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Abstract 21 

 22 

Loess deposits have been described in the past for the upper section of Buca Dei Corvi succession 23 

(Central Italy). In this paper the deposits were re-analyzed to clarify the depositional environment 24 

and to attempt a paleoclimate reconstruction. Two radiocarbon dates on pedogenic carbonate 25 

constrain the ages to the Late Glacial, and are consistent with previous OSL dating of the top of the 26 

succession. The non-marine mollusc assemblage shows typical character of cold and dry climatic 27 

conditions, testified by strong oligotypical composition. Mineralogy and geochemistry of the 28 

sediments indicate the abundant presence of exotic quartz mineral which can be explained only by 29 

wind transport. Probably, wind transport was also responsible of deposition of carbonate which then 30 

dissolved and re-precipitated producing pedogenic concretions. Stable isotopes (13C/12C and 18O/16O 31 

ratios) of the concretions are consistent with a climate drier than present conditions, with an 32 

environment characterized by sparse vegetation.  33 

 34 
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 37 

1.Introduction 38 

In the review of loess deposits throughout Italy, Cremaschi (1990) did not report any finding south-39 

west of the Apennine chain. More recently, the possibility of the occurrence of phases of aeolian 40 

dust aggradation during cold periods in more southerly positions than previously reported has been 41 

re-assessed (e.g. Giraudi et al., 2013). Specifically for Tuscany, Sarti et al. (2005), reported 42 

evidence of loess deposition within the succession cropping out at the Gulf of Baratti (Fig. 1). In 43 

this paper we discuss the presence of loess deposits in the Buca dei Corvi section (Fig. 1), one of 44 

the most important Late Quaternary sections of the Tyrrhenian coast of Central Italy, and report 45 

new stratigraphic, chronological, paleontological and geochemical data. The “Buca dei Corvi” 46 

section (literally “the Hole of the Ravens” 43°24’47’’ N 10°24’12’’) is one of the best studied and 47 

most completely exposed Late Quaternary geological successions on the Tyrrhenian coast north of 48 

Rome, and contains a discontinuous record of the Upper Pleistocene sea level oscillations. In 49 

particular, the basal level is a rich marine fossil-bearing site, containing the so-called “warm guests” 50 

mollusc (Blanc, 1953, Ottman, 1954; Nisi et al., 2003), and it was one of the sections anchored with 51 

aminostratigraphy in the classic work of Hearty et al. (1986) on the Mediterranean raised beaches. 52 

On the basis of this work the basal fossiliferous coastal deposit was correlated with the Marine 53 

Isotope Stage 5e (MIS5e). Subsequently, Mauz (1999) obtained new age measurements, using the 54 

optically stimulated luminescence technique (OSL), for the basal layer (>108 ka) then  94±34 at 55 

intermediate depth, and finally 9.7± ka for the upper part of the section. As a result, the Buca dei 56 

Corvi is one of the few relatively well-dated coastal successions of Late Quaternary of the 57 

Tyrrhenian coast of Italy (e.g. Hearty et al., 1986, Mauz, 1999). Interestingly Ottman (1954) 58 

reported the presence of fine-grained “loess” deposits in the top part of the succession in the road 59 

cut of the Via Aurelia close to Castiglioncello village (Fig. 1). The presence of these deposits was 60 

not further investigated and they represent the target of this contribution. 61 

 62 

2.Geological and morphological setting  63 

 64 

The coastal area can be grossly divided in two main morphological units corresponding to Terrazzo 65 

I and Terrazzo II of Federici and Mazzanti (1995). The “Terrazzo I” corresponds to a polycyclic 66 

marine-continental terrace with the base related to marine transgression culminating in the high 67 

stand of MIS5e (Federici and Mazzanti, 1995; Zanchetta et al., 2006). The “Terrazzo II”, which 68 

locally is uplifted to ca. 125 m a.s.l., is again a polycyclic terrace, probably originating at the MIS11 69 



(Zanchetta et al., 2006). The Buca dei Corvi section is located at a narrow coastal inlet at the 70 

northern sector of the “Terrazzo I”, developed in a paleovalley (Ciulli, 2005, Fig. 1).  71 

The local substrate of the Buca dei Corvi section consists of Upper Jurassic serpentinite (Bartoletti 72 

et al., 1985). According to the revised stratigraphy proposed by Ciulli (2005) and shortly presented 73 

in this work, the Late Quaternary section can be divided into 11 different lithostratigraphic units 74 

(LU) (Fig. 2), which are, from the base to the top: 75 

 76 

LU1 (10-11.80 m) – Deposit composed by layers of grey and light brown coarse-grained sand, and 77 

very coarse-grained sands with marine mollusc shells and well-rounded pebbles. In this unit, Blanc 78 

(1953) and more recently Nisi et al. (2003) found fossil remains of warm molluscan faunas. 79 

According to Hearty et al. (1986) LU1 belongs to aminozone E, correlated with MIS5e. 80 

Consistently, Mauz’s (1999) OSL data yielded an age >108 ka. 81 

 82 

LU2 (11.80-12.10 m) – It is composed by very red massive-silty sand, with the base containing 83 

strongly altered bioclasts and litharenite fragments from LU1. It can be interpreted as a well 84 

developed paleosol (Zembo et al., in progress). 85 

 86 

LU3 (12.10-15.50 m) – Fine-yellow and light-brown cemented sand, with tangential cross 87 

stratification and convolute bedding and a pin-stripe lamination with foraminifer fragments 88 

(aeolian).  89 

 90 

LU4 (15.50-20.60 m) – Cemented sands characterized by low-angle cross and concave 91 

stratifications, with rounded pebbles and marine mollusc fragments. At the top of this unit there are 92 

evident carbonate concretions indicating sub-aerial exposure. The LU4 and LU3 have been dated by 93 

Mauz (1999) at 94±34 ka, which still indicates the late MIS5. 94 

 95 

LU5 (20.60-22.00 m) – Massive red silty sands with dispersed pebbles (palaeosol).  96 

 97 

LU6 (22.00-22.50 m) – Cemented sand level with subvertical carbonate concretions (aeolian 98 

deposits?). 99 

 100 

LU7 (22.50-25.00 m) – Clast-supported breccia with ophiolite clasts, faint stratification and fine-101 

grained matrix. 102 

 103 



LU8 (25.00-29.00 m) – A yellow-orange massive fine-silty to fine-sand deposit with small 104 

carbonate concretions and non-marine molluscs. The LU8 corresponds to the “loess” unit of 105 

