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ROTH–WARING–GOLDBACH

SAM CHOW

Abstract. We use Green’s transference principle to show that any subset
of the dth powers of primes with positive relative density contains nontriv-
ial solutions to a translation-invariant linear equation in d2 + 1 or more
variables, with explicit quantitative bounds.

1. Introduction

Waring’s problem [34] dates back to 1770, and asks how large s has to be in
terms of d to ensure that if n is a large positive integer then

xd1 + · · ·+ xds = n (1.1)

has a solution x ∈ Ns. The Hardy–Littlewood circle method has been a partic-
ularly effective approach to such problems, with the best results due to Wooley
— see [32, 36], as well as [8, §2] and [37]. The circle method has also been
used to solve the ternary Goldbach problem, and other problems concerning
the addition of primes [15, 33]. Since Hua [18], many authors have enjoyed
working on the Waring–Goldbach problem, which considers prime solutions
to (1.1) — see [20, 22, 23, 28, 29], for instance. The circle method has again
been the weapon of choice, with the main technical issue being the study of
exponential sums over primes [19].

Roth’s theorem [25] states that if A ⊂ [N ] contains no nontrivial three-
term arithmetic progressions then |A| ≪ N

log logN
. This bound has since been

improved, most recently by Bloom [5]. Such results are interesting because they
identify patterns in the set A without assuming anything about its structure.
Three-term arithmetic progressions pertain to the diophantine equation

x− 2y + z = 0,

and much of the arithmetic combinatorics literature surrounds linear equations.
Smith [26], Keil [21] and Henriot [16, 17] have considered higher degree systems
with the property that the solution set is invariant under translations and
dilations. This property allows the use of a density increment strategy, which
is the standard approach to Roth’s theorem.

In 2005, Green [14] famously solved a problem of Roth–Goldbach type for
three primes. He devised a means of transferring Roth-type results from the
integers to the primes. Using this mechanism, he showed that any subset of the
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primes with positive relative density contains nontrivial three-term arithmetic
progressions. Recently Browning and Prendiville [10] have shown Green’s
transference method to be versatile, establishing a theorem of Roth–Waring
type for five squares. They were able to transfer results from the integers to the
squares, thereby obtaining a Roth-type bound for a quadratic equation without
the property of translation-dilation invariance. The present article combines
aspects of Roth’s theorem, Waring’s problem and Goldbach problems.

Let c1, . . . , cs be nonzero integers such that

c1 + · · ·+ cs = 0. (1.2)

Let K be a union of k proper subspaces of the rational hyperplane

c1x1 + · · ·+ csxs = 0, (1.3)

each of which contains the diagonal

{(x, . . . , x) : x ∈ Q}. (1.4)

Let d > 2 be an integer, and let A be a set of primes in [X] := {1, 2, . . . , X}
such that the only solutions x ∈ As to

c1x
d
1 + · · ·+ csx

d
s = 0 (1.5)

have (xd1, . . . , x
d
s) ∈ K.

Theorem 1.1. Assume s > C(d), where C(2) = 5, C(3) = 9, C(4) = 15 and

C(d) = d2 + 1 (d > 5).

Then

|A| ≪c,k,ε
X

logX
(log log log logX)

2−s
d

+ε. (1.6)

Loosely, this says that any subset of relative density (log log log log)(2−s)/d+ε

within the primes contains nontrivial solutions to (1.5). One could choose

K =
⋃

i 6=j

{x ∈ Qs : xi = xj, c · x = 0},

for instance, which was the choice of Keil [21] and Henriot [16] in their work
on diagonal quadrics in dense variables. Thus, any positive density subset of
the primes contains a solution to (1.5) with pairwise distinct coordinates. The
reason for having a notion of trivial solutions is that, by (1.2), the diagonal
(1.4) lies within the solution set of (1.5).

The assumption (1.2) is necessary for Theorem 1.1. Indeed, if c1+· · ·+cs 6= 0,
then fix a prime ℓ that does not divide c1 + · · ·+ cs. The set

A = {p ∈ [X] : p prime, p ≡ 1 mod ℓ}

has positive relative density in the set of primes up to X, so if X is large then
(1.6) does not hold. Moreover, if x1, . . . , xs ∈ A then

c1x
d
1 + · · ·+ csx

d
s ≡ c1 + · · ·+ cs 6≡ 0 mod ℓ.

In particular, there are no solutions x ∈ As to (1.5). This construction shows
that Theorem 1.1 cannot hold without the condition (1.2).
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The strategy is to use Green’s transference technology [14] to transfer Roth-
type results from the integers to the set of dth powers of primes. The protag-
onist is a measure ν on some interval [N ], where N can be thought of as Xd.
Morally ν(n) should be dpd−1 log p, if n = pd for some prime p 6 X, and zero
otherwise. The measure ν has become known as a majorant; a majorant on
[N ] is a function ν : Z → [0,∞) with support in [N ]. Our majorant has the
additional normalisation property that

‖ν‖1 ∼ N. (1.7)

We refer the curious reader to the expository article [24] for more on the history
and terminology of the transference principle.

The point is that our set A can be lifted to [N ] and weighted by ν to
behave like a dense subset — not of PX := {prime p 6 X}, but of [N ].
Bloom’s theorem [4] then ensures that the ν-weighted solution count is large
in terms of the density — see [10, §2] and [24, §1.2]. Since A has only K-trivial
solutions to (1.5), in the sense that the only solutions x ∈ As to (1.5) have
(xd1, . . . , x

d
s) ∈ K, we also obtain an upper bound for this count. Combining

the two inequalities reaps a density bound of the shape (1.6).

Browning and Prendiville [10] have distilled the method into the following
ingredients.

(1) Density transfer. We shall lift our set A ⊂ PX to a set A ⊂ [N ] in the
support of our majorant ν. With

δ := |A|
logX

X
, (1.8)

we show that A has a ν-weighted density of at least δd in [N ]. In other
words, we establish the bound

∑

n∈A
ν(n) ≫ δdN. (1.9)

(2) Fourier decay. The majorant ν has Fourier decay of level θ if

‖ν̂ − 1̂[N ]‖∞ 6 θN.

We shall demonstrate a quantitatively o(1) level of Fourier decay.
(3) Restriction estimate. The majorant ν satisfies a restriction estimate at

exponent u if

sup
|φ|6ν

∫

T

|φ̂(α)|u dα ≪u ‖ν‖u1N
−1.

(4) K-trivial saving. For η > 0, the majorant ν saves η on K-trivial

solutions if

∑

x∈K

s∏

i=1

ν(xi) ≪k,s,d,η ‖ν‖
s
1N

−1−η.
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Of these, the most technically demanding are Fourier decay and the restriction
estimate, especially the latter. For both, it is necessary to have good pointwise
estimates for certain exponential sums over primes. These exponential sums
are given by the Fourier transform of our majorant. To ensure the necessary
Fourier decay, we use the W -trick [14], which circumvents technical difficulties
arising from the fact that the prime dth powers are not equidistributed in
congruence classes to small moduli.

