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What�s new? 

• We describe the first study to compare the cost-effectiveness of a lifestyle 

intervention to prevent diabetes across different high-risk population subgroups and 

over different intervention intensities. 

• We find that diabetes prevention programmes are cost-effective over a lifetime 

horizon, regardless of risk criteria or intervention intensity. 
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• Our study estimates that a lifestyle intervention will have a differential impact on 

disease outcomes (diabetes vs. cardiovascular disease) and the time horizon of cost 

savings in different high-risk groups. 

• These findings should help policymakers decide their objectives in developing 

suitable criteria for diabetes prevention programme content and eligibility. 

 

Abstract 

Aims  To develop a cost-effectiveness model to compare Type 2 diabetes prevention 

programmes targeting different at-risk population subgroups with a lifestyle intervention of 

varying intensity. 

Methods  An individual patient simulation model was constructed to simulate the 

development of diabetes in a representative sample of adults without diabetes from the UK 

population. The model incorporates trajectories for HbA1c, 2-h glucose, fasting plasma 

glucose, BMI, systolic blood pressure, total cholesterol and HDL cholesterol. Patients can be 

diagnosed with diabetes, cardiovascular disease, microvascular complications of diabetes, 

cancer, osteoarthritis and depression, or can die. The model collects costs and utilities over 

a lifetime horizon. The perspective is the UK National Health Service and personal social 

services. We used the model to evaluate the population-wide impact of targeting a lifestyle 

intervention of varying intensity to six population subgroups defined as high risk for 

diabetes. 

Results  The intervention produces 0.0003 to 0.0009 incremental quality-adjusted life years 

and saves up to £1.04 per person in the general population, depending upon the subgroup 

targeted. Cost-effectiveness increases with intervention intensity. The most cost-effective 

options are to target individuals with HbA1c > 42 mmol/mol (6%) or with a high Finnish 

Diabetes Risk (FINDRISC) probability score (> 0.1). 

Conclusion  The model indicates that diabetes prevention interventions are likely to be cost-

effective and may be cost-saving over a lifetime. In the model, the criteria for selecting at-

risk individuals differentially impact upon diabetes and cardiovascular disease outcomes, 

and on the timing of benefits. These findings have implications for deciding who should be 

targeted for diabetes prevention interventions. 

Introduction 

In the United Kingdom (UK), there are 3.5 million people with diabetes [1]. The prevalence 

of diabetes is increasing with growing levels of obesity and an aging population. Lifestyle 

interventions targeted at those individuals known to be at higher risk of Type 2 diabetes 

have been shown to be effective in reducing its incidence [2]. Many factors influence an 

individual�s risk of Type 2 diabetes including obesity, age, physical activity and a family 
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history of the disease. People from certain communities and population groups are at higher 

risk, including people of South Asian, African Caribbean, Black African and Chinese descent, 

and those from lower socio-economic groups. Public health guidelines recommend lifestyle 

interventions for individuals and communities at high risk of diabetes [3,4], and a national 

diabetes prevention programme is currently under development in England [5]. 

Interventions targeting alternative at-risk groups are considered cost-effective based on 

economic evaluations [3,4,6]. However, because of differences in the model structures 

used, it has not been possible to compare their relative cost-effectiveness. A recent review 

of economic evaluations for diabetes prevention interventions identified that to compare 

prevention interventions within a common framework it is necessary to incorporate 

multiple risk factors for diabetes, diabetes-related complications and obesity-related 

comorbidity outcomes [7]. 

This article aims to evaluate whether pragmatic diabetes prevention programmes of varying 

intensity have differential effects when targeted at alternative at-risk groups within the 

population through the use of a flexible new economic model. 

Methods 

 

The School for Public Health Research diabetes prevention model 

 

The School for Public Health (SPHR) diabetes model is a micro-simulation model with a 

lifetime horizon that was developed to forecast long-term health outcomes and healthcare 

costs for the evaluation of diabetes prevention strategies. The model was developed in 

accordance with a new conceptual modelling framework to guide modellers when 

constructing complex public health models [8]. Given the complexity of this model, a 

detailed description of the methods and assumptions are provided in File S1 and parameter 

values can be found in File S2. 