Ottman’s (1954) stratigraphy. 106 

 107 

LU9 (29.00-29.50 m) – At the top of LU8 there is a darker brown massive silty-sand with non-108 

marine molluscs and rare small rounded clasts. 109 

 110 

LU10 (29.50-32.90 m) – Deposit with low-angle planar cross and concave stratification, formed by 111 

red silty-sand fining upward layers to very thick sandy layers, with oriented and concentrated 112 

pebbles at the base. The origin of this layer is not very clear. According to Ottman (1954) this 113 

represents reworking of loess. Mauz (1999) dated LU10 sediments with OSL at 9.7±2.4 ka and 114 

interpreted them as backshore deposits. 115 

 116 

LU11 (32.90-33.70 m) – Present soil. 117 

 118 

Overall, this stratigraphic reconstruction is generally consistent with that proposed by Ottman, 119 

(1954) and with the less detailed stratigraphy proposed by Mauz (1999). Fig. 2 shows the general 120 

stratigraphy with the OSL dates of Mauz (1999). The subjects of our discussion are LU9 and LU8.  121 

 122 

3.Material and methods 123 

 124 

Different levels were sampled over the LU8 and LU9 for lithological, geochemical, isotopic, 125 

paleontological and pedological investigations (Figs. 3, 4). Before sampling the surface was 126 

excavated for some tens of centimetres to reach the fresh deposit. 127 

 128 

3.1 Sedimentological and geochemical analyses 129 

 130 

Samples were collected discontinuously starting from ca. 25 m a.s.l., close to the base of the LU8, 131 

up to the very top of LU9 (Fig. 3). Subsamples of ca 0.5 kg were dried in an oven at 105 °C for 24 132 

hours and then powdered. The powders were analysed using X-ray diffraction (XRD) for 133 

determining the main mineralogical phases, and with the XRF method for major oxide composition 134 

and trace element contents. The carbonate content of the samples was determined through 135 

gasometry (with calibration to pure calcite) as described by Leone et al. (1988). Replicate analyses 136 

show a mean reproducibility ca. ±5% (usually over a set of three replications). Part of the remaining 137 



samples were sieved mechanically and fractions of >1 mm and >0.5 mm were inspected under a 138 

binocular microscope. From these fractions carbonate concretions were selected. Carbonate 139 

concretions were cleaned in an ultrasonic bath using deionized water, dried, powdered, checked for 140 

mineralogical composition using XRD, and then analysed for oxygen and carbon stable isotopes. 141 

The samples were analysed at SUERC (East Kilbride, Scotland) with an AP2003 mass spectrometer 142 

equipped with a separate acid injector system, after reaction with 105% H3PO4 under He 143 

atmosphere at 70 °C. The isotopic results are reported using the conventional δ‰-notation, relative 144 

to V-PDB; δ18O values of water are quoted relative to V-SMOW. Mean analytical reproducibility 145 

(±1σ) was ±0.08‰ and ±0.10‰ for carbon and oxygen, respectively. During the period of analyses, 146 

samples of internal laboratory standard (Carrara Marble) calibrated against NBS19 yielded a 147 

reproducibility (±1σ) of ±0.07‰ and ±0.08‰ for carbon and oxygen respectively. For each level 148 

three different concretions were analysed. Several modern pedogenic concretions were collected in 149 

the area and analysed for comparison with old carbonate concretions isotopic data. They consist of 150 

cylindrical carbonate concretion formed around roots (living and/or decaying, in the latter case roots 151 

were still recognisable and related to present soil). According to Klappa (1980), they can be called 152 

rhizoconcretions (Fig. 4B). Table 1 shows all the results for LU8-9, and Table 2 for the modern 153 

pedogenic carbonates.  154 

The entire succession is virtually devoid of significant organic matter remains and attempts for 155 

dating were focused on carbonate concretions. Concretions from two different layers were analysed 156 

by AMS 14C dating technique at Beta Analytic (Florida USA, Table 3). Samples were previously 157 

washed in a mixture of deionized water and H2O2 and then etched with diluted HCl for a few 158 

seconds, to eliminate possible superficial carbonate contamination. Calibration was performed using 159 

the INTCAL13 database (Reimer et al., 2013). Ages obtained on this kind of material may have 160 

some limitation because of possible contamination by old carbonates (difficult to detect even after 161 

careful selection), because of possible hard-water effects, and because of possible processes of 162 

dissolution/re-precipitation of CaCO3 (Budd et al., 2002). Moreover, carbonate concretions in loess 163 

are not necessarily synchronous with loess deposition, then representing a minimum age of the 164 

deposits (Gocke et al., 2011). 165 

 166 

3.2 Paleontological analyses 167 

Two samples of ca. 5 kg were selected for the fossil study in LU8 and LU9 respectively. They were 168 

dried in an oven for 2 days at 40 ºC, then the sediment was disaggregated using a very dilute 169 

solution of H2O2 and deionised water (ca. 5%). The material was then sieved using 2000, 1000, 500 170 

and 250 µm mesh screens. All the identifiable shells and fragments were picked out under a 171 



binocular microscope and counted using the convention of Sparks (1961) where every gastropod 172 

apex is recorded to give a minimum number of individuals present. As adopted in the earliest 173 

studies on the assemblages of terrestrial fossil mollusc of the Italian peninsula (e.g. Esu, 1981; 174 

Crispino and Esu, 1995; Di Vito et al., 1998; Zanchetta et al., 2004, 2006; Esu and Gianolla 2009), 175 

taxa were subdivided into ecological groups according to the scheme proposed by Ložek (1964; 176 

1986; 1990; 2001).  177 

 178 

3.3 Paleopedological analyses 179 

The weathering profile was described in the field following Sanesi (1977) and sampled for bulk and 180 

micromorphological analyses. The horizon nomenclature follows the terminology of the 181 

internationally accepted guidelines proposed by FAO (2006). A Munsell Soil Color Chart was used 182 

to determine soil colour on dry samples. For the micromorphological study, an undisturbed oriented 183 

block was collected in the LU9 with Kubiëna box (Fig. 3). The thin section was prepared by the 184 

Laboratorio per la Geologia–Piombino (Livorno, Italy) following the procedure of Murphy (1986). 185 

The thin section, 120x90 mm, was observed with a polarizing transmitted light microscope under 186 

plane (PPL) and cross polarized light (XPL) and described according Bullock et al. (1985) and 187 

Stoops (2003, 2007); moreover, some concepts of Brewer (1964) were also taken into account and 188 

the interpretation of micromorphological features was carried out following Stoops et al. (2010). 189 

