
variety Repd(Q) cut out by the ideal corresponding to the relations �. Closed
points of Repd(Q,�) correspond to representations of (Q,�).
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An action of a reductive group on the affine scheme Repd(Q,�) can now be
defined. For {φa : a ∈ Q1}, a dimension d representation, there is an action of
GLd(i)(C) at vertex i by base change;

g.φa =
⎧⎨
⎩
g ◦ φa if t (a) = i;
φa ◦ g−1 if h(a) = i;
0 otherwise.

Then G := GLd(C) := ∏
i∈Q0

GLd(i)(C) acts on Repd(Q,�) with kernel C∗ =
�. We note that orbits of G correspond to isomorphism classes of representations.

Definition 2.3.2. The affine quotient with dimension vector d is defined to be

Repd(Q,�)//G := Spec(C[Repd(Q,�)]G).

We now recall the definition of stability conditions in order to consider more
general GIT quotients of Repd(Q,�).

Definition 2.3.3. (i) For a dimension vector d a stability condition is defined to be a
θ ∈ Z

Q0 assigning an integer to each vertex of Q such that
∑

i∈Q0
d(i)θ(i) = 0.

For a finite dimensional representation M let dM be the dimension vector of
M , and define θ(M) = ∑

i∈Q0
θ(i)dM (i).

(ii) A representation M of dimension d is θ -semistable if any subrepresentation
N ⊂ M satisfies θ(N ) ≥ θ(M).

(iii) A θ -semistable representationM of dimension d is θ -stable if there are no non-
zero proper subrepresentations N ⊂ M with θ(N ) = θ(M). For a dimension
vector d, a stability condition θ is generic if all θ -semistable dimension d
representations are stable.

(iv) For a stability condition θ and dimension vector d define Repd(Q,�)sθ to be
the set of θ -stable dimension d representations, and Repd(Q,�)ssθ to be the
set of θ -semistable dimension d representations.

Lemma 2.3.4. Let d be a dimension vector and θ a stability condition on some
quiver with relations. If M and N are dimension d θ -stable representations then:

(i) If 0 → M ′ → M → M ′′ → 0 is a short exact sequence with M ′ a non-zero
and proper submodule of M then θ(M ′) > θ(M) = 0 > θ(M ′′).

(ii) Any non-zero morphism of representations f : M → N is an isomorphism.
(iii) Any morphism of representations f : M → M is a multiple of the identity.

Proof. Firstly, if 0 → M ′ → M → M ′ → 0 is a short exact sequence and
M ′ is non-zero and proper submodule of M then by the definition of stability
θ(M ′) > 0 = θ(M) and hence θ(M ′′) < 0.

Secondly, suppose f : M → N is non-zero and so the kernel is a proper sub-
module ofM . If the kernel is trivial than f is an injection and hence an isomorphism
as M and N are finite dimensional with the same dimension vector. If the kernel is
non-trivial then θ(Im f ) < 0 by part (i). However, as Im f is a subrepresentation
of N this is a contradiction to the stability of N , hence the kernel is trivial and f is
an isomorphism.
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Finally, if f : M → M is a morphism of representations then f defines a
morphism of vector spaces Cd → C

d . In particular this map has an eigenvalue λ

and defines the map of representations M
f −λ·id−−−−→ M which is not a surjection. As

such it is not an isomorphism and so by part (ii) f = λ · id. ��
Definition 2.3.5. Every finite dimensional θ -semistable representation M has a
Jordan-Holder filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that each Mi is θ -semistable and each quotient is θ -stable. Two θ -semistable
representations are defined to be S-equivalent if their Jordan-Holder filtrations have
matching composition factors.

We note that θ -stable objects have length one filtrations hence are S-equivalent if
and only if they are isomorphic.

Any character of G is given by powers of the determinant character and is of
the form

χθ (g) :=
∏
i∈Q0

det(gi )
θi

for some collection of integers θi . For a given dimension vector d we will restrict
our attention to characters which are trivial on the kernel of the action, �, which
translates to the condition

∑
θ(i)d(i) = 0. Hence these characters are in corre-

spondence with stabilities.
We recall that Repd(Q,�) is affine, and that f ∈ C[Repd(Q,�)] is a semi-

invariant of weight χ if f (g.x) = χ(g) f (x) for all g ∈ G and all x ∈ Repd(Q,�).
We denote the set of such f as C[Repd(Q,�)]G,χ .

Definition 2.3.6. ([26]) The quiver GIT quotient, for dimension vector d and sta-
bility condition θ , is defined to be the scheme

Mss
d,θ := Proj

⎛
⎝⊕

n≥0

C[Repd(Q,�)]G,χn
θ

⎞
⎠ .

It is immediate from this definition that for any stability condition θ the
quiver GIT quotient Mss

d,θ is projective over the affine quotient Mss
d,0 =

Spec(C[Repd(Q,�)]G).

2.4. Quivers and tilting bundles

We recall the construction of a quiver with relations from a tilting bundle.
Let X → Spec(R) be a projective morphism of finite type schemes over C.

Given a tilting bundle T ′ on X and a decomposition into indecomposable summands
T ′ = ⊕n

i=0 E
⊕αi
i , with Ei and E j non-isomorphic for i 
= j , then T = ⊕n

i=0 Ei

is also a tilting bundle on X and EndX (T ′)op is Morita equivalent to EndX (T )op.
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Hence we will always assume, without loss of generality, that our tilting bundles
have a givenmultiplicity free decomposition into indecomposables, T = ⊕n

i=0 Ei .
We then recall from Theorem 2.2.2 that A = EndX (T )op is a finite R-algebra

for R a finite type commutative C-algebra, and we wish to present A as the path
algebra of a quiver with relations such that each indecomposable Ei corresponds
to the unique idempotent ei = idEi ∈ HomX (Ei , Ei ) ⊂ A = EndX (T )op that is
the trivial path at vertex i . In particular 1 = ∑

ei and we have a diagonal inclusion⊕n
i=0 ei R ⊂ A.
Indeed, we can construct a quiver by creating a vertex i corresponding to each

idempotent ei . We then choose a finite set of generators of ei Ae j as an R-module,
which is possible as A is finite R-module, and create corresponding arrows from
vertex j to i for all 0 ≤ i, j ≤ n. We then consider a presentation of R over C
with finitely many generators, possible as it has finite type, and at each vertex add
arrows corresponding to each generator of R. If we call this quiver Q then by this
construction there is a surjection of R-algebras CQ → A given by mapping each
trivial path to the corresponding idempotent, and each arrow to the corresponding
generator. We then take the kernel of this map, I , and CQ/I ∼= A as an R-algebra.

We note that this presentation has many unpleasant properties, for example it
may be the case that the ideal of relations I is not a subset of the paths of length
greater than 1. In nice situations it is possible to simplify the presentation, see for
example the situation considered in [2, Section 1].

We also note that there is a decomposition of A considered as a left A-module
into projectivemodules A = ⊕n

i=0 HomX (T, Ei )where themoduleHomX (T, Ei )

corresponds to paths in the quiver starting at vertex i .

2.5. Functor of points and moduli spaces

We recall the definition of the functor of points and the definition of a fine moduli
space. LetSch denote the category of finite type schemes over C, letSets denote
the category of sets, and let R denote the category of finite type commutative C-
algebras. Suppose X ∈ Sch, then the functor of points for X is defined to be the
functor

HomSch(−, X) : R → Sets

S �→ HomSch(Spec(S), X)

andbyYoneda’s lemma this gives an embedding ofSch into the category of functors
from R to Sets.

A functor F : R → Sets is representable if there is some Y ∈ Sch with a
natural isomorphism ν : F → HomSch(−,Y ). Then Y is said to be a fine moduli
space for F .

A functor F is said to be corepresentable if there is a natural transformation
ν : F → HomSch(−,Y ) such that for any scheme Y ′ with a natural transformation
ν′ : F → HomSch(−,Y ′) there is a uniquemorphismY → Y ′ factoring ν′ through
ν.
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The Yoneda embedding X �→ HomSch(−, X) also defines a fully faithful
functor from Sch into the category of functors Schop → Sets, and so the above
definitions could be given in terms of functorsSchop → Sets rather than functors
R → Sets. Such functors are presheaves on the categories Sch and Rop respec-
tively, and indeed the Yoneda embedding actually defines a fully faithful functor
from Sch into the category of sheaves on the respective big Zariski sites for Rop

andSch. As schemes inSch admit affine open covers by affine schemes inRop the
comparison lemma identifies sheaves on the big Zariski site of schemes of locally
finite type overCwith sheaves on the big affine site Zariski site of finite type affine
schemes over C (see [23, Section C2.2, Theorem 2.2.3] or [35, Tag 020W]). As
such it is equivalent to use functors of either type in the above definitions.

We consider functorsR → Sets to automatically simplify later arguments and
definitions to considering affine cases. One advantage of the alternative description
is that it is clear to see that if X is a fine moduli space for a moduli functor F then
there is a tautological element in F(X) corresponding to id ∈ HomSch(X, X)

under the natural isomorphism.

2.6. Quiver representation moduli functors

We recall the definition of a moduli functor for (semi)stable quiver representations.
Let A be a C-algebra of finite type. Suppose that A is presented as a quiver with
relations and for B ∈ R define AB := A ⊗C B. We recall that left A-modules
correspond to quiver representations. For a dimension vector d, stability condition
θ , and B ∈ R define the set

S(s)s
A,d,θ (B)

:=
⎧⎨
⎩M ∈ AB-mod

• M is a finitely generated and flat B − module .

• The A − module B/m ⊗B M has dimension vector d
and is θ -(semi)stable for all maximal ideals m of B.