The model incorporates individual-level trajectories for BMI, HbA1c, 2-h glucose, fasting 

plasma glucose, systolic blood pressure, total cholesterol and HDL cholesterol. The 

trajectories are based upon statistical analysis of the Whitehall II cohort [9]. The model was 

designed to simulate a representative sample of the UK population, by using individuals 

from survey data from the 2011 Health Survey for England [10]. Individuals aged < 16 years 

and those with a prior diagnosis of diabetes were excluded, leaving a population of 8038 

from which individuals were sampled at random. The characteristics of this population and 

missing data imputation methods are described in File S1. Figure 1 illustrates the sequence 

of updating clinical characteristics and clinical events (see File S1 for a description). This 

sequence was repeated for every annual cycle of the model. 
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Detection of diabetes, hypertension and cardiovascular risk 

 

In any model cycle, individuals with one or more general practitioner (GP) visits may receive 

an opportunistic diagnosis of diabetes, hypertension or statin eligibility. The Whitehall II 

trajectory model determines HbA1c, systolic blood pressure and cholesterol test results. 

Following diagnosis and treatment initiation, the trajectories for these risk factors are 

modified. When an individual is diagnosed with Type 2 diabetes following two consecutive 

HbA1c tests > 47.5 mmol/mol (6.5%), the model simulates subsequent HbA1c test results 

using the UK Prospective Diabetes Study (UKPDS) outcomes model [11]. Furthermore, if an 

individual is prescribed anti-hypertensive treatment or statins in line with national 

guidelines [12,13], their systolic blood pressure or total cholesterol is reduced in line with 

changes observed in randomized controlled trials [14,15] and held constant for all 

subsequent cycles. The frequency of GP visits was estimated from data from the South 

Yorkshire cohort adjusted for individual characteristics. Details of the study population and 

the method to simulate GP attendance are described in File S1. 

 

Long-term health outcomes 

 

The model simulates several health outcomes that are related to BMI and diabetes. Further 

details of how these conditions were diagnosed and all other health outcomes are provided 

in File S1. The QRISK®2 algorithm was used to estimate the probability of a cardiovascular 

disease (CVD) event conditional on metabolic data, smoking, ethnicity, deprivation, diabetes 

and other covariates included in the equation [16]. 

CVD events were allocated to either stable angina, unstable angina, myocardial infarction, 

transient ischaemic attack, stroke, death from coronary heart disease or vascular disease 

according to probability distributions used in a previous Health Technology Assessment [17]. 

This source was also used to estimate subsequent CVD events if the first event was not fatal. 

The probability of congestive heart failure was estimated from the Framingham Heart Study 

congestive heart disease risk model for men and women [18]. Microvascular events 

including renal failure, blindness, foot ulcer and amputation were simulated using the 

UKPDS outcomes models [11,19]. 

Breast and colorectal cancer incidence [20,21] was estimated from analysis of the EPIC-

Norfolk cohort. The association between BMI and cancer was obtained from a large meta-

analysis of prospective observational studies [22]. UK mortality statistics determined the risk 

of mortality after breast or colorectal cancer [23]. Osteoarthritis incidence and association 

with BMI and HbA1c ш 48 mmol/mol (6.5%) were estimated from analysis of an Italian 

observational cohort [24]. The incidence of depression in individuals without diabetes was 
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obtained from a United States cohort [25]. The risk of depression was inflated upon 

diagnosis of diabetes [25] and stroke [26]. 

Other cause mortality describes the risk of death from any cause except CVD and cancer. 

Mortality rates by age and sex were extracted from the Office for National Statistics, 

excluding deaths due to CVD, breast cancer, colorectal cancer and diabetes [27]. An 

increased risk of mortality was assigned to individuals with diabetes using data from a 

published meta-analysis [28]. 

 

Estimating costs and quality-adjusted life-years 

 

Costs were estimated from a National Health Service (NHS) and personal social services 

perspective in 2014�2015 UK pounds (£). Costs were assigned to the health outcomes 

simulated in the model to estimate an overall cost for each individual in the model. 

At baseline, EQ-5D scores were extracted from the Health Survey for England dataset to 

describe an individual�s health-related quality of life. A utility decrement for age was applied 

to the baseline EQ-5D each year [17]. CVD, cancer, microvascular disease osteoarthritis and 

depression were associated with a utility factor decrement which was multiplied by the 

individual�s utility, adjusted for age. Costs and quality-adjusted life-years (QALYs) were 

discounted by 1.5% in line with the UK guidelines for public health interventions [29]. 

Details of how costs and utilities were estimated and how they were used in the model are 

detailed in File S1. 