The origin and palaeoenvironmental significance of the weathering profile is mainly based on 190 

micromorphological observations. 191 

 192 

4.Results 193 

 194 

4.1 Field and pedological observations 195 

The outcrop section here described, about 9 m thick, is representative of the topmost units (from 196 

LU8 to LU11, the present soil) of the Buca dei Corvi cliff–section, and was described along the 197 

S.S.1-Aurelia starting from at an elevation of about 25 m a.s.l. (Fig. 2,3). LU10 is ca. 250 cm of 198 

coastal eolianite to colluvial deposits on top weathered by a recent soil cover (LU11; Fig. 3 A,B). 199 

The LU10 deposits are constituted by planar and trough cross–laminated sands, with alternating fine 200 

and coarse laminae; subangular fine pebbles are locally concentrated at the base of the laminae, 201 

often showing an erosive basal surface. LU10 is separated from LU9 by a clear erosional surface. 202 

The LU9 is essentially sandy loam in texture, and consists of a massive and bioturbated calcic 203 

horizon Bk, about 60 cm thick, marked by dull yellowish brown to yellow orange matrix colours 204 

(Munsell color: 10YR 5/4–6/4; Fig. 3a), and a high frequency of coarsely-cemented pedogenic 205 



concretions (Munsell color: 2.5Y 7/4). Carbonate concentrations (millimetres in size) are dispersed 206 

throughout the matrix. This horizon is characterised by moderately developed prismatic to sub–207 

angular blocky structure with hard rupture resistance. The coarse (max= 5 mm) and angular rock 208 

fragments that do occur in this horizon are serpentinite clasts. Rare non–marine molluscs are also 209 

preserved. As reported above, the upper limit of the Bk horizon is abrupt and indicates an erosional 210 

surface truncating the topsoil horizons. The transition between the Bk horizon and the lower and 211 

thicker (350 cm) LU8 is clear. The features of LU8 are broadly similar to those of LU9 except for 212 

the pale-yellow matrix colour (Munsell color: 2.5Y 7/4–6/4) and for the scarcer presence of 213 

scattered clasts. This unit is characterised by a 2BCk horizon with well-developed angular and sub–214 

angular blocky structure passing downward into 2Ck horizon. Rhizoconcretions are present only in 215 

the 2BCk horizon. In comparison to the overlying Bk horizon (LU9), it has perceptible silt content, 216 

and is particularly indurated (transition to petrocalcic horizon). The deepest part of the LU8 can be 217 

considered as a transition to saprolite. The lower boundary of LU8 is not exposed at the base of the 218 

studied outcrop section. 219 

4.2 Micropedology 220 

In thin section, the Bk horizon (LU9) is apedal with close to single spaced porphyric patterns, 221 

locally chito-gefuric (Fig. 5A–H). The microstructure is controlled by voids (Fig. 4A). The porosity 222 

pattern is dominated by channels (root and faunal), and subordinately by chambers and simple 223 

packing voids; estimated total void space is 25-30%. The silty clay micromass has a dull yellowish 224 

brown colour (PPL) with some local yellowish and dark mottles (Fig. 5B), and cloudy to opaque 225 

appearance. The crystallitic b–fabric is combined with an undifferentiated b–fabric (Fig. 5E–H); 226 

locally mono– and granostriated b–fabrics occur. Well-sorted and dominantly subangular quartz 227 

grains dominate the coarse fraction (>10 µm); they are accompanied by feldspar (plagioclase), 228 

muscovite and rare biotite minerals, generally weakly weathered. Heavy minerals are rare. 229 

Compound mineral grains and rock fragments are frequent; they include medium– and coarse–sand 230 

sized polycrystalline quartz (Fig. 5E) and metamorphic rock fragments (serpentinite). A few 231 

mollusc fragments, partially weathered, were observed (Fig. 5A and C). Iron and iron–manganese 232 

oxides occur as impregnative features (segregation into the soil matrix, nodules, hypo- and 233 

quasicoatings). Typic and rare geodic nodules of different size (20 μm–1 mm in diameter; Fig. 5A, 234 

B) are orthic, dark brown, moderately to strongly impregnated, and generally irregular. Rare 235 

anorthic nodules have a sharp boundary with the soil matrix and dark brown colours (Fig. 5F); they 236 

are probably inherited by the erosion of a former weathered horizon or paleosol (Brewer, 1976). 237 

Calcite crystalline pedofeatures are segregated into frequent and large (160 µm to millimetre 238 

diameter) intrusive infillings (dense incomplete and loose discontinuous), distributed throughout the 239 



Bk horizon, and are juxtaposed with brownish redoximorphic features. They are composed by 240 

equigranular anhedral micritic crystals and are located mainly in channels and large voids. 241 

Crystalline micritic impregnative hypocoatings occur on voids (mainly on root channels, see 242 

examples in Durand et al. 2010) together with coatings of mineral grains, rock and mollusc 243 

fragments. Textural pedofeatures are rare ( 2%) and show various indications of degeneration 244 

(fragmentation, assimilation into the soil matrix). Three types of fragmented clay coatings (i.e. 245 

papules, according Brewer, 1976) were observed: the first two are dusty, non-laminated, red and 246 

orange yellowish in colour respectively (Fig. 5C, D, E and H). Their extinction patterns are virtually 247 

absent. The third pure clay coatings are yellow and show sharp extinction bands between crossed 248 

polarizers (XPL).  249 

 250 

4.3 Chemistry and mineralogy 251 

XRD and binocular microscope observations on different fractions, in agreement with 252 

micropedology and pedological observations, show that the samples collected from LU8 and LU9, 253 

are mainly composed by quartz, calcite and a minor amount of plagioclase, feldspar and micas. The 254 

calcite is mostly due to the presence of pedogenic carbonates. According to Retallack (1990) these 255 

carbonates can generally be called calcareous rhizoconcretions and calcareous glaebules (Brewer, 256 

1964) or nodules (Bullock et al., 1985). More specific, sometime confusing, literature exists on the 257 

description and genetic origin of pedogenetic carbonate in soil/loess profiles (e.g. Klappa, 1980; 258 

Barta, 2011 and reference therein). The most abundant pedogenic carbonate identified in LU8 and 259 