⎫⎬
⎭

and define the quiver representation moduli functor to be

F (s)s
A,d,θ :R → Sets

B �→ S(s)s
A,d,θ (B)

/∼
where the equivalence ∼ is defined by two modules being equivalent if they are
isomorphic after tensoring by an invertible B-module: M ∼ N if there is a locally
free rank one B-module L such that M ⊗B L ∼= N as AB modules. We note that
two stable modules are equivalent if and only if they are locally isomorphic.

Lemma 2.6.1. If M, N ∈ Ss
A,d,θ (B) then M ∼ N if and only if M ⊗B Bm

∼=
N ⊗B Bm for all m ∈ MaxSpec(B).

Proof. If there exists a rank one locally free L such that M ⊗B L ∼= N then it is
clear that M and N are locally isomorphic.

http://stacks.math.columbia.edu/tag/020W
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If M and N are locally isomorphic then consider the B-module L :=
HomAB (M, N ). This is a submodule of HomB(M, N ) hence is a finitely gen-
erated B-module as M and N are finitely generated as B-modules. For any
m ∈ MaxSpec(B) Mm

∼= Nm as ABm -modules, and as M and N are locally
free B-modules of the same rank Mm and Nm are free Bm-modules of the same
rank, n say. In particular

HomBm(Mm, Nm) ∼= EndBm(Mm) ∼= Matn(Bm) ∼= B⊕n2
m .

As Mm is an ABm -module there is a map θ : A → EndBm(Mm) defining the
A-module structure and

Lm
∼= EndABm (Mm) ∼= {

f ∈ EndBm(Mm) : θ(a) f − f θ(a) = 0 for all a ∈ A
}
.

Moreover, the ABm-module structure on M defines an A-module structure on M/m
via the map θ̄ : A → EndA(M/m) defined as θ followed by reduction modulo m,
and it follows that

EndA(M/m) ∼= {
f̄ ∈ EndB/m(M/m) : θ̄(a) f̄ − f̄ θ̄(a) = 0 for all a ∈ A

}
.

For each a ∈ A the map f �→ θ(a) f − f θ(a) defines a Bm-linear map φa :
B⊕n2
m → B⊕n2

m whose reductionmodulom is a B/m-linear map φ̄a : (B/m)⊕n2 →
(B/m)⊕n2 defined by f̄ �→ θ̄(a) f̄ − f̄ θ̄(a). Choosing a generating set I ⊂ A for
A as a finitely generated C-algebra there is then an associated Bm-linear map


 = ⊕
a∈I φa : B⊕n2

m →
(
B⊕n2
m

)⊕I
such that Lm is the kernel of 


0 → Lm → B⊕n2
m


−→
(
B⊕n2
m

)⊕I
.

Similarly, EndA(M/m) is the kernel of �̄ = ⊕
a∈I φ̄a

0 → EndA(M/m) → (B/m)⊕n2 �̄−→
(
(B/m)⊕n2

)⊕I
.

As M ∈ Ss
A,d,θ (B) the A-module M/m is θ -stable and by Lemma 2.3.4 (iii) there

is an isomorphism EndA(M/m) ∼= B/m given by the inclusion of the identity
endomorphism. In particular this shows that �̄ is a B/m-linear map of rank n2 −1.

The identity inclusion Bm → Lm
∼= EndABm (Mm) is defined by b �→ b · idM .

This extends to the identity inclusion Bm ↪→ Lm ↪→ EndBm(Mm) which splits,
and hence Bm ↪→ Lm splits as Lm = Bm ⊕ K for some Bm-module K . Factoring
out the split inclusion Bm ↪→ Lm produces an exact sequence

0 → K → B⊕n2−1
m


′−→
(
B⊕n2
m

)⊕I

such that the image of 
 equals the image of 
′. In particular, as �̄ has rank n2 −1
the reduction �̄

′
of 
′ modulo m also has rank n2 − 1 so is an injection

0 → (B/m)⊕n2−1 �̄
′

−→
(
(B/m)⊕n2

)⊕I
.
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Amorphism between finitely generated freemodules over a local ringwhose reduc-
tion modulo m is injective is itself injective [31, Theorem 22.5] (or see [35, Tag
00ME]). Hence 
′ is an injection of Bm-modules and K ∼= 0.

Hence Lm
∼= Bm and we can deduce that L is a locally free B-module of

rank 1. Then the natural map M ⊗B HomAB (M, N ) → N can be seen to be an
isomorphism by considering localisations at all maximal ideals m ∈ MaxSpec(B)

where it reduces to the composition of isomorphisms Lm
∼= Bm, Mm ⊗Bm Bm →

Mm, and Mm
∼= Nm. ��

By the results of King in [26] the quiver representation moduli functor is corep-
resentable.

Theorem 2.6.2. ([26, Proposition 5.2]) The schemeMss
d,θ corepresents the functor

F ss
A,d,θ . In particular, closed points of Mss

d,θ correspond to S-equivalence classes
of dimension d, θ -semistable A-modules.

If we restrict to stable representations then the functor is representable and has
a fine moduli space.

Theorem 2.6.3. ([26, Proposition 5.3]) Suppose d is indivisible and let Ms
d,θ be

the open subscheme of Mss
d,θ corresponding to the stable points. Then Ms

d,θ is a
fine moduli space for F s

A,d,θ .

We note that when d is indivisible and θ is generic all semistable points are
stable andMss

d,θ = Ms
d,θ is a fine moduli space. We will later restrict ourselves to

considering such cases.
Wewill often just refer to the functor asFA, recalling the choices of semistablity

or stability, d, and θ onlywhen necessary.We also note that the tautological element
for F s

A,d,θ is a vector bundle on Ms
d,θ with each fibre corresponding to a θ -stable

representation of A with dimension vector d which we refer to as the tautological
bundle.

Remark 2.6.4. The functor here differs from the functor considered in Sekiya
Yamaura, [34, Definition 4.1], but their results also hold for this functor. See
“Appendix 7” for more details.

We also note that the assumption that A is presented as a quiver with relations
is not necessary; for any algebra which is finitely generated over a commutative
Noetherian ring Van den Bergh defines a functor analogous to F s

A,d,θ and proves
that such a functor is representable when d is indivisible and θ is generic [36,
Proposition 6.2.1]. We note that local equivalence is used in this setting.

2.7. Geometric moduli functors

We define a similar functor for a scheme, X , arising in a projective morphism,
π : X → Spec(R), of finite type schemes over C.

http://stacks.math.columbia.edu/tag/00ME
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We first introduce several pieces of notation which we will frequently use.
Let ρ : X → Spec(C) denote the structure morphism. For B ∈ R we define
XB := X ×Spec(C) Spec(B) and consider the following pullback diagram

Spec(B) Spec(C)

XB X

ρρB

ρX

which defines the morphisms ρB and ρX from the structure morphism ρ : X →
Spec(C).Wenote that XB is also offinite typeoverC, andhas a projectivemorphism
π B : XB → Spec(R ⊗C B), see [6, Remark 1.7]. Also if X has a tilting bundle T
the following result, which is a particular case of the result [6, Proposition 2.9] of
Buchweitz and Hille, defines a tilting bundle T B on XB .

Proposition 2.7.1. ([6, Proposition 2.9]) If T is a tilting bundle on X and
A = EndX (T )op then T B := LρX∗T is a tilting bundle on X B, and AB :=
EndXB (T B)op = A ⊗C B.

We introduce a further piece of notation. For any B ∈ R we let MaxSpec(B)

denote the closed points of Spec(B), and any p ∈ MaxSpec(B) there is a closed
immersion i p : Spec(C) → Spec(B) and a pullback diagram

Spec(C) Spec(B)

X XB

ip

ρBρ

jp

(i p/jp)

which we later refer to as the diagram (i p/jp).
We can now define the geometric moduli functor. We define FX (C) to be the

set of skyscraper sheaves of X considered up to isomorphism, and for B ∈ R define
the sets

SX (B) :=
{
E ∈ Db(XB) |L j∗pE ∈ FX (C) for all p ∈ MaxSpec(B).

}

and the moduli functor

FX :R → Sets

B �→ SX (B)
/∼

where the equivalence∼ is defined by E1 being equivalent to E2 if there is a line bun-
dle L on Spec(B) such that E1⊗XB ρB∗L ∼= E2. We later recall in Proposition 4.0.2
that X is a fine moduli space for this functor.
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Remark 2.7.2. It follows immediately from Lemma 2.7.3, which we state below,
that the set SX (B) is equivalent to the set

{
E ∈ Coh(XB)

• E is flat as a B-module.
• j∗pE ∈ FX (C) for all p ∈ MaxSpec(B).

}
.

Lemma 2.7.3. ([3, Lemma 4.3]) Let f : X → Y be a morphism of finite type
schemes over C, and for each closed point y ∈ Y let jy denote the inclusion of the
fibre f −1(y). Suppose E ∈ Db(X) is such that L j∗y E is a sheaf for all y. Then E is
a coherent sheaf on X which is flat over Y .

Remark 2.7.4. In the definition of the moduli functor FX we could change the set
FX (C) of skyscraper sheaves up to isomorphism to, for example, the set of perverse
point sheaves as defined by Bridgeland [4, Section 3], to obtain a functor mirroring
Bridgeland’s perverse point sheaf moduli functor. Indeed, the results of Sect. 3 and
Theorem 4.0.1 do not rely on the fact that FX (C) consists of skyscraper sheaves
up to isomorphism, but Proposition 4.0.2 and our applications in Sect. 5 do.

We now note some properties of coherent sheaves E ∈ FX (B) that will be used
later.