The number of variables required in Theorem 1.1 is determined by the re-
striction estimate. Since we have good control on the growth of the weights
involved, we shall see that the restriction estimate can be derived from a mo-
ment estimate for a simpler exponential sum. This leads to the following
strengthening of Theorem 1.1.

Theorem 1.2. Let t > d be an integer such that the number of solutions

z ∈ [X]2t to

zd1 + · · ·+ zdt = zdt+1 + · · ·+ zd2t (1.10)

is Ot,d,ε(X
2t−d+ε), and assume s > 2t. Then we have (1.6).

To deduce Theorem 1.1, we apply Theorem 1.2 with the particular choice

t =

{
⌊d2/2⌋, if d 6= 4

7, if d = 4.
(1.11)

For this to be valid, we need to check that if t is given by (1.11) then the number
of solutions z ∈ [X]2t to (1.10) is indeed Ot,d,ε(X

2t−d+ε). For (d, t) = (2, 2), it is
known that (1.10) has O(X2 logX) solutions z ∈ [X]4; the paper [3] discusses
this and much more. For (d, t) = (3, 4) it is known that there are O(X5)
solutions — this follows, for instance, from the methods of [30].

For d > 5, one can show that if t is given by (1.11) then (1.10) has O(X2t−d)
solutions z ∈ [X]2t. This is a consequence of the main conjecture in Vino-
gradov’s mean value theorem, which was recently established by Bourgain,
Demeter and Guth [9]. Indeed, the equation (1.10) is a direct analogue of the
equation

zd1 + · · ·+ zd2t = n (n large and fixed) (1.12)

addressed in [35, Theorem 4.1]. That theorem, which was previously condi-
tional on [9], tells us that (1.12) has O(X2t−d) solutions z ∈ [X]2t, since

2t > d2 − 1 > d2 + 1−

⌊
log d

log 2

⌋
.

One can follow the proof of [35, Theorem 4.1] verbatim, to show that (1.10)
has O(X2t−d) solutions z ∈ [X]2t. The point is that when s > 1

2
d(d + 1), the

displayed equation in that proof tells us that we save Xd+1−ε on the (2s)th
moment on minor arcs, which is far more than the Xd+ε that we need to save;
the interpolation procedure in [35, §3] then secures a saving of Xd+ε on the
(2t)th moment.



ROTH–WARING–GOLDBACH 5

For (d, t) = (4, 7), we again follow the proof of [35, Theorem 4.1], interpolat-
ing on minor arcs between an eighth and a twentieth moment. Hua’s lemma
[31, Lemma 2.5] yields the eight moment bound O(X5+ε). On minor arcs, the
equation displayed in the proof of [35, Theorem 4.1] gives us the twentieth
moment bound O(X15+ε). The treatment of the major arcs is standard [31,
§4.4], and we conclude that the number N of solutions z ∈ [X]14 to (1.10)
satisfies

N ≪ (X5+ε)1/2(X15+ε)1/2 = X10+ε.

Theorem 1.2 also enables a septenary result for cubes, assuming the so-called
Hooley Riemann hypothesis (HRH); see [11, §6]. The statement below follows
easily from Theorem 1.2 and [11, Lemma 6.2].

Corollary 1.3. Assume HRH, d = 3 and s > 7. Then we have (1.6).

We now comment on the relevance of restriction theory [6, 7, 17, 27]. The
number of variables required to implement the circle method is often governed
by the exponent at which we know a sharp moment estimate for an expo-
nential sum. When the variables are restricted to lie in a set A, the relevant
exponential sums necessarily come with weights supported on A. The key in-
gredient for such problems, therefore, is a moment estimate for an exponential
sum with fairly arbitrary weights. Restriction theory concerns inequalities be-
tween norms of Fourier transforms, which is the same as bounding moments
of weighted exponential sums.

Finally, we feel it is appropriate to describe the difficulties involved in prov-
ing the restriction estimate, and to outline our strategy for doing so. Using our
hypothesis on t, step one is to deduce an ‘almost-sharp’ restriction estimate
at exponent 2t: this fails to be sharp by a factor of Xε (see Lemma 5.3). If
one could obtain a power saving on traditional minor arcs, for Weyl sums over
primes, then a standard epsilon-removal process would complete the proof (see
[6, §4]); the problem is that current technology only allows us to save a loga-
rithmic factor here (see Lemma 3.1). Our approach is to introduce a related
majorant µ, not involving primes. Step two is to establish a restriction in-
equality for µ at some intermediate exponent, sharp up to a logarithmic factor
(see Lemma 5.2). Step three is to bootstrap this to the full-strength restriction
estimate for our prime power majorant ν.

Note that for the specific value (1.11) of t, we know that the equation (1.10)
has O(X2t−d logX) solutions, at least when d 6= 4: recall the discussion follow-
ing (1.11). Thus, when d 6= 4, the restriction estimate relevant to Theorem 1.1
is substantially easier to prove — one deals with the logarithmic factor directly
using the methods in [6, §4]. Our more general approach reduces the number
of variables required when d = 4, enables Corollary 1.3, and also anticipates
future improvements in our understanding of the diophantine equation (1.10).

We organise thus. In §2, we construct our majorant ν, confirm (1.7), define
our lifted set A, and establish the density transfer inequality (1.9). In §3, we
use the circle method to study the Fourier transform ν̂. The analysis therein
allows us to establish Fourier decay in §4. In §5, we use Bourgain’s methods
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[6] to prove that ν satisfies the relevant restriction estimate. We check in §6
that ν saves 1/s on K-trivial solutions, before putting it all together to prove
Theorem 1.2 in §7.

We adopt the convention that ε denotes an arbitrarily small positive real
number, so its value may differ between instances. The symbol p is reserved
for primes. For x ∈ R and q ∈ N, put e(x) = e2πix and eq(x) = e2πix/q.
Boldface is used for vectors, for instance we abbreviate (x1, . . . , xn) to x, and
define |x| = max(|x1|, . . . , |xn|). For x ∈ R, let ‖x‖ be the distance from
x to the nearest integer. Let P denote the set of primes. For Y ∈ N, let
[Y ] = {1, 2, . . . , Y } and PY = P ∩ [Y ]. We make use of the offset logarithmic
integral Li(x) =

∫ x

2
dt

log t
.

We write T for the torus R/Z. We use Landau and Vinogradov notation:
for functions f and positive-valued functions g, write f ≪ g or f = O(g) if
there exists a constant C such that |f(x)| 6 Cg(x) for all x. If S is a set, we
denote the cardinality of S by |S| or #S. The pronumeral X denotes a positive
integer, sufficiently large in terms of constants such as d, c1, . . . , cs, k, σ, σ0 and
ε. Moreover, we put L = logX throughout. We write C1, C2, . . . for positive
constants that appear in the course of our proofs.

For r > 1 and f : Z → C, we define the Lr-norm by

‖f‖r =
(∑

n

|f(n)|r
)1/r

.

When ‖f‖1 <∞, we also define the Fourier transform of f by

f̂ : T → C,

f̂(α) =
∑

n

f(n)e(αn).