 

The high-risk subgroups 

 

We selected six sets of criteria to identify alternative subgroups of individuals at high risk of 

diabetes within the UK general population. The at-risk groups included individuals of South 

Asian ethnicity, individuals in the lowest quintile of deprivation (low socio-economic status), 

individuals with HbA1c > 42 mmol/mol (6%), individuals with BMI > 35 kg/m
2
, individuals 

aged 40�65, and individuals with a Finnish Diabetes Risk (FINDRISC) probability score > 0.1 

[30]. Summary characteristics for the six groups and the general population are reported in 

Error! Reference source not found.. The proportion of individuals meeting each of the 

criteria is reported in Table 1. This shows that some subgroups (age 40�65) describe a much 

larger proportion of the population than others (South Asian). To enable fair comparison 

between the six scenarios, we assumed that there was a budget constraint meaning that 

only 2% of the total adult population could be enrolled in the intervention, regardless of the 

size of the subgroup. This means that in some groups there will be more under-utilization of 

the intervention than other. 
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The intervention 

 

The effectiveness of the intervention was based on a recent meta-analysis of diabetes 

prevention programmes promoting dietary and/or physical activity lifestyle changes [2]. The 

review identified mean changes in BMI, HbA1c, systolic blood pressure and total cholesterol. 

To make these changes conditional on baseline values, we estimated the percentage change 

over 12 months. The effects of the intervention were applied in the first year of the model 

to all enrolled individuals and were assumed to deteriorate over 5 years until the individual 

returned to their natural growth rate for metabolic risk factors, consistent with previous 

National Institute for Health and Care and Excellence (NICE) evaluations [31]. 

The meta-analysis of diabetes prevention interventions [2] reported a gradient of effect on 

weight change and BMI according to adherence of the studies to prevention programme 

guidelines. We used this analysis to evaluate trade-offs between the investment in an 

intervention against its intensity (intensity is defined in broad terms of adherence to 

guidelines). The default setting for our model was to evaluate a moderate intensity 

intervention, which was equivalent to the mean change in the meta-analysis. As alternative 

analyses, we examined the cost-effectiveness of low- and high-intensity interventions. The 

effectiveness data for these was based upon an assumption that either four fewer or four 

more NICE guidelines were followed during intervention implementation, given that 

adherence to NICE guidelines has been linked to increased weight loss at 12 months [2]. 

Direct effects on glycaemia, systolic blood pressure and total cholesterol were assumed to 

vary in line with the measured effects on BMI. An adjustment was made to the metabolic 

growth models to avoid double counting of the indirect effects of BMI on other metabolic 

risk factors. The costs of low-, medium- and high-intensity interventions were an 

assumption based on intervention costs estimated in NICE public health guidance PH38 [31], 

and are presented in Error! Reference source not found. together with effectiveness data. 

An additional cost of an HbA1c test (£3) was added to the HbA1c group to account for the 

additional cost of identifying these patients assuming approximately seven people would 

need to be screened to identify one participant. 

 

Outcomes 

 

We estimated the incremental costs and incremental QALYs generated by the intervention 

compared with the do-nothing control, averaged across the whole adult general population 

simulated, rather than just the intervention beneficiaries. Because the intervention was cost 

saving some incremental cost-effectiveness ratios were negative, implying the intervention 

dominates do nothing. To overcome the problems with ranking negative incremental cost-

effectiveness ratios, we estimated the overall incremental monetary benefit of the 
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interventions per person by assuming a willingness to pay (ɉ) of £20 000 per QALY. Net 

benefit values above zero are cost-effective, with higher values being more cost-effective 

than lower values. incǤ Net	Beneϐit ൌ 	ɉሺincǤ QALYሻ െ ሺincǤ Costሻ 
The model also allowed us to estimate the incremental change in diabetes and CVD 

diagnoses. Outcomes were collected after up to 15 years and lifetime to estimate the 

timings of cost-savings. To investigate parameter uncertainty, 2000 probabilistic sensitivity 

analyses samples were run for 20 000 randomly selected individuals per run for the high-

intensity intervention targeting all population subgroups (File S3). Deterministic analysis 

using one million individuals was used to obtain results for all three intervention intensities 

together with a series of one-way sensitivity analyses. A full list of sensitivity 

analyses/assumptions tested is reported in File S4. 