Lemma 2.7.5. Suppose that E ∈ FX (B) and E has scheme theoretic support ι :
Z → XB. Then

(i) The coherent sheaf E is a line bundle over its support Z ⊂ XB,
(ii) The morphism ρB ◦ ι : Z → Spec B is flat,
(iii) The morphism ρB ◦ ι : Z → Spec B is an isomorphism, and
(iv) There exists a line bundle L on Spec B such that E ∼= OZ ⊗XB ρB∗L.

Proof. By Remark 2.7.2 we can assume that E is a coherent sheaf on XB that is
flat over Spec B such that for any closed point p ∈ Spec B there is an isomorphism
j∗pE ∼= Ox for some closed point x ∈ X . As E is a coherent sheaf ι is a closed
immersion.

We first show that E is a line bundle over its support. Suppose that z ∈ XB is a
closed point that is in the support of E and consider the point p = ρB(z) ∈ Spec B.
As the schemes are of finite type over C the point p is a closed point in Spec B. As
E ∈ FX (B) it follows that j∗pE ∼= Ox for some closed point x ∈ X and there is a
surjection

OX
f |p−−→ j∗pE → 0.

Further, as j∗pE ∼= Ox the point z = (x, p) ∈ XB is the unique closed point
in the support of E that maps to p. As there is a surjection Hom(OXB , E) →
Hom(OX , j∗E) there exists some f : OXB → E lifting f |p. Hence Nakayama’s
lemma implies the stalk of f at z is surjective

OXB ,z
fz−→ Ez → 0.
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As E locally has a surjection from OXB at all closed points of Z it follows that E
is locally isomorphic to the closed subscheme of Z ⊂ XB , and hence E is a line
bundle over its support Z . This proves part (i).

As the sheaf E is flat over Spec B and E is a line bundle over Z it follows that
OZ is also flat over Spec B, proving part (ii).

In particular for all closed points p ∈ Spec B the fibre Z p → p is an isomor-
phism. This implies that the morphism is unramified and universally injective (see
[35, Tag 05VH]). The morphism is flat, unramified, and universally injective so it is
an open immersion, in particular a flat monomorphism (see [35, Tag 025G]). Then
the morphism is surjective on closed points hence surjective, and a surjective open
immersion is an isomorphism (see [35, Tag 06NG]). Hence part (iii) is proved.

Part (iv) is a consequence of (i) and (iii). ��
In particular the following result is used later.

Lemma 2.7.6. If T is a locally free coherent sheaf T on X B and E ∈ FX (B), then
RρB∗ RHomXB (T, E) is a locally free coherent sheaf on Spec B.

Proof. By Remark 2.7.2 E is a coherent sheaf on XB . As T is locally free
RHomXB (T, E) ∼= T∨ ⊗XB E and the scheme theoretic support of T∨ ⊗XB E
equals the scheme theoretic support ι : Z → XB of E . Hence there exists a
locally free coherent sheaf G ∈ Coh Z such that ι(G) ∼= T∨ ⊗XB E . In partic-
ular RρB∗ T∨ ⊗XB E is equivalent to (RρB ◦ ι)∗G. As ρB ◦ ι is an isomorphism
by Lemma 2.7.5 (iii) and G is a locally free coherent sheaf on Z it follows that
RρB∗ T∨ ⊗XB E ∼= RρB∗ RHomXB (T, E) is a locally free coherent sheaf on Spec B.

��

3. Preliminary lemmas

In this section we give a series of lemmas required to prove the main results in the
next section.

3.1. Derived base change

We first recall the following property, which we will make use of several times.

Lemma 3.1.1. Let f : X → Y be a quasi-compact, separatedmorphismofNoethe-
rian schemes over C. Then if T ∈ Perf(Y )

L f ∗RHomY (T, E) ∼= RHomX (L f ∗T,L f ∗E)

for any E ∈ Db(Y ).

Proof. We consider the two functors

HomDb(X)(L f ∗RHomY (T, E),−) : Db(X) → Sets, and

HomDb(X)(RHomX (L f ∗T,L f ∗E),−) : Db(X) → Sets.

http://stacks.math.columbia.edu/tag/05VH
http://stacks.math.columbia.edu/tag/025G
http://stacks.math.columbia.edu/tag/06NG
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We will show these are naturally isomorphic, and it then follows that L f ∗
RHomY (T, E) ∼= RHomX (L f ∗T,L f ∗E) as they represent the same functor
under the Yoneda embedding. This follows from the chain of natural isomorphisms

HomD(X)(L f ∗RHomY (T, E),−) ∼= HomD(Y )(RHomY (T, E),R f∗(−))

(adjunction)

∼= HomD(Y )(E, T ⊗L

Y R f∗(−)) (T perfect)

∼= HomD(Y )(E,R f∗(L f ∗T ⊗L

X (−)))

(projection)

∼= HomD(X)(L f ∗E,L f ∗T ⊗L

Y (−))

(adjunction)
∼= HomD(X)(RHomX (L f ∗T,L f ∗E),−).

(L f ∗T perfect)

��
We then recall the following derived base change results.

Lemma 3.1.2. Let π : X → Spec(R) be a projective morphism of finite type
schemes over C, and let B,C ∈ R. Consider the following pullback diagram for a
morphism u : Spec(B) → Spec(C), where we use the notation of Sect. 2.7.

Spec(B) Spec(C)

XB XC

ρCρB

v

u

Suppose E ∈ Db(XC ). Then

Lu∗
RρC∗ E ∼= RρB∗ Lv∗E .

Suppose further that X has a tilting bundle T and define A = EndX (T )op. If
the AC-module RHomXC (TC , E) is flat as a C-module then

B ⊗C RHomXC (TC , E) ∼= RHomXB (T B,Lv∗E)

as AB-modules.
Also, if L is a line bundle on Spec(B) then

RHomXB (T B, E ⊗XB ρB∗L) ∼= RHomXB (T B, E) ⊗B L

as AB-modules.

Proof. As XC is flat over Spec(C), for any x ∈ XC and any b ∈ Spec(B) such that

ρC (x) = u(b) = c we have that Tor
OC,c
i (OB,b,OXC ,x ) = 0 for all i 
= 0. Hence

XC and Spec(B) are Tor independent over Spec(C), and so the first result follows
from Tor independent base change [30, Theorem 3.10.3] (or see [35, Tag 08IR]).

http://stacks.math.columbia.edu/tag/08IB
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The second result follows by applying the first result and the previous lemma:

B ⊗C RHomXC (TC , E) ∼= Lu∗
RρC∗ RHomXC (TC , E)

∼= RρB∗ Lv∗RHomXC (TC , E) (Lu∗
RρC∗ ∼= RρB∗ Lv∗)

∼= RρB∗ RHomXB (Lv∗TC ,Lv∗E) (Lemma 3.1.1)

∼= RHomXB (T B,Lv∗E).

The final assertion follows by the projection formula [33, Proposition 5.3] (or
see [35, Tag 0B54]):

RHomXB (T B, E ⊗XB ρB∗L) := RρB∗ HomXB (T B, E ⊗XB ρB∗L)

= RρB∗ ((T B)∨ ⊗XB E ⊗XB ρB∗L) (T B perfect)

= RρB∗ ((T B)∨ ⊗XB E) ⊗B L
(projection formula)

= RρB∗ HomXB (T B, E) ⊗B L (T B perfect)

= RHomXB (T B, E) ⊗B L .

��

3.2. Natural transformations

In this section letπ : X → Spec(R)be a projectivemorphismoffinite type schemes
overC. Suppose that X has a tilting bundle T and that A = EndX (T )op is presented
as a quiver with relations. Choose some dimension vector d and stability condition
θ in order to define FA := F ss

A,d,θ . We aim to define a natural transformation, η,
between the moduli functors FX and FA defined in Sects. 2.7 and 2.6. We define
η : FX → FA by

ηB : FX (B) → FA(B)

E �→ RHomXB (T B, E)

for any B ∈ R, and we must check when this is well defined.

Lemma 3.2.1. Suppose ηC is well defined. Then η is a well defined natural trans-
formation and ηB is injective for all B ∈ R.

Proof. To prove that η is well defined we must check the following for any B ∈ R
and any E ∈ FX (B):

(i) RHomXB (T B, E) is a B-module which is flat and finitely generated.
(ii) For all maximal idealsm of B the A-module B/m ⊗B RHomXB (T B, E) is in

FA(C).
(iii) If E1 and E2 are equivalent inFX (B) thenRHomX (T, E1) andRHomX (T, E2)

are equivalent in FA(B).

http://stacks.math.columbia.edu/tag/0B54


Quiver GIT for varieties with tilting bundles

Firstly, part (i) is an immediate consequence of Lemma 2.7.6.
Secondly, to prove (ii), we note for any m ∈ MaxSpec B corresponds to a

closed point p and diagram (i p/jp). As RHomXB (T B, E) is a flat B-module
B/m ⊗B RHomXB (T B, E) ∼= RHomX (T,L j∗pE) for each maximal ideal m
by Lemma 3.1.2. As ηC is well defined and L j∗pE ∈ FX (C) it follows that
B/m ⊗B RHomXB (T B, E) ∈ FA(C).

To prove part (iii) let E1 and E2 be equivalent elements of FX (B). Then there
exists some line bundle L on Spec(B) such that E1 ⊗XB ρB∗L ∼= E2 and so by
Lemma 3.1.2

RHomXB (T B, E2) ∼= RHomXB (T B, E1 ⊗XB ρB∗L)

∼= RHomXB (T B, E1) ⊗B L .