The author would like to thank his PhD advisor Trevor Wooley very much
for his guidance. Thanks also to Tim Browning and Sean Prendiville for fruitful
conversations. We are grateful to the anonymous referees for detailed reports
containing several helpful suggestions.

2. The W -trick

We begin by defining our majorant ν. As discussed, we apply the W -trick
[14] from the outset, so that we later obtain sufficient Fourier decay. Let

w =
1

2
log logX, W = 4d3

∏

p6w

p. (2.1)

Note the factor of d3 included in the definition (2.1) of W ; this special feature
comes into play during the case analysis in §4. Since X is large, it follows from
the prime number theorem that

W 6 e2w = logX = L. (2.2)
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For b ∈ [W ] with

− b ∈ (Z/WZ)×d := {zd : z ∈ (Z/WZ)×}, (2.3)

let

σ(b) = #{z ∈ [W ] : zd ≡ −b mod W}. (2.4)

We begin with the observation that σ(b) does not, in fact, depend on b. To
verify this it suffices, by the Chinese remainder theorem, to show that if r ∈ N
and pr‖W then

#{z mod pr : zd ≡ −b mod pr}

is the same for each b satisfying (2.3). If p 6= 2 then this follows easily using
a primitive root (see [1, Ch. 10]). For p = 2, we can instead use the fact
that any odd residue class is representable uniquely as (−1)u5v, with u mod 2
and v mod 2r−2 (see [13, Ch. 4]). We conclude that σ(b) is the same for each
b ∈ −(Z/WZ)×d.

To ensure density transfer, we choose b to maximise the νb-measure of Ab,
where

νb(n) =

{
ϕ(W )
Wσ(b)

dpd−1 log p, if Wn− b = pd with p ∈ PX

0, otherwise
(2.5)

and

Ab = {n ∈ Z : Wn− b = pd for some p ∈ A}. (2.6)

Let

N = ⌊Xd/W ⌋+ 1. (2.7)

Lemma 2.1 (Density transfer). Assume that δ > CX−1, for some large posi-

tive constant C. Then there exists b ∈ [W ] such that −b ∈ (Z/WZ)×d and
∑

n∈Ab

νb(n) ≫ δdN. (2.8)

Proof. We implicitly embed −(Z/WZ)×d into [W ], in the obvious way. We use
a standard averaging argument, noting first that

∑

b∈−(Z/WZ)×d

∑

n∈Ab

νb(n) =
∑

p∈A

ϕ(W )

Wσ(b)
dpd−1 log p−

∑

p∈A, p6w

ϕ(W )

Wσ(b)
dpd−1 log p.

By over-counting, and by recalling that σ(b) is the same for each b ∈ −(Z/WZ)×d,
we deduce that

| − (Z/WZ)×d| =
ϕ(W )

σ(b)
.

Thus, if b is chosen to maximise
∑

n∈Ab

νb(n), then

∑

n∈Ab

νb(n) > −1 +
∑

p∈A
W−1dpd−1 log p,

since X is large compared to d.
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A crude lower bound for
∑
p∈A

pd−1 log p is given by the sum of pd−1 log p over

the first |A| primes p. By (1.8) and the prime number theorem, we now have

∑

p∈A
pd−1 log p >

∑

p6(1−ε)δX

pd−1 log p≫ δdXd;

we have used the assumption that δ > CX−1. Hence
∑

n∈Ab

νb(n) ≫ δdXd/W ≫ δdN.

�

The assumption that δ > CX−1 is harmless in the context of Theorem
1.2, for if δ < CX−1 then we certainly have (1.6). We do not expect that
the density transfer inequality (2.8) is best possible, but sharpening the lower
bound to δN would not affect the eventual outcome, so we make do with our
crude inequality.

We henceforth fix b as in Lemma 2.1, and write

A = Ab, ν = νb, (2.9)

so that we have (1.9). Note that our majorant ν is supported on [N ], and that

‖ν‖∞ ≪ Xd−1L. (2.10)

Next, we verify (1.7). The proof is standard, but we nonetheless present it, as
it will prepare us well for the next section.

We compute:

‖ν‖1 =
∑

p6X:
pd≡−b mod W

ϕ(W )

Wσ(b)
dpd−1 log p

= σ(b)−1
∑

z∈[W ]:

zd≡−b mod W

ϕ(W )

W

∑

p6X:
p≡z mod W

dpd−1 log p. (2.11)

The inner sum is treated using Abel summation. For n ∈ [X], put

An =
∑

p6n:
p≡z mod W

1.

Note that since (b,W ) = 1 we must also have (z,W ) = 1. The bound (2.2)
allows us to apply Siegel–Walfisz [19, Lemma 7.14], so

An =
Li(n)

ϕ(W )
+O(Xe−C1

√
L).
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With g(n) = dnd−1 log n, we have

∑

p6X:
p≡z mod W

dpd−1 log p =
X∑

n=2

(An − An−1)g(n)

= AXg(X + 1) +
X∑

n=2

An(g(n)− g(n+ 1)).

The mean value theorem tells us that g(n) − g(n + 1) ≪ Xd−2L. In light of
(2.2) and (2.7), we now have

ϕ(W )
∑

p6X:
p≡z mod W

dpd−1 log p = Li(X)g(X + 1) +
X∑

n=2

Li(n) · (g(n)− g(n+ 1))

+O(Ne−C2

√
L).

As Li(2) = 0, we therefore have

ϕ(W )
∑

p6X:
p≡z mod W

dpd−1 log p =
X∑

n=3

g(n)

∫ n

n−1

dx

log x
+O(Ne−C2

√
L)

=
X∑

n=3

dnd−1

∫ n

n−1

log n

log x
dx+O(Ne−C2

√
L).

When 2 6 n− 1 < x < n, the mean value theorem tells us that

log n = log x+O(1/n).

Hence

ϕ(W )
∑

p6X:
p≡z mod W

dpd−1 log p =
∑

n6X

dnd−1 +O(Ne−C2

√
L) = Xd +O(Ne−C2

√
L).

Substituting this into (2.11), and recalling (2.4) and (2.7), yields

‖ν‖1 = Xd/W +O(Ne−C2

√
L) = N +O(Ne−C2

√
L),

confirming (1.7).

3. Exponential sums

We wish to investigate

ν̂(α) =
ϕ(W )

Wσ(b)

∑

p6X:
pd≡−b mod W

(dpd−1 log p)e(α(pd + b)/W )

=
ϕ(W )e(αb/W )

Wσ(b)

∑

z∈[W ]:

zd≡−b mod W

∑

p6X:
p≡z mod W

(dpd−1 log p)e(αpd/W ), (3.1)
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so we focus on the inner sum. We begin with a Hardy–Littlewood dissection,
dissecting T into major arcs M and minor arcs m. Let σ0 be a large positive
constant, and let σ be a much larger positive constant. For q ∈ N and a ∈ Z,
let M(q, a) be the set of α ∈ T such that |α − a/q| 6 LσX−d. Let M(q) be
the union of the sets M(q, a) over integers a such that (a, q) = 1, and let M
be the union of the sets M(q) over q 6 Lσ. Put m = T \M. By identifying T
with a unit interval, we may write

M(q) =

q−1⋃

a=0
(a,q)=1

M(q, a).