LU9 resembles “hypocoatings” (Fig. 4C, Barta, 2011). Hypocoatings indicate dry formation 260 

environments and have probably the same age as the dust accumulation (Barta, 2011) and their 261 

presence may refer to former patchy vegetation. The higher carbonate concentration could cement 262 

hypocoatings together, which will act like a nucleus for later precipitation producing larger 263 

concretions (i.e. nodules).  264 

Qualitatively, the observations under binocular microscope showed that the basal samples are 265 

coarser and contain arenitic clasts, rare eroded and partially altered small bioclast fragments of 266 

marine molluscs and forams, and a minor amount of ophiolite clasts derived by the dismantling of 267 

the substrate. These virtually disappear progressively upward and are completely substituted by a 268 

fine-grained matrix dominated by angular to poorly rounded quartz grains, with rare land snail 269 

shells, and with the carbonate fraction ranging from ca. 5 to 40 % (Fig. 6), with the lower values 270 

found in the LU9. 271 

The CaO and CaCO3 contents (Fig. 6) show a high degree of correlation (R2=0.99), which implies 272 

CaO is mainly related to calcite precipitation and not from the bedrock (e.g. anorthitic plagioclase 273 



and Ca-pyroxene). TiO2-MnO-Fe2O3 are highly correlated, as are Fe2O3 and transition metals (V, 274 

Cr, Co) (Fig. 6); because transition metals can be hosted in Fe-Mn-oxides, the transition metal 275 

concentration can indicate the relative abundance Fe-Mn-oxides. However, the positive correlation 276 

between Fe2O3 and MgO (R2= 0.92) can also indicate that these phases are probably related to the 277 

variation of the content in the substrate rocks. 278 

CaCO3-Sr are positively correlated (R2=0.91) indicating that Sr is principally hosted in the CaCO3 279 

concretions. Ba and Sr are instead negatively correlated (R2=0.86). This may be due to the different 280 

partition coefficients of these trace element related to CaCO3 for the progressive evolution of the 281 

solution into the soil, dissolving and precipitating carbonate (Morse and Bender 1990), but it can 282 

also be due to the fact that Ba could be mostly related to the mafic substrate. All these data indicate 283 

the presence of a local clastic source, and an “exotic” one related, for instance, to abundant quartz, 284 

and a secondary chemical deposition (pedogenic) related to CaCO3 precipitation. The carbonate can 285 

be directly precipitated by chemical weathering of Ca-rich minerals (e.g. White et al., 1999; Knauth 286 

et al., 2003) but in the absence of carbonate rocks it can be related to the arrival of externally-287 

sourced carbonate, transported by winds (the so-called primary carbonate of loess deposits, Pécsi, 288 

1990), which is then progressively dissolved/re-precipitated during pedogenetic processes. 289 

 290 

4.4 Stable isotopes 291 

 292 

Modern pedogenetic carbonates sampled in two localities along the Tuscan coast show a relatively 293 

narrow isotopic variability (Figs. 1, 4A, 6; Table 2). The δ13C ranges from -9.5 to -10.6 ‰ (mean -294 

10.2±0.3 ‰), whereas δ18O ranges from -3.7 to -4.9 ‰ (mean -4.4±0.4 ‰). However, the two sites 295 

show a small difference in their oxygen isotope values (ca. 0.7 ‰) possibly indicating small 296 

differences in soil water evaporation with an 18O-enrichment in the soil solution at Castiglioncello 297 

(e.g. Cerling and Quade, 1993; Zanchetta et al., 2000). Significant differences in the mean 298 

temperatures can be ruled out, as well as local differences of the isotopic composition of meteoric 299 

precipitation (Longinelli and Selmo, 2003), which is quite constant along the Tyrrhenian coast and 300 

around -5 ‰. The carbon stable isotope composition is in the range expected for soil supporting a 301 

C3 plant community (Cerling and Quade, 1993). Pedogenic carbonates in LU8 show a δ13C-δ18O 302 

positive correlation (R2=0.76), with δ13C ranging from -5.8 to -8.9 ‰ (mean -7.6 ±1.0 ‰) and δ18O 303 

ranging from -4.4 to -2.5‰ (mean -3.5±0.6 ‰). These figures indicate that important differences 304 

exist between modern pedogenic carbonates and those within LU 8 (Figs. 4A, 6). Moreover, along 305 

the section there is a clear and consistent variation, with higher δ13C and δ18O values between 28,8 306 

and 20 m a.s.l. 307 



 308 

4.5 The non-marine mollusc assemblage 309 

The non-marine mollusc assemblage is strongly oligotypical (e.g. Esu et al., 1989) and comprises 310 

only four species of Gastropod pulmonata: Pupilla muscorum (LINNEUS 1758), Vallonia pulchella 311 

(MÜLLER 1774), Candidula unifasciata (POIRET 1801) and Jamina quadridens (MÜLLER 312 

1774). Because no significant changes occurred between different samples, we consider the total of 313 

all samples. Number of specimens and percentages are reported in Table 4. 314 

 315 
ECOLOGICAL GROUP 4 – STEPPE 316 
 317 
This group includes the species which inhabit dry and sunny places like Candidula unifasciata and 318 

Jamina quadridens. According to Adam (1960), Magnin (1993), and Kerney and Cameron (1999) 319 

C. unifasciata is characteristic of dry, open rocky areas including dunes. It reaches 2000 m of 320 

altitude in the Alps (Kerney and Cameron, 1999). Studies on French populations report C. 321 

unifasciata as a “continental” species, avoiding typical Mediterranean climate (Pfenninger and 322 

Magnin, 2001; Pfenninger et al., 2003).  323 

 324 

Jaminia quadridens is a xerophilous species which lives in sunny and open lands, upon herbaceous 325 

and shrubby vegetation, especially on calcareous rocks. It is not very common in grassland with a 326 

principal distribution over the Mediterranean (Kerney and Cameron, 1999). 327 

 328 

This group is the most dominant, accounting for 80% of the assemblage, with C. unifasciata alone 329 

accounting for 79% of the specimens. 330 

 331 
ECOLOGICAL GROUP 5 – OPEN LANDS 332 
 333 
This group includes the species living in open lands but with different requirements in terms of 334 

humidity (Ložek, 1964, 1990). Vallonia pulchella is typical of open calcareous habitats, moist 335 

meadows, marshes sand dunes and occasionally dry grasslands and screes (Kerney and Cameron, 336 

1999). Pupilla muscorum is common in open spaces such as dry exposed calcareous places: screes, 337 

stones walls, grassland, dunes (Adam 1960; Kerney and Cameron, 1999). It is commonly believed 338 

to be resistant to low temperature and is frequently found in Pleistocene loess deposits of Central 339 