This shows that ηB(E1) and ηB(E2) are equivalent in FX (B) and proves part (iii).
We now show that η is a natural transformation. Suppose that B,C ∈ R and

u : Spec(B) → Spec(C), then we have the base change diagram

Spec(B) Spec(C)

XB XC

u

v

ρCρB

and we consider the diagram

FX (B) FA(B)

FX (C) FA(C)

RHomXB (T B , −)

RHomXC (TC , −)

B ⊗C (−)Lv∗

and to show that η is natural we must check that this commutes. For E ∈ FX (C)

as RHomXC (TC , E) is a flat C-module

B ⊗C RHomXC (TC , E) ∼= RHomXB (T B,Lv∗E)

as AB-modules by Lemma 3.1.2. Hence η is natural.
We now show that ηB is injective. Suppose that E1, E2 ∈ FX (B) and

RHomXB (T B, E1) is equivalent toRHomXB (T B, E2), hence there exists an invert-
ible B-module L such that RHomXB (T B, E1) ⊗B L ∼= RHomXB (T B, E2). By
Lemma 3.1.2

RHomXB (T B, E2) ∼= RHomXB (T B, E1) ⊗B L

∼= RHomXB (T B, E1 ⊗XB ρB∗L)

and hence E1 ⊗XB ρB∗L ∼= E2 as RHomXB (T B,−) is an equivalence of derived
categories. Hence ηB is injective. ��
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Lemma 3.2.2. With the assumptions as in Lemma 3.2.1, if ηC is also bijective with
inverse T ⊗L

A (−) then ηB is bijective for all B ∈ R.

Proof. We suppose that ηC is bijective with inverse T ⊗L

A (−) and we show that ηB

is surjective. We consider M ∈ FA(B) and note that as T B is a tilting bundle there
exists some E ∈ Db(XB) such that RHomXB (T B, E) ∼= M . If we can show that
E ∈ FX (B) thenwehaveproved thatηB is surjective.Wecheck thatL j∗pE ∈ FX (C)

for any maximal ideal m of B with corresponding closed point p ∈ MaxSpec(B)

and diagram (i p/jp). By Lemma 3.1.2

B/m ⊗B M ∼= RHomX

(
T,L j∗pE

)

as M is flat over B. As B/m ⊗B M ∼= RHomX (T,L j∗pE) ∈ FA(C) and ηC is

bijective with inverse T ⊗L

A (−) it follows thatL j∗pE ∼= T ⊗L

ARHomX (T,L j∗pE) ∈
FX (C). Hence E ∈ FX (B) and ηB is surjective. ��

4. Results

In this section we state our main result, which follows from the previous lemmas,
and we also show that the moduli functor FX is represented by X . We will find
several applications of these results in the next section.

Theorem 4.0.1. Let π : X → Spec(R) be a projective morphism of finite
type schemes over C. Suppose X is equipped with a tilting bundle T , define
A = EndX (T )op, and suppose that A is presented as a quiver with relations. If
there exists an dimension vector d and stability condition θ defining the moduli
functor FA := F ss

A,θ,d such that the tilting equivalence

Db(X) Db(A)

RHomX (T,−)

T ⊗L

A (−)

restricts to a bijection between FX (C) and FA(C) then the map η : FX → FA

defined by ηB : E �→ RHomXB (T B, E) is a natural isomorphism.

Proof. This follows from Lemmas 3.2.1 and 3.2.2. ��
We now prove that the moduli functor FX has X as a fine moduli space; this is

just a restatement of the well known result that a finite type scheme over C can be
reconstructed as the Hilbert scheme of closed points.

Proposition 4.0.2. Let π : X → Spec(R) be a projective morphism of finite type
schemes overC. Then there is a natural isomorphism between the functor of points
HomSch(−, X) and the moduli functor FX . In particular X is a fine moduli space
forFX with tautological object�∗OX on X×Spec(C) X where� : X → X×Spec(C)

X is the diagonal map.
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Remark 4.0.3. Combining Theorem 4.0.1 and Proposition 4.0.2 we can deduce
that if there exists a dimension vector d and stability condition θ such that
RHomX (T,−) and T ⊗L

A (−) restrict to bijections betweenFX (C) andFA(C) then
X is a fine moduli space for the functor FA. In particular, for a bijection between
FX (C) and FA(C) to exist d must be indivisible and θ must be generic. Further, in
this situation the tautological bundle on X is in fact T∨, as can be seen by translating
the tautological element �∗OX across the natural isomorphism between FX and
FA, so EndX (T∨) ∼= EndX (T )op = A and the dual of the tautological bundle is
the tilting bundle T .

Proof of Proposition 4.0.2. Consider

μ : HomSch(−, X) → FX

defined by

μC : (g : Spec(C) → X) �→ ((�g)∗OC )

for C ∈ R, where �g : Spec(C) → XC is the graph of g. The graph is a closed
immersion as X is separated, and hence �g is affine and (�g)∗ is exact.

We now show this is a well defined natural transformation. To show that it
is well defined we consider a morphism g : Spec(C) → X and check that
(�g)∗OC ∈ FX (C). Firstly, as �g is a closed immersion it is proper, hence
(�g)∗OC is a coherent sheaf [18, Theorémè 3.2.1](or see [35, Tag 02O5]). Fur-
ther, as �g is a closed immersion and OC is flat over Spec(C) it follows by
considering stalks that (�g)∗OC is also flat over Spec(C). Then as �g is affine
j∗p(�g)∗OC ∼= (�g◦i p )∗i∗pOC for all p ∈ MaxSpec(C) with diagrams (i p/jp) by
affine base change [17, Corollaire 1.5.2] (or see [35, Tag 02KE]), hence

L j∗p(�g)∗OC ∼= j∗p(�g)∗OC ∼= (�g◦i p )∗i∗pOC ∼= Og(p).

Hence μC is well defined as (�g)∗OSpec(C) ∈ FA(C) for any g ∈ HomSch

(Spec(C), X). It is natural as if B,C ∈ R with a morphism u : Spec(B) →
Spec(C) and g : Spec(C) → X ∈ HomSch(Spec(C), X) we have the diagram

Spec(B) Spec(C)

XB XC X

C
u

v

ρCρB

ρX

ρ
g

�g�g◦u

where g = ρX ◦ �g , g ◦ u = ρX ◦ v ◦ �g◦u and the squares can be seen to be
pullback squares using the universal property of pullback squares and the fact that
ρB ◦ �g◦u is the identity. As above, as �g and �g◦u are closed immersions

(�g◦u)∗u∗E ∼= v∗(�g)∗E

http://stacks.math.columbia.edu/tag/02O5
http://stacks.math.columbia.edu/tag/02KE
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for any E ∈ Coh(Spec(C)) by affine base change [17, Corollaire 1.5.2] (or see [35,
Tag 02KE]). Hence

μB(g ◦ u) ∼= �(g◦u)∗OB ∼= �(g◦u)∗u∗OC ∼= v∗(�g)∗OC ∼= v∗μB(g).

To show it is a natural isomorphism we need to check that μB is bijective for
all B ∈ R. We do this now by constructing an inverse νB . For B ∈ R, given
E ∈ FX (B) we consider its schematic support ι : Z ↪→ XB and we then have the
diagram

Spec(B)

Z X B

Spec(C)

X
ρX

ρB

ι

ψ ρ

where we define ψ = ρB ◦ ι. We recall that ψ is an isomorphism from
Lemma 2.7.5 (iii), and we then consider the map ρX ◦ ι ◦ ψ−1 : Spec(B) →
X ∈ HomSch(Spec(B), X), and our inverse is defined by sending E ∈ FX (B) to
this element of HomSch(Spec(B), X):

νB : FX (B) → HomSch(Spec(B), X)

E �→
(
ρX ◦ ι ◦ ψ−1 : Spec(B) → X

)
.

Finally we note that this is an inverse, as

νB ◦ μB(g) = νB(�g∗OB) = g

and

μB ◦ νB(E) = μB

((
ρX ◦ ι ◦ ψ−1

)
: Spec(B) → XB

)
= �(ρX◦ι◦ψ−1)∗ (OB)

where we note that �(ρX◦ι◦ψ−1)∗(OB) is isomorphic to the structure sheaf of Z
hence is equivalent to E in FX (B) by Lemma 2.7.5 (iv). Hence HomSch(−, X) is
naturally isomorphic FX .

Finally, under this identification the identity morphism id ∈ HomSch(X, X)

is mapped to the bundle �id∗OX = �∗OX , so this is the tautological element. ��
Remark 4.0.4. A scheme X that is not locally finite type over C is not necessarily a
fine moduli space for the functor FX . For example, there may exist exist coherent
sheaves E on XB that are flat over Spec(B) but not supported at any closed point of
XB that maps to a closed point of Spec B. Consider R = C[x], X = Spec R, B =
SpecC[t](t) the localisation ofC[t] at themaximal ideal (t), and E := RB/(xt−1).
Then E ∈ Coh XB , E is flat as a B-module, and the fibre of E over the closed point
of B is RB/(xt − 1, t) ∼= 0. In particular E is not finitely generated as a B-module
and it is an example of a flat module over a local ring that is not free.

In this generality stronger conditionsmust be imposed; such as requiring objects
of FX (B) to have proper support over Spec B. For a more general result recon-
structing a scheme from the data of its point objects in the derived category see [7,
Theorem 2.10] of Calabrese and Groechenig.

http://stacks.math.columbia.edu/tag/02KE
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5. Applications

Let π : X → Spec(R) be a projective morphism of finite type schemes over C,
suppose X has a tilting bundle T , and suppose that A = EndX (T )op is presented as
a quiver with relations. In this section we will introduce an indivisible dimension
vector dT and generic stability condition θT defined by a decomposition of the
tilting bundle and give general conditions for the map η : FX → FA introduced
in the previous sections to be a natural isomorphism for this stability condition
and dimension vector. We will then use these general conditions to produce the
applications outlined in the introduction.