Lemma 3.1. If α ∈ m then ν̂(α) ≪ NL−σ0.

Proof. Let α ∈ m. By Dirichlet’s approximation theorem [31, Lemma 2.1],
we obtain relatively prime integers q and a such that 1 6 q 6 XdL−σ and
|qα − a| 6 LσX−d. Now |α − a/q| 6 LσX−d so, as α /∈ M, we must have
q > Lσ. Thus, with β = α− a/q, we have

|β| 6
Lσ

qXd
6 X−d.

Let z ∈ [W ] with zd ≡ −b mod W . By partial summation, we have
∑

p6X:
p≡z mod W

(dpd−1 log p)e(αpd/W ) =
∑

p6X:
p≡z mod W

e(βpd/W )(dpd−1 log p)eWq(ap
d)

= A⋄(X)f(X)−

∫ X

1

A⋄(t)f
′(t) dt,

where f(t) = e(βtd/W )dtd−1 log t and

A⋄(t) =
∑

p6t:
p≡z mod W

eWq(ap
d).

Note that f ′(t) ≪ Xd−2L, and that |A⋄(t)| 6 t. Thus,

∑

p6X:
p≡z mod W

(dpd−1 log p)e(αpd/W ) = A⋄(X)f(X)−

∫ X

XL−2σ0

A⋄(t)f
′(t) dt

+O(NL−σ0).

In view of (2.4) and (3.1), we now have

ν̂(α) ≪ NL−σ0 +Xd−1L sup
XL−2σ0<t6X

|A⋄(t)|.

It remains to estimate A⋄(t) when XL
−2σ0 < t 6 X. We use [19, Theorem 10]

for this. In order to apply this result, we need to control size of the denominator

q∗ :=
Wq

(a,Wq)
=

Wq

(a,W )
,
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in terms of t. Recalling (2.2), we have

Lσ < q 6 q∗ 6 Wq 6 XdL1−σ
6 tdL−σ/2.

As L≪ log t≪ L, we may thus invoke [19, Theorem 10], which tells us that

A⋄(t) ≪ XL−σ0−1W−1.

Hence ν̂(α) ≪ NL−σ0 . �

On major arcs we can decompose our Fourier transform into archimedean
and non-archimedean components. When (z,W ) = 1, let

S∗
q (a, z) =

∑

r mod q:
(z+Wr,Wq)=1

eq

(
a
(z +Wr)d + b

W

)
(3.2)

and

I(β) =

∫ N

0

e(βt) dt. (3.3)

Lemma 3.2. Let α ∈ M(q, a) with (a, q) = 1 and q 6 Lσ, and put

β = α− a/q ∈ [−LσX−d, LσX−d]. (3.4)

Then

ν̂(α) = I(β)σ(b)−1
∑

z∈[W ]:

zd≡−b mod W

ϕ(W )

ϕ(Wq)
S∗
q (a, z) +O(Ne−C4

√
L). (3.5)

Proof. With (3.1) in mind, we initially fix z ∈ [W ] with zd ≡ −b mod W , and
study ∑

p6X:
p≡z mod W

(dpd−1 log p)e(αpd/W ).

For n ∈ [X], let

Sn =
∑

p6n:
p≡z mod W

eWq(ap
d).

Then

Sn = O(Wq) +
∑

r mod q:
(z+Wr,Wq)=1

eWq(a(z +Wr)d)
∑

p6n:
p≡z+Wr mod Wq

1.

As n 6 X and Wq 6 Lσ+1, the inner sum is amenable to Siegel–Walfisz [19,
Lemma 7.14], and so

Sn =
Li(n)

ϕ(Wq)
Vq(a, z) +O(Xe−C3

√
L),

where
Vq(a, z) =

∑

r mod q:
(z+Wr,Wq)=1

eWq(a(z +Wr)d). (3.6)
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With f(t) = e(βtd/W )dtd−1 log t, we have

∑

p6X:
p≡z mod W

(dpd−1 log p)e(αpd/W ) =
X∑

n=2

(Sn − Sn−1)f(n)

= SXf(X + 1) +
X∑

n=2

Sn(f(n)− f(n+ 1)).

As |β| 6 LσX−d, the mean value theorem implies that

f(n)− f(n+ 1) ≪ Xd−2Lσ+1.

Hence∑

p6X:
p≡z mod W

(dpd−1 log p)e(αpd/W )

=
Vq(a, z)

ϕ(Wq)

[
Li(X)f(X + 1) +

X∑

n=2

Li(n) · (f(n)− f(n+ 1))
]
+O(Ne−C4

√
L).

As Li(2) = 0, we thus have
∑

p6X:
p≡z mod W

(dpd−1 log p)e(αpd/W )

=
Vq(a, z)

ϕ(Wq)

X∑

n=3

∫ n

n−1

f(n)

log x
dx+O(Ne−C4

√
L). (3.7)

When n− 1 < x < n, the mean value theorem reveals that

f(n) = f(x) +O(Xd−2Lσ+1),

and so
X∑

n=3

∫ n

n−1

f(n)

log x
dx =

∫ X

2

dxd−1e(βxd/W ) dx+O(Xd−1Lσ+1)

= WI(β) +O(Xd−1Lσ+1).

Substituting this into (3.7), and noting that |Vq(a, z)| 6 q 6 Lσ, gives
∑

p6X:
p≡z mod W

(dpd−1 log p)e(αpd/W ) =
W

ϕ(Wq)
Vq(a, z)I(β) +O(Ne−C4

√
L).

Substituting this into (3.1), and recalling (2.4), gives

ν̂(α) =
ϕ(W )e(αb/W )

ϕ(Wq)σ(b)

∑

z∈[W ]:

zd≡−b mod W

Vq(a, z)I(β) +O(Ne−C4

√
L).

From (3.2) and (3.6), we see that

eWq(ab)Vq(a, z) = S∗
q (a, z).
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Since

e(βb/W )I(β) =

∫ N

0

e(β(t+ b/W )) dt = I(β) +O(1),

we finally have (3.5). �

4. Fourier decay

In this section, we establish that ν has Fourier decay of level O(wε−1/2). In
other words, we prove that if α ∈ T then

ν̂(α)− 1̂[N ](α) ≪ε w
ε−1/2N. (4.1)

By a geometric series, we have

1̂[N ](α) =
∑

n6N

e(αn) ≪ ‖α‖−1. (4.2)

First suppose α ∈ m. By Dirichlet’s approximation theorem, we obtain
relatively prime integers q and a such that 1 6 q 6 Lσ and |qα− a| 6 L−σ.
As α /∈ M, we must have |α− a/q| > LσX−d, so

1̂[N ](α) ≪ ‖α‖−1 ≪
q

‖qα‖
≪ XdL−σ.