Europe (Ložek, 1964, 1990; Puisségur 1976; Esu et al. 1989).  340 

 341 

4.6 Chronology 342 



OSL ages from Mauz (1999) and our 14C dating are in agreement and indicate that this succession is 343 

probably of Late Glacial age, being constrained by the basal coastal marine layers grossly 344 

corresponding to late MIS5, and the age of the LU10 dated at 9.7±2.4 ka by luminescence methods. 345 

The two radiocarbon dates were obtained on carbonate concretions, appear in stratigraphic order 346 

and suggest an age which may overlap with Late Allerød and Younger Dryas (YD) (Table 3), or 347 

better with the GS -1 and GI-1 (Björck et al., 1998; Blockley et al., 2014). It is often assumed that 348 

pedogenic carbonates in loess successions are formed synchronously with loess deposition but 349 

radiocarbon dating of loess-paleosoil sequences have shown that this is not necessarily the case 350 

(Gocke et al., 2011). Therefore, in the later discussion is implicitly assumed that these radiocarbon 351 

dating represent a minimum age for the deposits. Then, stable isotope composition of pedogenic 352 

carbonates can give information at the time constrained by radiocarbon dating, but not necessarily 353 

coincident with the time of loess deposition. 354 

 355 

5.Discussion 356 

 357 

The succession has a substrate formed by ophiolitic rocks, and the presence of abundant quartz and 358 

white and black micas clearly indicates an external source of clastic material. One possible source 359 

for these minerals would be the arenitic Macigno Formation extensively outcropping along this 360 

sector of the coast (Lazzarotto et al., 1990). Given the local geomorphological conditions they can, 361 

however, only be supplied by wind transport. Figure 7 shows the comparison between composition 362 

of the Macigno Formation and LU9 and LU8 units for SiO2-Al2O3-CaO and Fe2O3-MnO-TiO2 363 

diagrams. It is evident they show significantly different compositions, representing the mixing of 364 

different sources, even although the Macigno Formation probably represents one of the sources 365 

forming the LU9 and LU8 units (e.g. Fig 7, SiO2-Al2O3-CaO diagram). A second source could have 366 

originated by the local dismantling of the littoral arenites from the lower unit part of Buca dei Corvi 367 

sections. LU4 is basically aeolian and the deposits of this unit could have outcropped well above the 368 

present sea level. Indeed in the lower part of the analysed section, fragments of this unit are present. 369 

However, tiny fragments of marine shells and clasts of the lower arenitic units are restricted only to 370 

the two lower samples and disappear upwards. Therefore, dust transportation by wind is a 371 

reasonable origin, even if the coarser fraction would have been supplied by local colluvium along 372 

the slope from the local mafic bedrock. 373 

 374 

In light of previous discussion, LU9-LU8 buried horizons reflect the land surface aggradation, 375 

which occurred in a Mediterranean coastal area through both eolian and colluvial deposition, 376 



progressively affected by pedogenic processes. The truncated upper limit indicates that soil-forming 377 

processes were followed by an erosional phase, in agreement with the nature of the upper LU10. 378 

The macromorphological and micromorphological analyses reveal that the main soil-forming 379 

processes were characterized by calcite migration, re-precipitation and accumulation, so that the 380 

LU9 horizon can be generically regarded as “Calcisol” (IUSS Working Group WRB, 2006). 381 

Calcium carbonate-rich horizons are common in highly calcareous parent materials and widespread 382 

in arid and semi-arid environments (IUSS Working Group WRB, 2006), indicating higher annual 383 

evaporation and low annual precipitation. On the Earth surface today calcic soils develop in areas 384 

receiving less than 1000 mm yr-1 precipitation, with the great majority in areas of less than 800 mm 385 

yr-1 precipitation (Buck and Mack, 1995, Retallack, 2005). In addition, the presence of 386 

redoximorphic features in the LU9 horizon points to a “short” period of water saturation (Lindbo et 387 

al., 2010) and suggests that precipitation may have been seasonal (Buck and Mack, 1995). 388 

Fragments of illuvial coatings occur in transported material or in soils with strong bioturbation 389 

(Kühn et al., 2010): in this light it is possible to state that clay illuviation can be regarded as an 390 

indicator of a former pedogenic phase taking place in a past environmental context, prior both to 391 

pedoturbation (responsible for fragmentation of clay coatings) and to development of calcic features 392 

(which are not compatible with clay dispersion required for clay illuviation, Kühn et al., 2010 - see 393 

also Zerboni et al., 2011 for a similar sequence of processes). 394 

The studied weathering horizon LU9 exhibits distinct evidence of relict soil processes that can be 395 

referred to climatic conditions very different from the present; hence it can be considered as a 396 

buried paleosol according to the Paleopedology Glossary by the INQUA Working Group on 397 

“Definitions used in Paleopedology” (1995). The fact that the substrate is not carbonate is a further 398 

argument for eolian deposition of carbonate, which is subsequently re-deposited along the soil 399 

profile. 400 

 401 

Non-marine faunal assemblage analysis complements the pedological observations. Overall, the 402 

association indicates the presence of an open and dry area, probably with climate conditions colder 403 

than the present day. This kind of association characterizes the cold and arid phases of the Middle to 404 

Late Pleistocene in Central and Southern Italy (Esu, 1981; Esu et al., 1989; Esu and Girotti, 1991; 405 

Di Vito et al., 1998; Marcolini et al., 2003; Sarti et al., 2005) and shares some common 406 

characteristics with cold and arid phases of loess deposition of Europe (e.g. Ložek, 1964, 1990, 407 

2001; Puisségur, 1976; Limondin-Lozouet and Antoine, 2001). However, the climatic indication is 408 

not as extreme as in Central Europe given the presence of more thermophilous Mediterranean 409 

elements like J. quadridens. 410 



Although we have to take into account that radiocarbon ages of pedogenic carbonates can be 411 

susceptible to several concerns such as incorporation of old carbonate and/or dissolution and 412 

carbonate redeposition, and the possible absence of contemporaneity of pedogenic carbonate with 413 

the deposit, the dates reported here are generally consistent with the hypothesis that most of LU9-8 414 

would have developed during the Late Glacial (Table 3). This is further constrained by the OSL 415 

date of 9.7±2.4 (Maunz, 1999) from LU10.  416 

Regional arboreal pollen reconstructions indicate during the Late Glacial a larger presence of 417 

vegetation typical of open spaces compared to the Holocene (Fig. 8, e.g. Ramrath et al., 2000; 418 

Brauer et al., 2007; Allen and Huntley, 2009).  419 

Qualitatively, the oxygen isotopic composition of pedogenic carbonate from LU8 and LU9 is 420 

generally 18O-enriched compared to present day-forming pedogenic carbonate in coastal Tuscany. 421 