5.1. Dimension vectors and stability

We introduce a certain dimension vector and stability condition defined from a
decomposition of a tilting bundle and then, using Theorem 4.0.1, we give criterion
for η to be a natural isomorphismwith respect to this stability condition and dimen-
sion vector. In order to do this we make the following assumption on T , a tilting
bundle on a scheme X .

Assumption 5.1.1. The tilting bundle T has a decomposition into non-isomorphic
indecomposables T = ⊕n

i=0 Ei such that there is a unique indecomposable, E0,
isomorphic to OX .

We then consider a presentation of A = EndX (T )op as the path algebra of a quiver
with relations such that each indecomposable Ei corresponds to a vertex i of the
quiver, as in Sect. 2.4. In particular the 0 vertex in the quiver corresponds to the
summand OX .

Definition 5.1.2. Suppose T is a tilting bundle T with decomposition T =⊕n
i=0 Ei .

(i) The dimension vector dT is defined by

dT (i) = rk Ei .

In particular dT (0) = 1 as E0 is assumed to be isomorphic to OX so dT is
indivisible.

(ii) The stability condition θT is defined by

θT (i) =
{−∑

i 
=0 rk Ei if i = 0;
1 otherwise.

Lemma 5.1.3. The stability condition θT has the following properties:

(i) Let P0 := RHomX (T,OX ) and M be an A-module with dimension vector dT .
ThenHomA(P0, M) is one dimensional, and M is θT -stable if and only if there
is a surjection P0 → M → 0.

(ii) The stability θT is generic for A-modules of dimension dT .
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Proof. The A-module P0 is the projective module consisting of paths in the quiver
starting at the vertex 0. For any representation M with dimension vector dT a
homomorphism from P0 toM is determined by the image of the trivial path e0 ∈ P0
in the vector space C ⊂ M at vertex 0, which we denote by 10. This is as any path
p starting at 0 must be sent to the evaluation in M of the linear map corresponding
to p on the element 10. Hence HomA(P0, M) = C, and any nonzero element of
HomA(P0, M) is surjective precisely when the linear maps in M corresponding to
paths starting at 0 form a surjection from the vector space at the zero vertex onto
M . By the definition of θT the module M is θT -semistable if and only if there are
no proper submodules N ⊂ M such that dN (0) = 1, and this property is equivalent
to the linear maps in M corresponding to paths starting at 0 forming a surjection.
This proves part (i).

We now prove (ii). It is clear by the definitions of θT and dT that any θT -
stable dimension dT module M can have no proper submodules N ⊂ M such that
θT (N ) = 0 as if N is a nontrivial submodule, either dN (0) = 0 and θT (N ) > 0, or
dN (0) = 1 and N = M . ��

We now give conditions for η : FX → FA to be a natural isomorphism for this
stability condition and dimension vector.We note that there is an abelian categoryA
corresponding to the abelian category A-mod under the tilting equivalence between
Db(X) and Db(A) such that T is a projective generator ofA. ThenRHomX (T,−)

and T ⊗L

A (−) define an equivalence of abelian categories between A and A-mod.
Our conditions are defined on this category A.

Lemma 5.1.4. Take the dimension vector dT and stability condition θT as above.
Then the structure sheafOX is inA and for all closed points x ∈ X the skyscraper
sheaf Ox is in A. Suppose the following condition holds:

(i) For all closed points x ∈ X there are surjections OX → Ox → 0 in A.

Then η is a well defined natural transformation and ηB is injective for all B ∈ R.
Suppose further that the following condition also holds:

(ii) The set

S :=
⎧⎨
⎩E ∈ A

•RHomX (T, E) has dimension vector dT .

•HomA(E,Ox ) = 0 for all closed points x ∈ X.

•HomA(Ox , E) = 0 for all closed points x ∈ X.

⎫⎬
⎭

is empty.

Then η is a natural isomorphism.

Proof. We first prove that OX and all skyscraper sheaves Ox are in A. An object
E ∈ Db(X) is in A if RHomX (T, E) is an A-module. It follows from assump-
tion 5.1.1 thatOX is a summand of T and henceRHomX (T,OX ) = HomX (T,OX )

is an A-module. Then any closed point x ∈ X is defined by a closed embed-
ding ιx : SpecC → X and by definition Ox = ιxC, hence as T is locally free
RHomX (T, ιxC) ∼= RHomC(Crk T ,C) ∼= C

rk T by adjunction and this an A-
module so Ox ∈ A.
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To prove the remaining claimswe first assume that condition (i) holds and prove
that ηC is well defined. Then it follows from Lemmas 3.2.1 and 3.2.2 that η is a
natural transformation and ηB is injective for all B ∈ R.

Any element of FX (C) is a skyscraper sheaf on X up to isomorphism. For any
closed point x ∈ X the A-moduleRHomX (T,Ox ) has dimension vector dT , hence
the map ηC is well defined if and only if all RHomX (T,Ox ) are θT -semistable
A-modules. These are A-modules as Ox ∈ A. By considering the surjections
of condition (i), OX → Ox → 0 in A, and applying the abelian equivalence
RHomX (T,−) we see that all RHomX (T,Ox ) are θT -stable by Lemma 5.1.3 (i).
Hence ηC is well defined.

We now also assume that condition (ii) holds and prove that ηC is also surjective
with inverse T ⊗L

A (−). It then follows from Theorem 4.0.1 that η is a natural
isomorphism. Take an A-module, M , with dimension vector dT and which is θT -
stable. As M is θT -stable by Lemma 5.1.3 (ii) there is a surjection

P0 → M → 0

which under the abelian equivalence gives an exact sequence in A
OX → E → 0

where E ∼= M ⊗L

A T ∈ Db(X). Then by condition (ii) there must be some closed
point x ∈ X such that HomA(E,Ox ) 
= 0 or HomA(Ox , E) 
= 0.

If HomA(E,Ox ) 
= 0 then we apply HomA(−,Ox ) to the surjection OX →
E → 0 to obtain an injection

0 → HomA(E,Ox ) → HomA(OX ,Ox ) = C

and hence the surjectionOX → Ox → 0 factors through E , and there is a surjection
E → Ox → 0. We then apply the abelian equivalence functor RHomX (T,−) to
obtain a surjection of finite dimensional A-modules

M → RHomX (T,Ox ) → 0

and by comparing dimension vectors we see that the map is an isomorphism, hence
that RHomX (T,Ox ) ∼= M and E ∼= T ⊗L

A M ∼= Ox .
If HomA(Ox , E) is nonzero then by applying Hom(−, E) to the short exact

sequenceOX → Ox → 0 an analogous argument deduces that E ∼= Ox , where we
note that dim HomA(OX , E) = 1 as M has dimension vector dT . ��
Corollary 5.1.5. Let π : X → Spec(R) be a projective morphism of finite type
schemes over C. Let T be a tilting bundle on X which defines an equivalence of
an abelian category A with A-mod, where A = EndX (T )op. Choose the stability
condition θT and dimension vector dT as above, defineFA = F ss

A,dT ,θT
, and assume

that condition (i) of Lemma 5.1.4 holds for A. Then:

(i) The map η : FX → FA defined in Sect. 3.2 is a natural transformation and
induces a morphism f : X → Mss

dT ,θT
between X and the quiver GIT quotient

of A for stability condition θT and dimension vector dT . This morphism is a
monomorphism in the sense of [35, Tag 01L2].

http://stacks.math.columbia.edu/tag/01L2
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(ii) If condition (ii) of Lemma 5.1.4 also holds for A then the morphism f is an
isomorphism.

Proof. We note that Mss
dT ,θT

= Ms
dT ,θT

as θT is generic by Lemma 5.1.3 (ii) and
thatMs

dT ,θT
is a finemoduli space forFA by Theorem 2.6.3 as the dimension vector

dT is indivisible. Themapη : FX → FA is a natural transformation as conditions (i)
of Lemma 5.1.4 hold forA. It then follows that there is a corresponding morphism
f : X → Mss

dT ,θT
as FA is represented byMss

dT ,θT
and FX is represented by X by

Proposition 4.0.2. For all B ∈ R the map ηB is injective by Lemma 5.1.4, hence
the corresponding morphism, f , is a monomorphism.

If condition (ii) of Lemma 5.1.4 also holds for A then η is actually a natural
isomorphism by Lemma 5.1.4. Hence f is an isomorphism, proving (ii). ��
Remark 5.1.6. While we make no further use of the monomorphism property we
note that it can be a useful notion as proper monomorphisms are exactly closed
immersions, [35, Tag 04XV], and étale monomorphisms are exactly open immer-
sions, [35, Tag 025G].

While the remainder of this paper is focused on the application of these results
in the case of projective morphisms π : X → Y with one-dimensional fibres, here
we first give an example of an application in a situation with higher dimensional
fibres. In the example below we verify that the conditions of Lemma 5.1.4 hold in
the well known case of Pn with the Beilinson tilting bundle.

Example 5.1.7. Consider projective space X := P
n equippedwith theBeilinson tilt-

ing bundle T := ⊕n
i=0 OX (−i) [1]. In this situation 〈OX (−n), . . . ,OX (−1),OX 〉

is actually a full exceptional sequence and the the algebra A := EndX (T )op is finite
dimensional with a presentation as the Beilinson quiver with relations. We set the
notation that the algebra A has idempotents ei such that the projective Aei corre-
sponds to the tilting summandOX (−i), we denote the corresponding simple by si ,
and we define εi = ∑n

j=i e j . We note that if RHomX (T, E) = M is an A-module
then as 〈OX (−n), . . . ,OX (−1),OX 〉 is an exceptional sequence it follows that

RHomX

(⊕i
j=0 OX (− j), E

) ∼= M/Mεi+1 as an A-module.