 

Results 

 

The deterministic incremental cost-effectiveness results for the adult general population are 

reported in Error! Reference source not found.. The results describe the net benefit, 

incremental costs and incremental QALYs averaged across the whole adult population. All 

three intervention intensities increase QALYs and are cost-effective over the lifetime of the 

population, compared with doing nothing. High-intensity interventions are more cost-

effective than interventions of moderate- or low-intensity. Comparisons between subgroups 

indicate large variations in lifetime costs, QALYs and net benefits accrued for different 

subpopulations. Targeting interventions to individuals with HbA1c > 42 mmol/mol (6%), 

individuals with high FINDRISC probability score (> 0.1) or individuals with high BMI are the 

most cost-effective options. Targeting South Asian individuals is less cost-effective than any 

other option. The incremental results for the individuals receiving the intervention are 

reported in File S3. 

Figure 2 illustrates the incremental costs at over 15 years post intervention to describe how 

the initial intervention investment is reduced over time due to cost savings. Interventions 

for individuals identified by FINDRISC > 0.1 or HbA1c > 42 mmol/mol (6%) have the smallest 

costs over 15 years. Low socio-economic status and South Asian groups take longer to 

recover costs and are not cost-saving over a lifetime. There are important differences 

between the subgroups in how health benefits are distributed in terms of disease events. 

Interventions in adults aged 40�65, South Asians and low socio-economic status groups 

have a similar reduction in both CVD and diabetes cases. By contrast, intervening in 

individuals identified with the FINDRISC > 0.1 or HbA1c > 42 mmol/mol (6%) has a 
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disproportionately large impact in reducing diabetes diagnosis compared with other 

subgroups, but is only marginally more effective in reducing CVD events. 

Results from the probabilistic sensitivity analyses indicate that the intervention is a likely 

gain of QALYs in all six subgroups, because the vast majority of probabilistic sensitivity 

analyses results are located in the southeast or northeast quadrants of the cost-

effectiveness plane (Fig. 3 and File S3). The intervention is also highly likely to be cost-

effective in all subgroups at a threshold of £20 000/QALY, because probabilistic sensitivity 

analyses results are predominantly located to the right of the cost-effectiveness threshold 

(dotted line in Fig. 3b). Probabilistic sensitivity analyses results differ slightly from 

deterministic results due to the non-linearity of the model. The cost-effectiveness 

acceptability curve indicates that the HbA1c > 42 mmol/mol (6%) group has a high 

probability of cost-effectiveness compared with do nothing (Fig. 3b). Uncertainty around the 

cost-effectiveness of HbA1c > 42 mmol/mol (6%) is stable over different willingness to pay 

thresholds. 

Finally, the intervention remains cost-effective in all population subgroups in all 

deterministic sensitivity analyses, and in all cases the HbA1c > 42 mmol/mol (6%) subgroup 

remains the most cost-effective. A detailed description of the results from the sensitivity 

analysis can be found in File S4. 

Discussion 

 

The analysis has shown that there are potentially substantial gains in health and cost savings 

available from diabetes prevention interventions depending upon the population target or 

intensity. The new SPHR diabetes prevention model was developed so that diabetes 

prevention interventions with different weight change outcomes can be flexibly specified to 

target alternative populations reflecting multiple risk factors for diabetes and CVD. The 

analysis highlights that population heterogeneity will impact on the cost-effectiveness of 

public health interventions. We found that applying the same intervention in different high-

risk groups produces very different cost-savings and QALY gains, events avoided and short-

term cost-savings. 

HbA1c > 42 mmol/mol (6%) and FINDRISC > 0.1 are the most effective subgroups to target to 

reduce diabetes diagnoses, and generate the greatest short- and long-term cost-savings, 

although targeting individuals with HbA1c > 42 mmol/mol (6%) is a much more cost-effective 

strategy than targeting FINDRISC > 0.1. 

The analysis described here includes several limitations due to an absence of evidence. In 

particular, we were not able to obtain estimates of how intervention effect sizes or 

intervention costs might vary by subgroup (e.g. due to ease of recruitment), limiting our 

ability to make recommendations about which individuals should be targeted. Further 
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research directed at subgroup analysis would be extremely useful to inform this parameter. 

More generally, the analysis assumed the reduction in metabolic trajectories following 

intervention was proportionate to the individual�s baseline values. However, in reality, 

individuals will vary hugely in their response to intervention, and individuals with very low 

risk factors may not experience the same proportionate reduction. Finally, we base the 

model on diagnosis of individuals through HbA1c, but other diagnostic methods (e.g. fasting 

plasma glucose) will identify a different subset of individuals with diabetes [32]. However, 

we think this is unlikely to significantly alter the results at the population level. 