As reported for other continental carbonates forming in different Mediterranean regions (e.g. 422 

Zanchetta et al., 2000, 2005; 2006, 2007a,b, 2015; Roberts et al., 2008; Regattieri et al., 2014, 2015, 423 

2016), high δ18O values can be associated to dry conditions. This can be related to several factors in 424 

combination, including increasing evaporation (e.g. Zanchetta et al., 1999; 2000, 2007a; Roberts et 425 

al., 2008), decrease in the amount of precipitation (Bard et al., 2002; Zanchetta et al., 2007a,b, 426 

2014; Regattieri et al., 2015, 2016) and/or changes in the provenance of the precipitation (Zanchetta 427 

et al., 2007a,b).  428 

Using Cerling’s (1984) data on modern soils, Jiamao et al. (1997) proposed the following 429 

relationship between δ18O values in water and soil carbonate, which incorporates the evaporative 430 

effect in soils (Zanchetta et al., 2000): 431 

 432 

δ18OH2O = -1.361 + 0.955 δ18OCaCO3 (R
2 = 0.98) 433 

 434 

Overall, modern soil carbonates of this study (data in Table 2) yield δ18OH2O of -5.6± 0.4 ‰, which 435 

is in very good agreement with modern rainfall δ18OH2O values observed along the Tyrrhenian coast 436 

of Italy (ca. -5.5 ‰; Longienelli and Selmo, 2003). Our results indicate that Jiamao’s equation is a 437 

robust predictor of δ18OH2O values also for the studied area. The δ18OH2O values for LU8 and LU9 438 

carbonates range from -3.9 ‰ to -5.5 ‰, with an average value of -4.7±0.6 ‰. On average, this 439 

implies meteoric waters enriched by ca. 1 ‰ compared to present day. Bard et al. (2002) reported 440 

for the area an amount effect in precipitation of ca. -2 ‰/100 mm/month for the oxygen isotopic 441 

composition, which in our case could indicate a decrease in precipitation of ca. 50 mm/month for 442 

the period. However, this estimate does not incorporate changes in the average δ18O values of the 443 

oceans due to variations in the ice volume during deglaciation (the so-called source effect). For 444 



example, according to Lambeck et al. (2014) the eustatic sea level for the considered time interval 445 

would have ranged from ca. -40 to ca. -80 m below present day sea level (Fig. 8, Lambeck et al., 446 

2014). Using a coefficient of 0.009 ‰/m-1 for the effect of eustatic sea level on the average δ18O 447 

value of oceans (Lambeck et al., 2014; Rohling et al., 2014; Shakun et al., 2015), a sea level stand 448 

between ca. -40 to -80 m would have promoted a change in the average δ18O value of the oceans of 449 

from +0.36 ‰ to +0.72 ‰. This may suggest that part of the isotopic enrichment could be due to 450 

changes in the isotopic composition of the oceans. We have also to consider that the Mediterranean 451 

is a “concentration” basin in which the isotopic composition of sea water is higher than the ocean 452 

average (Pierre, 1999; Emeis et al., 2000). However, isotopic data (Figs. 6,8), are not consistent 453 

with a significant source effect. This would be expected to be more pronounced for the lower (and 454 

so older) samples, which is not the case. Therefore, δ18O values are most likely indicative of drier 455 

conditions, characterised by higher δ18O in meteoric precipitation probably related to decrease in 456 

the amount of precipitation. 457 

 458 

The average value of the δ13C of modern pedogenic carbonate is -10.2±0.3 ‰, significantly lower 459 

than Late Glacial pedogenic carbonate (-7.6±1.0 ‰). This difference can be due to different factors. 460 

Indeed, the carbon isotope composition of pedogenic carbonates ultimately derives from the 461 

isotopic composition of soil CO2, which depends on soil respiration rate and the amount and 462 

typology of vegetation (Cerling and Quade, 1993). Therefore, higher values are consistent with 463 

lower respiration rate and/or changes in the proportion of C3/C4 and/or simple changes in ratio 464 

between shrubs/herbs/trees, with trees having usually the lower isotopic composition (e.g. Masi et 465 

al., 2013a,b). Lower respiration rate and increase in C4 are both indicators of drier conditions (Raich 466 

et al. 1992), even though C4 are also adapted to higher temperature (Deines, 1980). 467 

According to Wang and Zheng (1989) the proportion of C4 plants (x) can be calculated using the 468 

equation:  469 

 x = (11.9 + δ13CCaCO3)/14 470 

According to this calculation, the Late Glacial would be characterized by larger proportion of C4 471 

vegetation (ca. 30%) compared to present day (ca. 11%). For instance, this could be due to the 472 

increase of grass and sedge, which include species having C4 photosynthesis in particular in 473 

Amaranthaceae and Chenopodiaceae (e.g. Ehleringer et al., 1997). 474 

However, these estimations are based on the assumption that C3 plants have a mean carbon isotopic 475 

value of ca. -27 ‰, whereas in the Mediterranean C4 vegetation is rare and restricted to some 476 

specific environments (Colonese et al., 2014), and carbon isotopic composition of C3 vegetation in 477 



drier environments can be significantly higher than the average (e.g. Kohn , 2010; Diefendorf et al., 478 

2010; Masi et al., 2013a,b). In the Mediterranean, significant differences are observed in water-use 479 

efficiency which varies largely between evergreen and deciduous species (e.g. Valentini et al., 480 

1992) and also seasonally (Filella and Peñuelas, 2003). So the estimation of the amount of C4 is 481 

probably too high. Breecker et al. (2009) observed that pedogenic carbonates in dry environments 482 

form during warm, dry periods and do not record mean growing season conditions as typically 483 

assumed. Therefore, pedogenic carbonate provides a C4-biased record of paleovegetation, especially 484 

in dry soils. Accordingly, higher values recorded in the LU8 and LU9 units compared to present 485 

pedogenic carbonates reasonably indicate soil conditions characterized by lower respiration rate in a 486 

drier climate (e.g. Raich et al. 1992), with vegetation composition different from present conditions. 487 

However, a comment is necessary for the high linear correlation observed between δ13C-δ18O in 488 