It follows from the construction of Pn as the moduli space of lines in C
n+1

with tautological bundle OX ⊕ OX (−1) that HomX (OX ⊕ OX (−1),−) restricts
to a surjection from skyscraper sheaves on P

n to (−1, 1) stable (1, 1) dimension
representations of Ā := End(OX ⊕ OX (−1))op, see [10,13,14] for more general
examples of varieties with tilting bundles that extend tautological bundles on a
particular realisation of the variety as a moduli space. Making use of this fact we
can verify that condition (i) and (ii) of Lemma 5.1.4 hold in this example.

Firstly, any skyscraper sheaf on P
n has a length n resolution by locally free

coherent sheaves constructed from the Koszul resolution

0 → OX (−n) → OX (−n + 1)
⊕

( n
n−1) → · · · → OX (−1)

⊕
(n1) → OX → Ox → 0.

As each individual line bundle occurring in the sequence is a summand of T this
long exact sequence in Coh Pn is also a projective resolution of Ox in the abelian

http://stacks.math.columbia.edu/tag/04XV
http://stacks.math.columbia.edu/tag/025G
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category A. In particular the surjection OX → Ox → 0 is a surjection in A. This
verifies condition (i). It is also straightforward to deduce from this resolution that
Ext1A(Ox , si ) = 0 for i > 1, and we will use this fact below.

Secondly, suppose for contradiction that S is non-empty. Then there exists
some E ∈ Db(Pn) such that HomA(E,Ox ) = HomA(Ox , E) = 0 for all closed
points x ∈ P

n and the dimension vector of the A-module RHomX (T, E) is dT =
(1, 1, . . . , 1). We define the A-modules Tx := RHomX (T,Ox ) for any closed
point x ∈ P

n , M := RHomX (T, E), and Mi := RHomX (
⊕i

j=0 OX (− j), E). In

particular we note that Mn = M and Mi ∼= Mi+1
Mi+1ei+1

∼= M
Mεi+1

for 0 < i < n. We
now prove that HomA(Tx , Mi ) = 0 for i = n, . . . , 1. This is true for i = n by the
assumption that E ∈ S. Then we consider the short exact sequences

0 → Miei → Mi → Mi−1 → 0

in A-mod, and by considering dimension vectors we can deduce that Miei ∼= si ,
the simple module at vertex i . It follows that there are long exact sequences

0 → HomA(Tx , si ) → HomA(Tx , Mi ) → HomA(Tx , Mi−1) → Ext1A(Tx , si ).

By inductionwe can assumeHomA(Tx , Mi ) = 0, and using the fact Ext1A(Tx , s j ) ∼=
Ext1A(Ox , s j ) = 0 for j > 1 that is noted above we can deduce that
HomA(Tx , Mi−1) = 0when i > 1. It follows by induction thatHomA(Tx , M1) = 0
for all closed points x ∈ P

n .
This is a contradiction. By construction the A-module M1 is a (−1, 1) stable

Ā-module with dimension vector (1, 1) and as stated above all such Ā-modules
are the image of a skyscraper sheaf on P

n under HomPn (OX ⊕ OX (−1),−). In
particular M1 ∼= HomPn (OX ⊕ OX (−1),Oy) ∼= Ty

Tyε2
for some closed point y ∈

P
n as an A-module and so there must be a nonzero A-module morphism Ty →

M1 corresponding to the nonzero A-module morphism Ty → Ty
Tyε2

. Hence the

conclusion that Hom(Tx , M1) = 0 for all closed points x ∈ P
n is absurd, no such

E can exist, and S = ∅. This verifies condition (ii).

5.2. One dimensional fibres

To apply Lemma 5.1.4 and Corollary 5.1.5 we need a class of varieties with tilt-
ing bundles such that we understand the abelian categories A. Such a class was
introduced in Theorem 1.3.1; if π : X → Spec(R) is a projective morphism of
Noetherian schemes such that Rπ∗OX ∼= OR and the fibres of π have dimension
≤ 1 then there exist tilting bundles Ti on X such that the abelian category A is
−iPer(X/R), defined as follows.

Definition 5.2.1. ([37, Section 3]) Let π : X → Spec(R) be a projective morphism
of Noetherian schemes such thatRπ∗OX ∼= OR and π has fibres of dimension≤ 1.
Define C to be the abelian subcategory of Coh X consisting of F ∈ Coh X such
thatRπ∗F ∼= 0. For i = 0, 1 the abelian category −iPer(X/R) is defined to contain
E ∈ Db(X) which satisfy the following conditions:
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(i) The only non-vanishing cohomology of E lies in degrees −1 and 0.
(ii) π∗H−1(E) = 0 and R1π∗H0(E) = 0, whereH j denotes taking the j th coho-

mology sheaf.
(iii) For i = 0, HomX (C,H−1(E)) = 0 for all C ∈ C.
(iv) For i = 1, HomX (H0(E),C) = 0 for all C ∈ C.

We note that the abelian categories −iPer(X/R) are hearts of t-structures on Db(X)

so short exact sequences in −iPer(X/R) correspond to triangles in Db(X) whose
vertices are in −iPer(X/R).

Any projective generator of the abelian category −iPer(X/R) gives a tilting
bundle Ti with the properties defined in Theorem 1.3.1, and we can assume that
such a tilting bundle contains OX as a summand by the following proposition.

Proposition 5.2.2. ([37, Proposition 3.2.7]) Define VX to be the category of vec-
tor bundles M on X which are generated by global sections and such that
H1(X,M∨) = 0, and define V∨

X := {M∨ : M ∈ VX }. The projective gener-
ators of −1Per(X/R) are the M ∈ VX such that ∧rkMM is ample and OX is a
summand of M⊕a for some a ∈ N. The projective generators of 0Per(X/R) are
the elements of V∨

X which are dual to projective generators of −1Per(X/R).

Hencewe let Ti be a projective generator of iPer(X/R)with a decomposition as
required in Assumption 5.1.1. Then the algebra Ai = EndX (Ti )op can be presented
as a quiver with relations with vertex 0 corresponding to OX and the stability
condition θTi and dimension vector dTi are well defined.

We now check that the conditions of Lemma 5.1.4 hold for 0Per(X/R).

Theorem 5.2.3. Let π : X → Spec(R) be a projective morphism of finite type
schemes over C such that π has fibres of dimension ≤ 1 and Rπ∗OX ∼= OR. Then
the abelian category 0Per(X/R) satisfies conditions (i) and (ii) of Lemma 5.1.4.

Proof. We begin by checking A satisfies condition (i) of Lemma 5.1.4. All
skyscraper sheaves Ox and the structure sheaf OX are in A as they satisfy the
conditions of Definition 5.2.1. Then, for any x ∈ X , the short exact sequence of
sheaves 0 → I → OX → Ox → 0 corresponds to a triangle in Db(X), and the
ideal sheaf I is also in A as R1π∗ I = 0 due to the exact sequence 0 → π∗ I →
π∗OX → π∗Ox → R

1π∗ I → 0 where π∗OX ∼= OR and the third arrow is a sur-
jection.Hence themapOX → Ox → 0 is in fact a surjection inA.We then note, for
all x ∈ X , that HomA(OX ,Ox ) ∼= HomDb(X)(OX ,Ox ) ∼= HomX (OX ,Ox ) ∼= C,
hence HomA(OX ,Ox ) ∼= C corresponding to the map of sheavesOX → Ox → 0
which is surjective in A.

To check condition (ii) we suppose S is not empty and we will deduce a con-
tradiction. The argument below should be thought of as a translation to our setting
of the proof of Nakamura’s conjecture for the G-Hilbert scheme in [5, Section 8]
which derives a contradiction between the facts that the Euler pairing of a coherent
sheaf shifted by [1] with a very ample line bundle must be negative whereas the
Euler pairing of a G-cluster with any locally free sheaf must be positive.
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As S is assumed nonempty there exists E ∈ S. In particular,M ∼= HomX (T0, E)

has dimension vector dT0 so Rπ∗E ∼= Op for some closed point p ∈ Spec(R). As
E ∈ A there is a short exact sequence in A

0 → H−1(E)[1] → E → H0(E) → 0

where [1] is the shift in Db(X). Hence, for all closed points x ∈ X , there is an
injection

0 → HomA(H0(E),Ox ) → HomA(E,Ox ).

Then it follows that HomA(H0(E),Ox ) ∼= HomDb(X)(H0(E),Ox ) = 0 for all
x ∈ X as by assumption HomA(E,Ox ) = 0, and hence H0(E) = 0 as a nonzero
coherent sheaf must be supported at some closed point. So E = H−1(E)[1], and
we now seek to reach a contradiction to the existence of such an E .