We used the Framingham heart failure risk score to describe risk of heart failure in the 

model. This risk score is based on old data from the USA and may not be representative of 

the UK. However, we do not think that this limitation has impacted on our overall results. 

Sensitivity analyses confirmed that the model was moderately responsive to heart failure 

incidence, but it did not affect the conclusions of this article. 

Our validation work indicates that the model may overestimate diabetes incidence in high 

impaired glucose regulation populations due to the structure of the model. It is possible that 

this may bias the results in favour of the HbA1c risk group. However, there is a paucity of 

data on long-term diabetes incidence for different risk profiles to understand the extent of 

this limitation in our model. 

The model could be developed in the future to describe dynamic changes in health 

behaviours and a broader range of health outcomes to improve model flexibility and 

decision-making. Smoking is included in the model as risk factor for HbA1c, systolic blood 

pressure and CVD. We did not include a dynamic quit rate in the model and did not assume 

that the intervention was effective in improving smoking cessation compared with usual 

care. Including smoking cessation and current smoking cessation services would add 

considerable complexity to the model. Furthermore, we do not currently account for non-

related healthcare costs that may impact on the results, particularly where interventions 

improve survival [33]. Current NICE guidelines do not require the inclusion of unrelated 

healthcare costs, however, we believe that the model would benefit from inclusion of other 

health outcomes, such as dementia. 

 

Two previous UK-based economic evaluations have found that lifestyle interventions for 

diabetes prevention are cost-effective but not cost-saving in subgroups with either low 

socio-economic status or high diabetes risk score and HbA1c > 42 mmol/mol (6%) [3,4]. The 

results from the SPHR model are broadly similar. The QALY gains for the individuals 

receiving the intervention in the HbA1c > 42 mmol/mol (6%) group are of similar magnitude 

to NICE public health guidance PH38 [4]. We believe that several factors explain the 

differences in incremental costs. First, the SPHR model includes a broader range of health 

outcomes such as depression, osteoarthritis, breast and colorectal cancer that were not 
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included in previous evaluations. Second, the costs of major events, such as CVD have 

increased due to inflation. Third, the cost of screening individuals for Type 2 diabetes to 

identify individuals at high risk due to hyperglycaemia was not included in this version of the 

SPHR model. 

The main drivers of the model are the impact of the intervention in reducing diabetes and 

CVD. A substantial proportion of incremental costs can be attributed to the diabetes and 

CVD-related cost-saving (File S3). The deterministic sensitivity analyses highlight that the 

model results are most sensitive to changes in the baseline incidence of these conditions. 

In our analysis, we investigated six high-risk groups separately, but it is highly likely that 

combining criteria could optimize resource allocation to a subpopulation with even greater 

gains in health and cost-savings. The SPHR model can be easily modified to evaluate 

combined treatment criteria, in addition to a variety of alternative policies for Type 2 

diabetes prevention. UK policymakers can use this model to decide which populations they 

wish to target with lifestyle interventions according to their overall objectives, whether 

short- or long-term gains, equity or efficiency, or preventing CVD or diabetes. 
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FIGURE 1 SPHR model schematic. See File S1 for a detailed description of the model 

schematic and how a hypothetical patient progresses through the model. 

FIGURE 2 Incremental cost (£ per person in the general population) over 15 years. FINDRISC, 

Finnish Diabetes Risk; SE, socio-economic status. 

FIGURE 3 (a) Cost-effectiveness acceptability curve comparing the probability cost-effective 

of the moderate intensity intervention in six population subgroups. (b) Location on the cost-

effectiveness plane of the mean incremental probabilistic sensitivity analyses (PSA) results 

for the moderate intensity intervention compared with the �do nothing� control in each of 

the six population subgroups. Crosses represent 95% confidence intervals for costs and 

quality-adjusted life-years (QALYs). FINDRISC, Finnish Diabetes Risk; SE, socio-economic 

status. 
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Table 1 Summary of subpopulation characteristics 

 

 General 

UK 

population 

Age 40�

65 years 

Low 

socio-

economic 

status 

HbA1c

> 42 mmol/mol 

(6%) 

Finnish 

Diabetes 

Risk 

score 

 >0.1 

BMI 

ш 35 kg/m
2
 

South 

Asian 

Total 

population 

(%) 

100 48 18 15 12 8 4

Male (%) 44 44 44 45 40 34 42

White (%) 90 92 80 92 96 91 0

Low socio-

economic 

status (%) 