Recalling (2.2) and (2.7), we now have 1̂[N ](α) ≪ NL1−σ. Coupling this with
Lemma 3.1, using the triangle inequality, yields

ν̂(α)− 1̂[N ](α) ≪ NL1−σ +NL−σ0 .

Upon recalling the definition (2.1) of w, we conclude that (4.1) holds for α ∈ m.

Next we consider the case in which q = 1 and α ∈ M(q). In other words,

‖α‖ 6 LσX−d.

From (2.4) and (3.5), we see that

ν̂(α) = I(α) +O(Ne−C4

√
L).

By Euler–Maclaurin summation [31, Eq. (4.8)], we have

1̂[N ](α)− I(α) ≪ 1 +N‖α‖ ≪ 1 +NLσX−d ≪ Lσ.

The triangle inequality now gives

ν̂(α)− 1̂[N ](α) ≪ Ne−C4

√
L.

Recalling (2.1), we conclude that (4.1) holds whenever α ∈ M(1).

Finally, let α ∈ M(q, a) with 2 6 q 6 Lσ and (a, q) = 1, and put (3.4).
Since q > 2, we must have |a| > 1. Substituting

‖α‖ > q−1 − |β| > q−1 − LσX−d ≫ q−1

into (4.2) gives

1̂[N ](α) ≪ q ≪ Lσ. (4.3)
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By (2.4), (3.5) and the trivial estimate |I(β)| 6 N , we have

ν̂(α) ≪ Ne−C4

√
L +

N

ϕ(q)
sup
z

|S∗
q (a, z)|, (4.4)

where the supremum is over z ∈ [W ] such that (z,W ) = 1.

We now study the sums S∗
q (a, z). Let z ∈ [W ] with (z,W ) = 1. By (3.2),

we have

S∗
q (a, z) = eWq(a(z

d + b))S⋄
q (a, z), (4.5)

where

S⋄
q (a, z) =

∑

r mod q:
(z+Wr,Wq)=1

eq

(
a

d∑

ℓ=1

(
d

ℓ

)
W ℓ−1zd−ℓrℓ

)
.

As (z +Wr,W ) = (z,W ) = 1, we have the slightly simpler expression

S⋄
q (a, z) =

∑

r mod q:
(z+Wr,q)=1

eq

(
a

d∑

ℓ=1

(
d

ℓ

)
W ℓ−1zd−ℓrℓ

)
.

Let q = uv, where u is w-smooth and (v,W ) = 1. Since (u, v) = 1, a
standard calculation reveals that

S⋄
q (a, z) = S⋄

u(a1, z)S
⋄
v(a2, z), (4.6)

where a1 = av−1 ∈ (Z/uZ)× and a2 = au−1 ∈ (Z/vZ)× (see [31, Lemma 2.10]).
First consider

S⋄
u(a1, z) =

∑

r mod u:
(z+Wr,u)=1

eu

(
a1

d∑

ℓ=1

(
d

ℓ

)
W ℓ−1zd−ℓrℓ

)
.

As u is w-smooth and (z,W ) = 1, the condition (z+Wr, u) = 1 is always met,
and so

S⋄
u(a1, z) =

∑

r mod u

eu

(
a1

d∑

ℓ=1

(
d

ℓ

)
W ℓ−1zd−ℓrℓ

)
. (4.7)

We now borrow a strategy employed in [10, §5]. Let h = (u,W ), and put
u = hu′ and W = hW ′, noting that (u′,W ′) = 1. Writing r = r1 + u′r2, with
r1 mod u′ and r2 mod h, yields

S⋄
u(a1, z) =

∑

r1 mod u′

r2 mod h

ehu′

(
a1

d∑

ℓ=1

(
d

ℓ

)
(hW ′)ℓ−1zd−ℓ(r1 + u′r2)

ℓ
)

=
u′−1∑

r1=0

ehu′

(
a1

d∑

ℓ=1

(
d

ℓ

)
(hW ′)ℓ−1zd−ℓrℓ1

)

h−1∑

r2=0

eh

(
a1

d∑

ℓ=1

(
d

ℓ

)
(hW ′)ℓ−1zd−ℓ(u′)ℓ−1rℓ2

)
.
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The inner sum is ∑

r2 mod h

eh(da1z
d−1r2),

which vanishes unless h | da1z
d−1. As (h, a1) = (h, z) = 1, we conclude that

S⋄
u(a1, z) = 0, if (u,W ) ∤ d, (4.8)

while if h | d then

S⋄
u(a1, z) = h

u′−1∑

r1=0

eu

(
a1

d∑

ℓ=1

(
d

ℓ

)
W ℓ−1zd−ℓrℓ1

)
. (4.9)

Next consider

eWv(a2z
d)S⋄

v(a2, z) =
∑

r mod v:
(z+Wr,v)=1

ev

(
a2

(z +Wr)d

W

)
.

As (v,W ) = 1, we can change variables by t = zW−1 + r ∈ Z/vZ, which gives

eWv(a2z
d)S⋄

v(a2, z) =
∑

t mod v:
(t,v)=1

ev(a2W
d−1td).

Since (a2W
d−1, v) = 1, we may apply [19, Lemma 8.5], which tells us that

S⋄
v(a2, z) ≪ v1/2+ε ≪ q1/2+ε. (4.10)

As q > 2, we must have (i) u ∤ d, (ii) 1 6= q | d, or (iii) u | d and q > w.
Case: u ∤ d. Suppose for a contradiction that (u,W ) | d. Then for all primes
p we have

min(ordp(u), ordp(W )) 6 ordp(d).

Since ordp(W ) > ordp(d) whenever p 6 w, and since u is w-smooth, this tells
us that u | d, contradicting this case. Hence (u,W ) ∤ d, so by (4.8) we have
S⋄
u(a1, z) = 0. Therefore S∗

q (a, z) vanishes, by (4.5) and (4.6). Now (3.5) gives

ν̂(α) ≪ Ne−C4

√
L. (4.11)

Case: 1 6= q | d. In this case v = 1 and q = u. Further,

h = (u,W ) = (q,W ) = q,

since q | d | W . So u′ = 1, and from (4.9) we see that S⋄
q (a, z) = q. By (4.5),

we therefore have∑

z∈[W ]:

zd≡−b mod W

S∗
q (a, z) = q

∑

z∈[W ]:

zd≡−b mod W

eWq(a(z
d + b)).

We will find that this sum vanishes, which is the point of the W -trick. Write

z ≡ x+
W

d
y mod W

with x mod W/d and y mod d. Note that

zd ≡
(
x+

W

d
y
)d

≡ xd mod W,
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in view of the definition (2.1) of W . Hence

q−1
∑

z∈[W ]:

zd≡−b mod W

S∗
q (a, z) =

∑

x∈[W/d]:

xd≡−b mod W

eWq(a(x
d + b))

∑

y mod d

eq(ax
d−1y).

As (b,W ) = 1 and q | W , we have (x, q) = 1. Since q 6= 1 and (a, q) = 1, and
since q | d, we deduce that the inner sum vanishes. Therefore

∑

z∈[W ]:

zd≡−b mod W

S∗
q (a, z) = 0.