Late Pleistocene carbonates (Fig. 4, R2=0.76). If also modern data are included the correlation still 489 

appears high (R2=0.71). This high correlation can be explained in different ways. Considering that 490 

the regression line has equation for LU8 and LU9: 491 

 492 

δ13C=0.506 δ18O + 0.323 493 

 494 

this means that the regression line passes close to the origin of the axes with an isotopic 495 

composition resembling that of marine carbonate (e.g. Land, 1989). Therefore, a mixing with a 496 

clastic marine component could be possible. Assuming a simple mixing model with two end 497 

members: the isotopic composition of marine carbonate (close to 0‰) and the modern “pure” 498 

pedogenic carbonate composition, the highest values of late Pleistocene pedogenic carbonate would 499 

be produced by a mixing ratio of ca. 50% with marine carbonate. Different values would be 500 

obtained using a higher isotopic composition of the clastic marine component (Land, 1989). In any 501 

case, if the clastic contamination were so high, any calculation of past vegetation and/or isotopic 502 

composition of meteoric water would be unreliable. However, this scenario is unlikely. Indeed, 503 

there is no evidence of so large a clastic carbonate amount in the sediment: very rare marine 504 

fragments in the >1 mm fraction are observed only at the base of the outcrop. No other clastic 505 

carbonate was detected. Moreover, if fragments of marine shells were the source of contamination, 506 

this would be detected by the presence of traces of aragonite in the XRD, which is not the case; and 507 

finally, petrographic observation did not support large amounts of clastic carbonate. 508 

A more likely explanation for the isotopic covariation is related to the climatic effect. For instance it 509 

has been observed in speleothems of central Italy that δ13C-δ18O positive correlation can be driven 510 

by climatic effects (e.g. Drysdale et al., 2004; Zanchetta et al., 2007a,b, 2015; Regattieri et al., 511 



2014a,b). Increasing carbonate δ13C and δ18O values are related to decrease in precipitation and 512 

decrease of CO2 production in soils for the drier conditions. Moreover, low respiration rate in drier 513 

environments can favor a deeper penetration of atmospheric CO2 within the top soil (Cerling and 514 

Quade, 1993). Low precipitation, as discussed earlier, can produce organic matter with higher δ13C 515 

values, as well as higher δ13C values of respired CO2. A positive correlation, even if mediated by 516 

other factors, has also been observed in lacustrine carbonate of the same region and interpreted as 517 

changes in soil productivity during drier and colder intervals accompanied by higher δ18O values of 518 

water for changing composition of meteoric precipitation and increasing evaporation (Regattieri et 519 

al., 2015, 2016; Giaccio et al., 2015). 520 

Despite potential limitation of accuracy and precision related to the material dated, the available 521 

chronology consistently indicates that LU8 and LU9 may have formed during the Late Glacial, in 522 

drier conditions compared to present day. For this period pollen data from Monticchio (Brauer et 523 

al., 2007), oxygen isotope composition from Corchia cave (Zanchetta et al., 2007b; Regattieri et al., 524 

2014) and sea surface temperature from ODP976 (Martrat et al., 2014), suggest more drier and 525 

colder condition than in the Holocene (Fig. 7). These data are compared to the NGRIP record as 526 

extra-regional reference data. Over the central Apennine area loess deposition is interrupted with 527 

the onset of the Bølling-Allerød time interval, as constrained by tephra layers (Giraudi et al., 2013, 528 

Fig. 8). We can speculate that the possibility of dust accumulation on the coastal area for a longer 529 

period compared to the Apennine is probably related to the fact that the continental platform was 530 

still exposed by the low sea level stand (Fig. 8), representing the deflation area for the sediment, in 531 

a context where vegetation and soil had not completely recovered.  532 

 533 

6.Summary and Conclusions 534 

 535 

Lithological, pedological and geochemical data support the presence of pedogenically altered loess 536 

deposits at the top part of the Buca dei Corvi succession as reported by Ottman (1953). These 537 

deposits were partially colluviated and mixed with fragments originating from the local substratum. 538 

Chronologically (at least for the exposed part) they likely have accumulated during the Late Glacial 539 

and/or experienced pedogenic alteration during this period. Non-marine mollusc assemblage, 540 

pedogenic features and stable isotopes of pedogenic carbonates indicate environmental conditions 541 

drier than the present day and characterized by sparse vegetation. Using the δ18O values of modern 542 

pedogenic carbonates for calculating present day δ18O values of meteoric precipitation with the 543 

Jiamao et al. (1991) equation, yielded values consistent with measured local meteoric precipitation, 544 

indicating that this equation is robust also for the area and useful for reconstructing quantitatively 545 



past isotopic composition of rainfall. Carbon isotopic composition indicates a higher proportion of 546 

C4 plants (possibly related to an increase of herbs in vegetation) and/or decrease in soil respiration 547 

rate. An increase in the isotopic composition of C3 vegetation component due to more hydrological 548 

stress could also have produced 13C-enriched soil organic matter and then a more 13C-enriched soil 549 

CO2 (Deines, 1980). 550 

Most of the raised-marine terraces over the Tyrrhenian coast have been simply utilized for 551 

reconstruction of relative high stand paleosealevel and/or tectonic movement with respect to a 552 

certain expected eustatic sea level (e.g. Mauz, 1999; Nisi et al., 2003). This work has demonstrated 553 

that more information can be obtained for characterizing low stand conditions and climate 554 

deterioration, and the terraces can be useful archives for reconstruction of coastal evolution. 555 

Moreover, this work suggests that distribution of loess deposits can be extended in the future to the 556 

Tyrrhenian coast, in a more southerly position than previously documented. 557 
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Figure and table captions 945 
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 947 

Figure 1. Location Map 948 

 949 

Figure 2. Stratigraphy of the Buca dei Corvi section (after Ciulli, 2005). Ages are reported as ka. 950 

See text for detailed description. 951 

 952 

Figure 3. Upper section of Buca dei Corvi section. (A) Panoramic view of the top of the Buca dei 953 

Corvi–section, and the relationship between the lithostratigraphic units and the major bounding 954 

surfaces. (B) Measured sedimentological log (modified from Ciulli, 2007). See Figure 1 for 955 

location. 956 

 957 

Figure 4 (A) δ18O vs δ13C of pedogenic carbonate from Buca dei Corvi section and modern 958 

pedogenic carbonate from coastal Tuscany. For LU8 and LU9 hypocoatings and nodules are 959 

reported separately; (B) Concretion from modern soil; (C) Hypocoatings from LU9. Black bars in 960 

(B) and (C) correspond to 1 cm. 961 

 962 

Figure 5. LU9 weathering profile, horizon BCk, thin section. (A) Channel microstructure associated 963 

to a high porosity; orthic nodules (red arrows) and mollusc fragment (black arrow); Ch=chamber; 964 