18 15 100 16 16 24 37

Age, years 

(SD) 

48.6 (18.4) 54.1 

(8.4) 

44.7 (8.2) 61.2 (16.0) 66.3 

(14.0) 

50.0 (16.0) 38.3 

(13.6) 

BMI, kg/m
2 

(SD) 

27.2 (5.4) 27.9  

(5.3) 

27.4 (5.9) 28.7 (5.5) 34.21 

(4.0) 

39.0 (4.0) 26.6 

(5.3) 

HbA1c, 

mmol/mol 

(SD) 

38 39 38 44 41 39 32

HbA1c, % (SD) 5.6 (0.5) 5.7 (0.4) 5.6 (0.5) 6.2 (0.1) 5.9 (0.5) 5.7 (0.6) 5.1 

(0.5) 

Systolic blood 

pressure, 

mmHg (SD) 

125 (17.1) 128 

(16.5) 

125 

(17.0) 

133 (17.3) 135 

(17.0) 

128 (16.9) 120 

(15.5) 

Total 

cholesterol 

mmol/l (SD) 

5.4 (1.1) 5.7 (1.0) 5.3 (1.1) 5.8 (1.0) 5.8 (1.0) 5.5 (1.0) 5.2 

(1.1) 

HDL 

cholesterol, 

mmol/l (SD) 

1.5 (0.4) 1.6 (0.5) 1.5 (0.4) 1.5 (0.5) 1.5 (0.4) 1.5 (0.4) 1.4 

(0.4) 

 

Table 2 Effectiveness of hypothetical prevention intervention 

 Low intensity Medium 

intensity 

High intensity

% change in BMI from baseline �1.3 �3.0 �4.7 

% change in Hba1c from baseline �1.0 �2.2 �3.4 

% change in systolic blood pressure from 

baseline 

�1.9 �4.3 �6.7 

% change in total cholesterol from baseline �1.5 �3.4 �5.3 

Intervention cost (year 1) £43 £100 £157 

Follow-up cost per year (years 2�4) £26 £60 £94 
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Table 3 Incremental simulated outcomes for one million individuals in the general population (adult 16�

99 years) over a lifetime perspective 

 

Absolute 

values 

Intensity
Targeting strategy (incremental results vs. do nothing) 

Do nothing 

 
Adults 

aged 40�

65 

Low socio-

economic 

status 

HbA1c 

> 42 mmol/mol 

(6%) 

Finnish 

Diabetes Risk 

probability 

score > 0.1 

BMI 

> 35 kg/m
2
 

South 

Asian 

A: Incremental net benefit per person (£)

 

Low 2.80 2.38 9.63 6.29 5.15 1.40

Medium 6.26 4.93 18.93 14.43 10.04 3.96

High 9.72 6.85 27.15 22.44 14.41 5.70

 B: Incremental total discounted costs per person (£)

£36 373 

Low 0.36 0.76 �0.71 �0.36 �0.84 1.15

Medium 1.58 2.10 �0.99 �1.04 �0.24 2.86

High 2.28 2.77 �2.47 �1.39 �0.24 4.28

 C: Incremental total discounted QALYs (per person)

15.548 

Low 0.00016 0.00045 0.00030 0.00030 0.00022 0.00013

Medium 0.00039 0.00090 0.00067 0.00067 0.00049 0.00034

High 0.00060 0.000123 0.00123 0.00105 0.00073 0.00050

 D: Incremental life years 

32.25 million* 

Low 217 125 687 407 197 108 

Medium 580 468 1444 1010 635 372 

High 757 577 1816 1621 978 496 

 E: ICERs (£ per QALY) 

 Low 2263 4,839 Dominates Dominates Dominates 9027

 Medium 4,024 5967 Dominates Dominates Dominates 8381

 High 3,808 5759 Dominates Dominates 332 8581

 E: Incremental diabetes diagnosis

550 000* 

Low �19 �17 �83 �63 �20 �3 

Medium �29 �32 �161 �121 �38 �1 

High �38 �51 �235 �176 �71 �4 

 F: Incremental cardiovascular disease events

480 000* 

Low �8 �12 �16 �15 �15 �2 

Medium �30 �22 �33 �40 �20 �3 

High �40 �33 �50 �69 �31 �14 

 

* Rounded to nearest ten thousand. ICER, incremental cost-effectiveness ratio; QALY, quality-

adjusted life year. 
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