Substituting this into (3.5) yields (4.11).

Case: u | d and q > w. By (4.7), we have

|S⋄
u(a1, z)| 6 u 6 d≪ 1.

Now (4.5), (4.6) and (4.10) give

S∗
q (a, z) ≪ q1/2+ε. (4.12)

Substituting this into (4.4) yields

ν̂(α) ≪ Ne−C4

√
L + q2ε−1/2N ≪ w2ε−1/2N.

Recalling (2.1), we see that we have

ν̂(α) ≪ wε−1/2N

in all three cases. Coupling this with (4.3) yields (4.1). We conclude that the
majorant ν has Fourier decay of level O(wε−1/2).

Note that the inequality (4.12) is valid in all three cases. We record the
following estimate for later use.

Lemma 4.1. Let α ∈ M(q, a) with 1 6 q 6 Lσ and (a, q) = 1. Then

ν̂(α) ≪ qε−1/2 min{N, |α− a/q|−1}+Ne−C4

√
L. (4.13)

Proof. Put (3.4). By (2.4) and (3.5), we have

ν̂(α) ≪ ϕ(q)−1 sup
z

|I(β)S∗
q (a, z)|+Ne−C4

√
L.

The integral (3.3) admits the standard estimate

I(β) ≪ min{N, ‖β‖−1} = min{N, |α− a/q|−1},

so by (4.12) we have

ν̂(α) ≪ ϕ(q)−1q1/2+ε min{N, |α− a/q|−1}+Ne−C4

√
L

≪ q2ε−1/2 min{N, |α− a/q|−1}+Ne−C4

√
L.

�
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5. The restriction estimate

Let t > d be an integer such that the number of solutions z ∈ [X]2t to
(1.10) is Ot,d,ε(X

2t−d+ε). In this section, we show that ν satisfies a restriction
estimate at any exponent u > 2t. The following lemma suffices, by (1.7).

Lemma 5.1. Let φ : Z → C with |φ| 6 ν, and let u > 2t be a real number.

Then ∫

T

|φ̂(α)|u dα ≪u N
u−1.

We proceed in stages. The factor of Xε in the assumed bound on the number
of solutions to (1.10) is a formidable hurdle, as Lemma 3.1 fails to provide a
power saving on minor arcs. We shall reduce this to a logarithmic factor, at
some intermediate exponent v; here v is a real number with

2t < v < u. (5.1)

In order to obtain a power saving on minor arcs, we introduce thicker major
arcs, and use them to study the auxiliary majorant

µ(n) = σ(b)−1
∑

x∈[X]:

Wn−b=xd

dxd−1,

wherein we recall (2.4). The reader should rest assured that the Möbius func-
tion does not appear in this manuscript, and so µ is always defined as above.
Observe that

ν(n) 6 L · µ(n) (n ∈ Z).

We shall prove the following restriction estimate for µ, which will serve as a
platform from which to attack Lemma 5.1.

Lemma 5.2. Let ψ : Z → C with |ψ| 6 µ, and let v > 2t be a real number.

Then ∫

T

|ψ̂(α)|v dα ≪v N
v−1Lv.

Let us explain how this implies Lemma 5.1, following Bourgain’s strategy
[6, §4]. We apply Lemma 5.2 with ψ = L−1φ, and with v in the range (5.1),
obtaining ∫

T

|φ̂(α)|v dα ≪ N v−1L2v. (5.2)

In this section only, we denote by δ an arbitrary parameter in the range

0 < δ < 1,

for consistency with previous literature. This is not to be confused with the
density δ defined in (1.8).

Consider the large spectra

Rδ = {α ∈ T : |φ̂(α)| > δN},
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which may be regarded as level sets. Note from (1.7) that

‖φ̂‖∞ 6 ‖φ‖1 6 ‖ν‖1 < (1 + ε)N.

By a standard argument involving dyadic intervals, it suffices to show that if
ε0 > 0 then

meas(Rδ) ≪ε0

1

δv+ε0N
(5.3)

(see the discussion surrounding [10, Lemma 6.3]).

In our quest to establish (5.3), we begin by noting that if δ 6 L−2v/ε0 then
by (5.2) we have

(δN)vmeas(Rδ) 6

∫

T

|φ̂(α)|v dα ≪ N v−1L2v,

whereupon

meas(Rδ) ≪
L2v

δvN
≪

1

δv+ε0N
.

Thus, we may assume that

L−2v/ε0 < δ < 1. (5.4)

Let θ1, . . . , θR be N−1-spaced points in Rδ. As v > 2t > 2d, it suffices to
show that

R ≪ε0 δ
−2d−ε0 . (5.5)

Put

γ = d+ ε0/3. (5.6)

Routinely, as in [6, §4] and [10, §6], we have

δ2γNγR2 ≪
∑

16r,r′6R

|ν̂(θr − θr′)|
γ. (5.7)

This calculation may be found in [10, §6]; see also (5.18) and its subsequent
derivation.

Recall our Hardy–Littlewood dissection from §3. In this dissection, we now
specify that σ0 is large in terms of ε0 and u. Consider

θ = θr − θr′

in the summand on the right hand side of (5.7). By Lemma 3.1, the contri-
bution from θ ∈ m to the right hand side of (5.7) is O(R2NγL−σ0γ), with σ0
large. By (5.4), this is o(δ2γNγR2). Hence

δ2γNγR2 ≪
∑

16r,r′6R:
θ∈M

|ν̂(θr − θr′)|
γ. (5.8)

Let Q = C5 + δ−5, with C5 a large positive constant. By (4.13), the contri-
bution to the right hand side of (5.8) from denominators q > Q is bounded,
up to a constant, by

R2Nγ(Qε−γ/2 + e−C4γ
√
L).
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This is negligible compared to the left hand side of (5.8), by (5.4) and the fact
that C5 is large. We thus conclude from (4.13), (5.4) and (5.8) that

δ2γR2 ≪
∑

q6Q

∑

a mod q
(a,q)=1

∑

16r,r′6R

qε−γ/2

(1 +N |θr − θr′ − a/q|)γ
.

Hence
δ2γR2 ≪

∑

16r,r′6R

G(θr − θr′), (5.9)

where

G(α) =
∑

q6Q

q−1∑

a=0

qε−γ/2

(1 +N | sin(α− a/q)|)γ
.

The inequality (5.9) is very similar to [6, Eq. (4.16)], but with N2 replaced
by N . We have an additional factor of qε in the definition of G(α), and we
save a γth power in the denominator, whereas Bourgain saves only a (γ/2)nd
power. Bourgain’s argument carries through, and we obtain (5.5).

We have shown that Lemma 5.2 implies Lemma 5.1. To prove Lemma 5.2,
we begin by establishing the following ‘ε-sharp’ (2t)th moment bound.

Lemma 5.3. Let ψ : Z → C with |ψ| 6 µ. Then∫

T

|ψ̂(α)|2t dα ≪ N2t−1+ε.