Cl=channelPPL. (B) Close to single spaced porphyric c/f related distribution with dominant coarse 965 

quartz grains embedded in a yellowish brown to brown micromass; strongly impregnated typic 966 

nodule (white arrow)PPL. (C) Ferruginous internal hypocoating on a shell fragment and dark 967 

brown Fe-Mn segregations into the matrix; isolated reddish fragment of clay coating incorporated in 968 

the groundmass (red arrow)PPL. (D) Different generations of fragmented clay coatings 969 

incorporated in the groundmass: pure clay coatings are yellow (black arrows) while dusty clay 970 

coatings are reddish (red arrow)PPL. (E) Unweathered quartz grains, rock fragments and poorly 971 

weathered primary mineral grains dominate the coarse particle size fraction; dense incomplete 972 

calcite infillings locally impregnated by brownish ferruginous segregationsXPL. (F) Complex c/f 973 

related distribution: close to single spaced porphyric, locally chito–gefuric; strongly impregnated, 974 

typic anorthic nodule (white arrow) and shell fragment (red arrow)XPL. (G) Loose discontinuous 975 

calcite crystalline pedofeatures within a large channel; crystallitic b-fabric is common in 976 



correspondence with large concentrations of calcite in the fine fractionXPL. (H) Fe-Mn 977 

impregnations on dense incomplete calcite infillings, up to 4 mm thick; fragment of reddish dusty 978 

clay coatings (white arrow)XPL. 979 

 980 

Figure 6. Geochemical and isotopic data from Buca dei Corvi section 981 

 982 

Figure 7. Comparison between chemical composition of Macigno Formation and LU8 and LU9 983 

deposits from Buca dei Corvi section. Macigno data from Lezzerini et al. (2008) and Gioncada et al. 984 

(2011). 985 

 986 

Figure 8. From the top to the bottom: Relative sea level (Lambeck et al., 2014); δ18O of stalagmite 987 

CC26 from Corchia Cave (Zanchetta et al., 2007b); δ18O from NGRIP ice core (NGRIP members, 988 

2004); Monticchio pollen data (Brauer et al., 2007); SST from core ODP 976 (Martrat et al., 2014).  989 

Radiocarbon dating, this work; OSL dating from Mauz (1999); chronology of the end of deposition 990 

of loess in Apennine (Giraudi et al., 2013). 991 

 992 

Table 1. Stable isotope results from hypocoatings (°) and nodules (*) from Aurelia section (LU9 993 

and LU8). Note that there are not systematic differences between the different kinds of carbonate 994 

concretions. 995 

 996 

Table 2. Stable isotope composition of modern rhizoconcretions collected at Baratti and 997 

Castiglioncello (see Fig. 1). Concretions were collected along living roots in the modern soils. 998 

 999 

Table 3. Radiocarbon dating of concretions along LU8 and LU9. Calibration was performed using 1000 

INTCAL13 database (Reimer et al., 2013). 1001 

 1002 

Table 4. Via Aurelia section non-marine mollusc species grouped by ecological classes; number of 1003 

specimens and their percentages are indicated. Ecological classes: 4 - steppe species; 5 - open land 1004 

species. 1005 



 

 

Highlights 

 

A multiproxy environment reconstruction from Late Glacial deposit of Central Italy is proposed; 

Pedogenic features, land snail association and stable isotopes indicate dry climate condition; 

δ18
O values of pedogenic carbonates indicates that δ18

O of precipitation was higher than present. 

Highlights (for review)



Sample Depth (m a.s.l.)1 δ13C ‰ (V-PDB) 18O ‰ (V-PDB) 

BCA10/1° 28.30 -8.93 -3.88 

BCA10/2° “ -8.60 -3.96 

BCA10/3* “ -8.27 -3.82 

BCA9/1° 28.00 -8.39 -3.52 

BCA9/2° “ -8.68 -3.40 

BCA9/3* “ -7.34 -3.21 

BCA8/1° 27.7 -6.52 -2.85 

BCA8/2° “ -5.82 -2.51 

BCA8/3° “ -6.52 -2.77 

BCA7/1° 27.4 -6.51 -2.99 

BCA7/2° “ -6.69 -2.95 

BCA7/3* “ -6.26 -2.75 

BCA6/1° 27,10 -6.65 -3.04 

BCA6/2° “ -6.52 -3.15 

BCA6/3* “ -6.00 -2.75 

BCA5/1° 26.90 -6.92 -3.46 

BCA5/2° “ -7.17 -3.16 

BCA5/3* “ -6.87 -3.46 

BCA4/1° 26.60 -7.62 -3.74 

BCA4/2° “ -8.54 -4.03 

BCA4/3* “ -8.55 -4.78 

BCA3/1° 26.30 -8.61 -4.41 

BCA3/2° “ -8.85 -4.02 

BCA3/3* “ -8.96 -4.70 

BCA2/1° 25.25 -8.75 -3.76 

BCA2/2° “ -8.09 -3.94 

BCA2/3* “ -7.41 -3.43 

°Carbonate hypocoatings 
*Carbonate nodules 
See figure 4 for the position of the sampled section 
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Locality/Label δ13C ‰ (V-PDB) δ18O ‰ (V-PDB) 

Castiglioncello   

Cast-1 -10.48 -4.17 

Cast-2 -10.53 -4.02 

Cast-3 -10.49 -4.08 

Cast-4 -10.48 -3.74 

Cast-5 -10.59 -3.97 

Baratti   

Bar16 -10.07 -4.76 

Bar15 -10.05 -4.69 

Bar10 -10.39 -4.82 

Bar9 -10.35 -4.52 

Bar8 -10.31 -4.57 

Bar7 -10.5 -4.47 

Bar6 -9.90 -4.62 

Bar5 -9.53 -4.89 

Bar3 -9.77 -4.73 
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Sample Laboratory code 

Conventional 

Radiocarbon 

Age 

(yr BP) 

Calibrated 

Radiocarbon 

Age (±2σ)  
(Median 

probability) 

δ13
C 

(‰ V-PDB) 

BCA D.6 (28.2 m 

a.s.l.)* 
Beta-235367 9980±50 

11253 – 11629 

(11440) 
-7.6 

BCA.D.4 (27.7 m 

a.s.l.)* 
Beta-235368 11310±50 

13074 – 13268 

(13161) 
-5.3 
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Ecological 
Group 

Species Number 
of specimens 

Percentage (%) 

4 Candidula unifascita 1224 79 
4 Jamina quadridens 17 1 
Sub-total   1241 80 

5 Pupilla moscorum 182 12 
5 Vallonia pulchella 126 8 
Sub-total  308 20 

Total  1549 100 
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