If the indecomposable summands Ei of T0 formed a basis for the Grothendieck
group K (Perf(X)) then E having dimension vector dT0 would imply that it has the
same class as a skyscraper sheaf in K (Perf(X)) and we could then use the Euler
form to deduce a contradiction. However, as the Krull-Schmidt property may not
hold in general the Ei may not be a basis and hence we must first restrict to the
complete local case. We do this now. As Rπ∗E ∼= Op we calculate π∗H−1(E) = 0
and R

1π∗H−1(E) = Op. By [37, Lemma 3.1.3] there is an injection of sheaves

0 → H−1(E) → H−1(π !Op)

and hence H−1(E) is set-theoretically supported on π−1(p). In particular p cor-
responds to a maximal ideal m of R and we consider the completion R → R̂ =
lim←−(R/mn). This produces the following pullback diagram

Spec(R̂) Spec(R)

Y X

i

j

ππ̂

where Y := R̂ ×Spec(R) X , the morphisms i and j are both flat and affine, and
the morphism π̂ is projective. Then we have the following isomorphism, where we
recall that the morphisms i and j are both flat and affine so we need not derive
them,

RHomX (T0, j∗ j∗E) ∼= i∗RHomY ( j∗T0, j∗E) ( j∗, j∗ adjoint pair)
∼= i∗Rπ̂∗ j∗RHomX (T0, E) (Lemma 3.1.1)
∼= i∗i∗RHomX (T0, E). (Flat base change)

As M ∼= RHomX (T0, E) is finite dimensional and supported above m it follows
that completion in m followed by restriction of scalars acts as the identity, see [16,
Theorem 2.13] and [28, Lemma 2.5], hence i∗i∗M := R̂ ⊗R M ∼= M . We deduce
that RHomX (T0, j∗ j∗E) ∼= RHomX (T0, E) and so E ∼= j∗ j∗E as T0 is a tilting
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bundle. We define Ê := j∗E and note that as j is flat and E ∼= H−1(E) it is also
true that H−1(Ê) ∼= Ê .

There is an Euler form defined between Perf(Y ) ⊂ Db(Y ) and the full triangu-
lated subcategory Db

c (Y ) ⊂ Db(Y ) consisting of objects with compact support

χ : K (Perf(Y )) × K (Db
c (Y )) → Z

χ(F ,G) =
∑
i∈Z

(−1)nHomD(Y )(F ,G[i]).

As T0 is a projective generator of 0Per(X/R) by [37, Proposition 3.1.4] P :=
j∗T0 ∈ V∨

Y is a projective generator of 0Per(Y/R̂). As P ∈ −0Per(Y/R̂) and R̂ is
a complete local ring by [37, Lemma 3.5.1] there exists a short exact sequence

0 → O⊕d−1
Y → P∨ → ∧d(P∨) → 0

where d = rk P = rk T0, and as P is a projective generator the line bundle
L := ∧d(P∨) is ample by Proposition 5.2.2. By [37, Lemma 3.5.1] there are also
short exact sequences

0 → L⊗−n → P⊕n → O⊕(nd−1)
Y → 0 †n

for any n ∈ N. We then calculate

χ(P, Ê) = dimHomY (P, Ê) (P ∈ 0Per(Y/R̂) projective)

= dimHomX (T0, E) ( j∗, j∗ adjunction)

= d (E has dimension vector dT0 )

and

χ(OY , Ê) = dimHomY (OY , Ê) (OY ∈ 0Per(Y/R̂) projective)

= dimHomX (OX , E) ( j∗, j∗ adjunction)

= 1 (E has dimension vector dT0(0) = 1)

hence additivity of the Euler character applied to a short exact sequence (†n) implies

χ(L⊗−n, Ê) = n · χ(P, Ê) − (nd − 1) · χ(OY , Ê)

= nd − (nd − 1)

= 1

for any n ∈ N.
Alternatively, by Serre vanishing there exists some n ∈ N such that

ExtiY (L⊗−n,H−1(Ê)) ∼= ExtiY (OY ,L⊗n ⊗Y H−1(Ê)) = 0

for i > 0, see [19, III Theorem 5.2]. As Ê ∼= H−1(Ê)[1] this implies

χ(L⊗−n, Ê) = χ(L⊗−n,H−1(Ê)[1]) = − dimHom(L⊗−n,H−1(Ê)) ≤ 0.

This is a contradiction to the previous calculation that χ(L⊗−n, Ê) = 1 > 0, and
so we conclude that S is empty. ��
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Combining this theorem with Corollary 5.1.5 gives us the following result,
showing that in this situation schemes can be reconstructed as fine moduli spaces
by quiver GIT.

Corollary 5.2.4. Let π : X → Spec(R) be a projective morphism of finite type
schemes over C such that π has fibres of dimension ≤ 1 and Rπ∗OX ∼= OR. Let
T0 be a tilting bundle which is a projective generator of 0Per(X/R) as defined by
Theorem 1.3.1, define A0 = EndX (T0)op, and choose the stability condition θT0
and dimension vector dT0 as above. Then X is the fine moduli space of the quiver
representation moduli functor for A0 = EndX (T0)op with dimension vector dT0 and
stability condition θT0 and the tautological bundle is the tilting bundle T∨

0 .

5.3. Example: flops

The class of varieties considered in Sect. 5.2 were originally motivated by flops
in the minimal model program. In the paper [4] Bridgeland proves that smooth
varieties in dimension three which are related by a flop are derived equivalent, and
in the process constructs the flop of such a variety as a moduli space of perverse
point sheaves. In this section we show that this moduli space construction can in
fact be done using quiver GIT. Recall the following theorem.

Theorem 5.3.1. ([37, Theorems 4.4.1, 4.4.2]) Suppose π : X → Spec(R) is a pro-
jective birational map of quasiprojective Gorenstein varieties of dimension ≥ 3,
with π having fibres of dimension ≤ 1, the exceptional locus of π having codi-
mension ≥ 2, and Y having canonical hypersurface singularities of multiplicity
≤ 2. Then the flop π ′ : X ′ → Spec(R) exists and is unique. Further X and X ′ are
derived equivalent such that −1Per(X/R) corresponds to 0Per(X ′/R). In partic-
ular, for a tilting bundle T1 on X which is a projective generator of −1Per(X/R)

there is a tilting bundle T ′
0 on X ′ which is a projective generator of 0Per(X ′/R)

such that A1 = EndX (T1)op ∼= EndX ′(T ′
0)

op = A′
0 and π∗T1 ∼= π ′∗T ′

0.

We refer the reader to [37, Theorem 4.4.1] for the definition of a flop in this
setting. The results from the previous sections now imply the following corollary,
showing that the variety X and its flop X ′ can both be constructed as quiver GIT
quotients from tilting bundles on X .

Corollary 5.3.2. Suppose we are in the situation of Theorem 5.3.1. Then X is the
quiver GIT quotient of A0 = EndX (T0)op for stability condition θT0 and dimension
vector dT0 , and X ′ is the quiver GIT quotient of A1 = EndX (T1)op for stability
condition θT1 and dimension vector dT1 .

Proof. Corollary 5.2.4 tells us both that X is the quiver GIT quotient of A0 for
stability condition θT0 and dimension vector dT0 , and that X ′ is the quiver GIT
quotient of A′

0 = EndX ′(T ′
0)

op for stability condition θT ′
0
and dimension vector dT ′

0
.

We now relate A′
0, θT ′

0
and dT ′

0
to A1, θT1 and dT1 .

We note that by Theorem 5.3.1 A′
0

∼= A1, and we choose a presentation of A1 as
a quiverwith relationsmatching that of A′

0 in order to identify the stability condition
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and dimension vector matching θT ′
0
and dT ′

0
. In particular there is a decomposition

of T1 = ⊕n
i=0 Ei and T ′

0 = ⊕n
i=0 E

′
i such that π∗Ei ∼= π ′∗E ′

i . We note that
under this correspondence the vertices corresponding to OX and OX ′ correspond
by [37, Lemma 4.2.1] as π∗OX ∼= π ′∗OX ′ ∼= OR , and since π and π ′ are birational
rkX Ei = rkR π∗Ei = rkR π ′∗E ′

i = rkX ′ E ′
i . Hence A′

0
∼= A1, dT ′

0
= dT1 and

θT ′
0

= θT1 so X ′ is the quiver GIT quotient of A1 = EndX (T1)op for stability
condition θT1 and dimension vector dT1 . ��

5.4. Example: resolutions of rational singularities

We give a further application of Theorem 5.2.4 to the case of rational singularities,
extending and recapturing several well-known examples.

Definition 5.4.1. Let Y be a (possibly singular) variety. A smooth variety X with
a projective birational map π : X → Y that is bijective over the smooth locus of
Y is called a resolution of Y . A resolution, X , is a minimal resolution of Y if any
other resolution factors through it. In general minimal resolutions do not exist, but
they always exist for surfaces, [29, Corollary 27.3]. A resolution, X , is a crepant
resolution of Y if π∗ωY = ωX , where ωX and ωY are the canonical classes of X
and Y which we assume are normal. In general crepant resolutions do not exist. A
singularity, Y , is rational if for any resolution π : X → Y

Rπ∗OX ∼= OY .

If this holds for one resolution it holds for all resolutions, [38, Lemma 1].

Minimal resolutions of rational affine singularities π : X → Spec(R) satisfy
the condition Rπ∗OX ∼= OR by definition, and in the case of surface singularities
it is immediate that the dimensions of the fibres of π are ≤ 1. Hence the following
corollary is immediate from Corollary 5.2.4 (ii).

Corollary 5.4.2. Suppose that π : X → Spec(R) is the minimal resolution of a
rational surface singularity. Then there is a tilting bundle T0 on X as in Theo-
rem 1.3.1, and by Corollary 5.2.4 (ii) X is the fine moduli space of quiver repre-
sentations of A0 = EndX (T0)op for dimension vector dT0 and stability condition
θT0 with tautological bundle T

∨
0 .

This gives a moduli interpretation of minimal resolutions for all rational sur-
face singularities. In certain examples the tilting bundles and algebras are well-
understood and this corollary recovers previously known examples.