Proof. By orthogonality, we have∫

T

|ψ̂(α)|2t dα =

∫

T

∑

n∈Z2t

ψ(n1) · · ·ψ(nt)ψ(nt+1) · · ·ψ(n2t)

e(α(n1 + · · ·+ nt − nt+1 − · · · − n2t)) dα

=
∑

n:
n1+···+nt=nt+1+···+n2t

ψ(n1) · · ·ψ(nt)ψ(nt+1) · · ·ψ(n2t).

The triangle inequality now gives∫

T

|ψ̂(α)|2t dα 6
∑

n:
n1+···+nt=nt+1+···+n2t

µ(n1) · · ·µ(n2t)

≪ X2t(d−1)
∑

z∈[X]2t:

zd
1
+···+zdt =zdt+1

+···+zd
2t

1.

Our hypothesis on t now yields∫

T

|ψ̂(α)|2t dα ≪ X2t(d−1)X2t−d+ε = X2td−d+ε

so, by (2.2) and (2.7), we finally have∫

T

|ψ̂(α)|2t dα ≪ (NL)2t−1Xε ≪ N2t−1+ε.
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We now prove Lemma 5.2, again using Bourgain’s strategy. We begin by
obtaining pointwise estimates for µ̂. The triangle inequality gives

σ(b)µ̂(θ) = e(θb/W )
∑

x6X:
xd≡−b mod W

dxd−1e(θxd/W )

≪

∣∣∣∣∣
∑

x6X:
xd≡−b mod W

xd−1e(θxd/W )

∣∣∣∣∣.

Hence, by partial summation, we obtain

µ̂(θ) ≪ Xd/2 +Xd−1 sup
X1/26P6X

|g(θ;P )|, (5.10)

where

g(θ;P ) = σ(b)−1
∑

x6P :
xd≡−b mod W

e(θxd/W ).

Moreover, by (2.4), we have

g(θ;P ) ≪ sup
z∈[W ]

∣∣∣∣∣
∑

x6P :
x≡z mod W

e(θxd/W )

∣∣∣∣∣. (5.11)

Writing x = Wy + z, we find that
∑

x6P :
x≡z mod W

e(θxd/W ) =
∑

y6P/W

e(W d−1θh(y)) +O(1), (5.12)

for some monic polynomial h of degree d.

Let P ∈ [X1/2, X] and z ∈ [W ]. The Weyl sums

g1(α) :=
∑

y6P/W

e(αh(y))

are very classical, and are discussed in many texts. For reasons of economy,
we employ Baker’s estimates [2], as packaged in [12, §2]. The bounds apply to
monic polynomials h of degree d, and are uniform in the other coefficients of h;
in particular, they are uniform in z. It is plain from the proof of [12, Lemma
2.3] that the quantity σ(d) therein may be replaced by 21−d. We conclude thus.

Lemma 5.4. If

|g1(α)| > (P/W )1−21−d+ε

then there exist relatively prime integers r > 0 and b such that

g1(α) ≪ rε−1/dPW−1(1 + (P/W )d|α− b/r|)−1/d.
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From Lemma 5.4, we deduce that if

|g1(W
d−1θ)| > X1−21−d+ε

then there exist relatively prime integers r > 0 and b such that

g1(W
d−1θ) ≪ rε−1/dXW−1(1 + (X/W )d|W d−1θ − b/r|)−1/d.

In this case we can put

a =
b

(b,W d−1)
, q =

rW d−1

(b,W d−1)
,

thus obtaining relatively prime integers q > 0 and a such that

g1(W
d−1θ) ≪ Xqε−1/d(1 +XdW−1|θ − a/q|)−1/d. (5.13)

Write
n = {θ ∈ T : |µ̂(θ)| 6 Xd−2−d

}. (5.14)

In light of (2.2) and (2.7), we can collect (5.10), (5.11), (5.12) and (5.13) to
obtain the following ‘major arc estimate’: if θ ∈ T\n then there exist relatively
prime integers q and a such that 0 6 a 6 q − 1 and

µ̂(θ) ≪ NLqε−1/d(1 +N |θ − a/q|)−1/d. (5.15)

Now that we have made the necessary preparations, we complete the proof
of Lemma 5.2. This parallels our proof that Lemma 5.1 follows from Lemma
5.2. Consider the large spectra

Rδ = {α ∈ T : |ψ̂(α)| > δNL},

noting from (2.2) and (2.7) the crude bound

‖ψ̂‖∞ 6 ‖ψ‖1 6 ‖µ‖1 6
∑

x6X

dxd−1 ∼ Xd
6 NL. (5.16)

Similarly to before, it suffices to show that if ε0 > 0 then we have

meas(Rδ) ≪ε0

1

δ2t+ε0N
.

This time, we can use Lemma 5.3 to reduce consideration to δ in the range

N−ε < δ < 1, (5.17)

wherein we recall our notational convention for ε.

Let θ1, . . . , θR be N−1-spaced points in Rδ. It now remains to show (5.5).
Again with (5.6), we will find that

δ2γNγLγR2 ≪
∑

16r,r′6R

|µ̂(θr − θr′)|
γ. (5.18)

We now verify this inequality by following the corresponding argument in the
proof of [10, Lemma 6.3].

Let an ∈ C be such that |an| 6 1 and ψ(n) = anµ(n), for n ∈ [N ]. Further-
more, let c1, . . . , cR ∈ C be such that |cr| = 1 and

crψ̂(θr) = |ψ̂(θr)| (1 6 r 6 R).
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It follows from the Cauchy–Schwarz inequality and (5.16) that

δ2N2L2R2
6

(∑

r∈[R]

|ψ̂(θr)|

)2

=

(∑

r∈[R]

cr
∑

n

anµ(n)e(nθr)

)2

6 ‖µ‖1
∑

n

µ(n)

∣∣∣∣∣
∑

r∈[R]

cre(nθr)

∣∣∣∣∣

2

≪ NL
∑

n

µ(n)

∣∣∣∣∣
∑

r∈[R]

cre(nθr)

∣∣∣∣∣

2

,

and so

δ2NLR2 ≪
∑

16r,r′6R

|µ̂(θr − θr′)|.

An application of Hölder’s inequality now harvests (5.18).

Consider θ = θr − θr′ in the summand on the right hand side of (5.18). By
(2.2), (2.7) and (5.14), the contribution from θ ∈ n to the right hand side of

(5.18) is O(R2Nγ(1+ε−2−d/d)). By (5.17), this is o(δ2γNγLγR2). Hence

δ2γNγLγR2 ≪
∑

16r,r′6R:
θ/∈n

|µ̂(θr − θr′)|
γ. (5.19)

Let Q = C6 + δ−3d, with C6 a large positive constant. By (5.15), the contri-
bution to the right hand side of (5.19) from denominators q > Q is bounded,
up to a constant, by

R2NγLγQε−γ/d.

This is negligible compared to the left hand side of (5.19), as C6 is large. We
thus conclude from (5.15) and (5.19) that

δ2γR2 ≪
∑

q6Q

∑

a mod q
(a,q)=1

∑

16r,r′6R

qε−γ/d

(1 +N |θr − θr′ − a/q|)γ/d
.

Hence

δ2γR2 ≪
∑

16r,r′6R

G2(θr − θr′), (5.20)

where

G2(α) =
∑

q6Q

q−1∑

a=0

qε−γ/d

(1 +N | sin(α− a/q)|)γ/d
.

The inequality (5.20) is very similar to [6, Eq. (4.16)], but with N2 replaced
by N , and with Q ∼ δ−3d rather than Q ∼ δ−5. The exponents differ but, since
γ > d, Bourgain’s argument carries through, and provides the desired bound
(5.5) for R. This completes the proof of Lemma 5.2. We have established all
of the results in this section. In particular, we know from Lemma 5.1 that ν
satisfies a restriction estimate at any exponent u > 2t.



ROTH–WARING–GOLDBACH 23

6. The K-trivial count

In this section we show that ν saves 1/s on K-trivial solutions. Let t ∈ N
be such that the number of solutions z ∈ [X]2t to (1.10) is Ot,d,ε(X

2t−d+ε), and
assume s > 2t.

Lemma 6.1. The number of x ∈ [X]s with (xd1, . . . , x
d
s) ∈ K is

Ok,s,d,ε(X
s−d−d/(s−1)+ε).

Proof. The set K lies in the union of k subspaces of the form

{y ∈ Qs : c · y = d · y = 0},

where d ∈ Qs is a fixed vector that is not proportional to c. Our task, therefore,
is to count solutions x ∈ [X]s to the system

c1x
d
1 + · · ·+ csx

d
s = d1x

d
1 + · · ·+ dsx

d
s = 0. (6.1)

From (6.1) we obtain

e1x
d
1 + · · ·+ es−1x

d
s−1 = 0,

where (e1, . . . , es−1) 6= 0, and by rescaling we may assume that

(e1, . . . , es−1) ∈ Zs−1.

Let u be the number of nonzero ei, and note that 1 6 u 6 s− 1. Without loss
of generality e1, . . . , eu ∈ Z \ {0} and eu+1 = . . . = es−1 = 0, so that

e1x
d
1 + · · ·+ eux

d
u = 0. (6.2)

By orthogonality, the number M of solutions (x1, . . . , xu) ∈ [X]u to (6.2) is
∫

T

∑

y∈[X]u

e
(
α
∑

i6u

eiy
d
i

)
dα =

∫

T

(∏

i6u

∑

yi6X

e(αeiy
d
i )
)
dα.

By Hölder’s inequality we now have, for some i ∈ [u],

M ≪

∫

T

|f(eiα)|
u dα,

where
f(θ) =

∑

x6X

e(θxd).

Note that ei 6= 0, since i ∈ [u]. By periodicity, a change of variables reveals
that ∫

T

|f(eiα)|
u dα =

∫

T

|f(α)|u dα.

Another application of Hölder’s inequality now gives

M ≪

∫

T

|f(α)|u dα ≪
(∫

T

|f(α)|s−1 dα
)u/(s−1)

.

As s− 1 > 2t and |f(α)| 6 X, we now have

M ≪
(
Xs−1−2t

∫

T

|f(α)|2t dα
)u/(s−1)

. (6.3)
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From (6.1) we have

cu+1x
d
u+1 + · · ·+ csx

d
s = −(c1x

d
1 + · · ·+ cux

d
u). (6.4)

Given integers x1, . . . , xu, the number of solutions (xu+1, . . . , xs) ∈ Zs−u to
(6.4) is, by orthogonality, at most

∫

T

∣∣∣∣∣
∑

z∈[X]s−u

e
(
α
∑

i6s−u

cu+iz
d
i

)∣∣∣∣∣ dα.

By following our calculation bounding M, we deduce that this quantity is
bounded by (

Xs−1−2t

∫

T

|f(α)|2t dα
)(s−u)/(s−1)

.

Coupling this information with (6.3), we find that the number N of solutions
x ∈ [X]s to (6.1) satisfies

N ≪
(
Xs−1−2t

∫

T

|f(α)|2t dα
)s/(s−1)

.

By orthogonality, the integral
∫
T
|f(α)|2t dα equals the number of solutions

z ∈ [X]2t to (1.10) which, by hypothesis, is O(X2t−d+ε). Hence

N ≪ (Xs−1−2tX2t−d+ε)s/(s−1) ≪ X(s−1−d)s/(s−1)+2ε = Xs−d−d/(s−1)+2ε,

which proves the lemma. �

Corollary 6.2. The majorant ν saves 1/s on K-trivial solutions.

Proof. By (1.7), our task is to establish the inequality

∑

y∈K

s∏

i=1

ν(yi) ≪k,s,d N
s−1−1/s.

By (2.5) and (2.10), we have

∑

y∈K

s∏

i=1

ν(yi) ≪ (Xd−1L)s
∑

x∈[X]s:

(xd
1
+b,...,xd

s+b)/W∈K

1.

By the definition of K, the condition (xd1 + b, . . . , xds + b)/W ∈ K is equivalent
to the condition

(xd1, . . . , x
d
s) ∈ K.

Now Lemma 6.1 yields

∑

y∈K

s∏

i=1

ν(yi) ≪ (Xd−1L)sXs−d−d/(s−1)+ε ≪ Xd(s−1)−d/(s−1)+2ε,

so by (2.2) and (2.7) we have

∑

y∈K

s∏

i=1

ν(yi) ≪ N s−1−1/(s−1)+ε ≪ N s−1−1/s.

�
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7. The density bound

Finally, we have all of the ingredients needed to prove Theorem 1.2. Recall
(2.9). Note that A has only K-trivial solutions to (1.3), in the sense that if
n ∈ As and c·n = 0 then n ∈ K. Indeed, suppose n1, . . . , ns ∈ A and c·n = 0.
Then, by (1.2) and (2.6), we have (1.5) with

xi = (Wni − b)1/d ∈ A (1 6 i 6 s).

Our hypothesis on A then tells us that

(Wn1 − b, . . . ,Wns − b) = (xd1, . . . , x
d
s) ∈ K.

From its construction, we see that K is invariant under translations and di-
lations, so we now have n ∈ K, which confirms that A has only K-trivial
solutions to (1.3).

We apply [10, Proposition 2.8] to the majorant ν, noting that A ⊆ supp(ν).
We showed in §4 that ν has Fourier decay of level O(wε−1/2). We showed in
§5 that ν satisfies a restriction estimate at the exponent s− 1/2. We showed
in §6 that ν saves 1/s on trivial solutions. Hence

∑

n∈A
ν(n) ≪

N

min{log log(w1/2−ε), logN}s−2−ε
,

so by (2.1) we have
∑

n∈A
ν(n) ≪ N(log log log logX)2+ε−s.

Coupling this with (1.9) yields

δdN ≪ N(log log log logX)2+ε−s,

and so δ ≪ (log log log logX)
2−s
d

+ε. By (1.8), this gives (1.6), completing the
proof of Theorem 1.2.
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