Example 5.4.3. (Kleinian Singularities) Kleinian singularities are quotient singu-
larities C2/G for G a non-trivial finite subgroup of SL2(C). These have crepant
resolutions, and in particular HilbG(C2) = X → C

2/G is a crepant resolution,
[22]. There is a tilting bundle T on X constructed by Kapranov and Vasserot [24],
which, if we take the multiplicity free version, matches the T0 of Theorem 1.3.1.
Then A = EndX (T )op is presentable as the McKay quiver with relations, the pre-
projective algebra, and G-Hilb(C2) is the quiver GIT quotient of the preprojective
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algebra for stability condition θT and dimension vector dT . The crepant resolutions
were previously constructed as hyper-Kähler quotients by Kronheimer [27], this
approach was interpreted as a GIT quotient construction by Cassens and Slodowy
[8], and as a quiver GIT quotient by Crawley-Boevey [15].

Example 5.4.4. (Surface Quotient Singularities) As an expansion of the previous
example we consider G a non-trivial, pseudo-reflection-free, finite subgroup of
GL2(C). Then C

2/G is a rational singularity with a minimal resolution π : G-
Hilb(C) = X → C

2/G by [21]. The variety X has the tilting bundle T0, and the
algebras A = EndX (T0)op can be presented as the path algebras of quivers with
relations, the reconstruction algebras, which are defined and explicitly calculated in
[39–42]. If G < SL2(C) then this example falls into the case of Kleinian singulari-
ties above, otherwise these fall into a classification in types A,D,T, I, and O, [40,
Section 5]. It was shown by explicit calculation in [39,41,42] that in types A and
D the minimal resolutions X are quiver GIT quotients of A with stability condition
θT0 and dimension vector dT0 . Corollary 5.4.2 recovers these cases without needing
to perform explicit calculations, and also includes the same result for the remaining
cases T, I, and O.

Corollary 5.4.5. Suppose G < GL2(C) is a finite, non-trivial, pseudo-reflection-
free group. Then the minimal resolution of the quotient singularity C2/G can be
constructed as the fine moduli space of the quiver representation moduli functor of
the corresponding reconstruction algebra for stability condition θT0 and dimension
vector dT0 , and the tautological bundle is the tilting bundle T∨

0 .

Proof. Wenote that in Theorem 1.3.1 T1 = T∨
0 and that EndX (T∨

0 ) ∼= EndX (T0)op.
Hence our definition of A = EndX (T0)op as the reconstruction algebramatches that
given in [39–42] as A = EndX (T1). Then the result is an immediate corollary of
Corollary 5.4.2. ��

Example 5.4.6. (Determinantal Singularities) We give one higher dimensional
example. Let R be the C-algebra C[X0, . . . Xl ,Y1, . . . Yl+1] subject to the rela-
tions generated by all two by two minors of the matrix

(
X0 X1 . . . Xi . . . Xl

Y1 Y2 . . . Yi+1 . . . Yl+1

)
.

ThenSpec(R) is a l+2 dimensional rational singularity and has an isolated singular-

ity at the origin. This has a resolution given by π : X = Tot
(⊕l

i=1OP1(−1)
)

→
Spec(R), the total space of the locally free sheaf

⊕l
i=1OP1(−1) mapping onto its

affinisation. The variety X has a tilting bundle T0 by Theorem 1.3.1, which, consid-
ering the bundle map f : X → P

1, we can identify as T0 = OX ⊕ f ∗OP1(−1). We
can then present A0 = EndX (T0)op as the following quiver with relations, (Q,�).
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0 1
...

...

a

c

kl+1

k1

ki

ki ak j = k jaki
ki ck j = k j cki
ak j c = ck ja

for 1 ≤ i, j ≤ l + 1

By Theorem 5.2.4 we know that X can be reconstructed as the quiver GIT
quotient of A0 with dimension vector dT0 = (1, 1) and stability condition θT0 =
(−1, 1). In this example we will explicitly verify this. A dimension dT0 represen-
tation is defined by assigning a value λi ∈ C to each ki and (α, γ ) ∈ C

2 to (a, c).
The relations are all automatically satisfied so RepdT0 (Q,�) = C

l+1 × C
2. Then

a representation is θT0 stable if it has no dimension (1, 0) submodules, so these
correspond to the subvariety with (α, γ ) ∈ C

2/(0, 0), hence Repd(Q,�)ss =
C
l+1×C

2/(0, 0). We then find that the corresponding quiver GIT quotient is given
by the action of C∗ on C

l+1 × C
2/(0, 0) with weights −1 on C

2/(0, 0) and 1 on
C
l+1. This produces the total bundle X .
When l = 2 this is the motivating example of the Atiyah flop given as the open-

ing example of [37] and A0 is the conifold quiver. In this case, by Theorem 5.3.2,
we can calculate the flop as the quiver GIT quotient of A1 ∼= Aop

0 .
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7. Appendix: comparing quiver moduli functors

Aswe noted in the introduction, our results are inspired by a theorem of Sekiya and Yamaura
that compares quiver GIT quotients for algebras related by tilting modules. This is done by
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constructing natural transformations between moduli functors which should have the quiver
GITquotients asmoduli spaces, however the quiver representationmoduli functor considered
in [34] is different to the one defined in Sect. 2.6 and does not always have the quiver GIT
quotient as a moduli space. In this appendix we outline the minimal changes required to
reinterpret the results of [34] for a correct moduli functor.
The moduli functor for quiver representations defined in [34, Section 4.1] is

F SY
A,d,θ :R → Sets

R �→ Sss
A,d,θ (R)

/ ∼SY

with the set Sss
A,d,θ

(R) defined as in Sect. 2.6 and the equivalence condition M1 ∼SY M2 if
M1 ⊗R R/m is S-equivalent to M2 ⊗R R/m for allm ∈ MaxSpec(R). This differs from the
functorF ss

A,d,θ
defined in Sect. 2.6 by using the equivalence∼SY rather than the equivalence

∼. However, as the following example shows, the equivalence ∼SY is too restrictive.

Example. Let A = C[x], d = 1, and θ = 0. Then A can be presented as the path
algebra of a quiver with a single vertex and single loop, and the quiver GIT quotient is
Spec(A). In particular, if this were a fine moduli space for F SY

A,d,θ
then F SY

A,d,θ
(C[ε]/ε2) ∼=

HomSch(SpecC[ε]/ε2, Spec A) ∼= C
2. However

{Ma,b := C[x, ε]/(x − a − bε) | a, b ∈ C} = Sss
A,d,θ (C[ε]/ε2)

and Ma,b ∼SY Mα,β ⇔ a = α so F SY
A,d,θ

(C[ε]/ε2) ∼= C. Hence the quiver GIT quotient

is not a fine moduli space for the functor F SY
A,d,θ

.

This indicates that∼SY is not the correct equivalence to use to define a quiver representation
moduli functor. Below we note a brief amendment that adapts the results of [34] to work
with the functor used in this paper instead.

Firstly, the moduli functor defined in [34, Section 4.1] should be replaced by the moduli
functor F ss

A,d,θ
defined in Sect. 2.6 and the statement that Mss

d,θ
is a coarse moduli space

can then be replaced by the statement that F ss
A,d,θ

is corepresented byMss
d,θ

and when d is
indivisible and θ generic this is a fine moduli space.

There are then minimal changes to make; the majority of the work in [34] concerns
only the sets Sss

A,d,θ
(R) so needs no alteration. The moduli functor enters the results via

[34, Proposition 4.5], which gives conditions for a family of functors FR : Sss
B,d ′,θ ′ (R) →

Sss
A,d,θ

(R) to define a natural transformation between quiver representation moduli functors
and shows that such a natural transformation induces a morphism of schemes between the
quiver GIT quotients. A natural transformation of functors induces a morphism between
corepresenting schemes by the universal property, and to adapt the conditions for a family to
induce a natural transformation for the moduli functor with equivalence ∼ rather than ∼SY
we need only add an additional condition to ensure that the natural transformation is well
defined under the equivalence ∼:

FR(M ⊗R L) ∼= FR(M) ⊗R L for any invertible R -module L and

M ∈ Sss
A,d,θ (R).

The only other results which involve the moduli functor are [34, Theorems 4.6 and
4.11] which check that the conditions of [34, Proposition 4.5] are satisfied by the specific
functors HomAR (T R, −) and T R ⊗AR (−) when T has a finite length resolution by projec-
tive A-modules, and [34, Theorem 4.20] which combines these two results in the case where
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T is a tilting module. It is easy to see that the functors HomAR (T R, −) and T R ⊗AR (−)

also satisfy the additional condition: this follows from [34, Lemmas 4.7 and 4.14] in the
case of an invertible R-module. As such the main result [34, Theorem 4.20] holds when the
moduli functor is taken to be F ss

A,d,θ
rather than F SY

A,d,θ
.

Proposition 7.1. ([34, Theorem 4.20]) Let B be an algebra with tilting module T . Define
A = EndB(T )op, suppose that both A and B are presented as path algebras of quivers with
relations, and let F ss

A,d,θ
and F ss

B,d ′,θ ′ denote quiver representation moduli functors on A

and B for some choice of dimension vectors d, d ′ and stability conditions θ, θ ′. Then if the
tilting equivalences

Db(B-mod) Db(A-mod)

RHomB (T,−)

T ⊗L

A (−)

restrict to a bijection betweenF ss
B,d ′,θ ′ (C) andF ss

A,d,θ
(C) thenF ss

B,d ′,θ ′ is naturally isomor-
phic toF ss

A,d,θ
. Hence by the universal property of corepresenting schemes the corresponding

quiver GIT quotients are isomorphic as schemes.
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