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The Indian subcontinent is expected to witness signifi-
cant changes in climatic conditions in the future, but 
the implications of such changes for future spatial dis-
tribution of different biomes in the subcontinent are 
unclear. We sought to understand the potential shifts 
in the distribution of biomes in India by 2070 under 
different emission scenarios, identify biomes and re-
gions of the country that are particularly at risk from 
future changes in climate, and quantify uncertainties 
associated with the predictions. We used an ensemble 
classifier (random forest) to model current and poten-
tial future distribution of biomes in India for different 
climate trajectories under the newly developed repre-
sentative concentration pathway (RCP) scenarios. Cli-
mate projections from 19 and 17 different general 
circulation models (GCMs) were used to predict future 
biome distributions in India under the RCP 4.5 and 
RCP 8.5 scenarios respectively. For each scenario, mod-
el outputs from different GCM projections were com-
bined using a simple majority voting criterion. 
Approximately 630,000 sq. km (18%) of the country is 
predicted to experience biome shifts under the RCP 8.5 
scenario and 486,000 sq. km (14%) under the RCP 4.5 
scenario by 2070. Drier tropical biomes are likely to be 
replaced by wetter biomes, while temperate biomes are 
predicted to be dominated by vegetation characteristic 
of a warmer climate in the future. There was a high to 
moderate level of agreement between predictions of 
different GCMs. Our results suggest that biome shifts 
will be largely concentrated in the east-central and 
northern parts of the country, with tropical and sub-
tropical dry forests, savannas, grasslands and xeric  
habitats particularly at risk. Future studies should focus 
on elucidating the responses of different vegetation sub-
formations within individual biomes in order to gain a 
finer-scale understanding of vegetation responses to  
future climate change in the Indian subcontinent. 
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ANTHROPOGENIC activities are resulting in unprecedented 

changes in the Earth’s climate system. Average global 

temperatures have increased by about 0.85C since 1880, 

with the last three decades being successively warmer 

than any preceding decade since 1850 (ref. 1). Model  

predictions indicate that by the end of the 21st century, 

global mean surface air temperatures are likely to in-

crease from anywhere between 0.3C and 4.8C, relative 

to the 1986–2005 average, depending on future emission 

scenarios
1
. Precipitation patterns have likewise changed 

across the globe with model predictions suggesting fur-

ther changes by the end of the 21st century, albeit in a 

spatially variable manner, with some regions witnessing 

increases and other decreases in mean annual precipita-

tion, intra-annual variability and the frequency and inten-

sity of extreme events
1
. Given the dominant control 

exerted by climate on the global distribution of species 

and biomes
2–8

, it is likely that such climatic changes will 

have dramatic effects on the distribution of species, and 

indeed entire biomes, in the future
9–21

. 

 Biome shifts in response to climate change in the 20th 

century have already been documented for several boreal, 

temperate and tropical ecosystems
19

. At the same time, 

several recent studies have also attempted to predict  

future shifts in the potential distribution of biomes under 

different scenarios of climate change
19–29

. Such projec-

tions of biome or vegetation shifts in response to climate 

change are typically based on one of two alternate  

approaches – bioclimatic envelope models (BEMs) or 

process-based dynamic global vegetation models – 

DGVMs
13,19,22,27,29–34

. BEMs assume that vegetation–

climate relationships are static, and rely on correlations 

between climatic variables and current vegetation distri-

butions to predict future distributions
27,32,33

. Process-

based DGVMs on the other hand, simulate an array of 

ecological processes, including photosynthesis, plant car-

bon balance, phenology and fire to predict vegetation  

distribution
35,36

. While DGVMs are more biologically  

realistic and are capable of capturing transient dynamics 

in response to changing climates, they are also computa-

tionally complex and require detailed information on 

physiology and life-history traits of species
32,37

. Such data 

are often lacking, particularly in the tropics, and in these 

cases BEMs, with their lower data requirements, can be a 

valuable tool to explore climate–vegetation relationships 
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and serve as a first approximation for understanding  

climate impacts on vegetation distribution
18,27,32,37,38

. 

 In this study, we adopt a bioclimatic envelope model-

ling approach to predict the future distribution of poten-

tial vegetation types across the Indian subcontinent under 

different scenarios of climate change. Assessments of po-

tential biome shifts in response to 21st century climate 

change have been carried out for individual biomes
26

, as 

well as multiple biome types at global
19,29,34

 and regional 

scales (China
22

, North America
39

, Catalonia
15

, North 

Spain
15,40

, southwest Germany
41

, West Africa
20

, Central 

America
42

, South America
21

) using both DGVMs and 

BEMs. For India, assessments of potential biome shifts in 

response to changing climates have been carried out at 

both countrywide
43,44

 and regional scales
45

. However, 

these earlier efforts have been either based on limited 

climate change scenarios
45

, or under scenarios where  

increases in temperature and proportional increases in 

rainfall are the same across the entire subcontinent
46

, or 

have modelled the potential distribution of vegetation 

types based on outputs from a single regional climate 

Model (e.g. HadRM3
43,44

), thus not accounting for varia-

bility among predictions of future climates between  

different climate models
37,47,48

. Consequently, we  

lack measures of uncertainty associated with these fore-

casts attributable to differences in climate modelling  

approaches. 

 In this study we aim to: (i) assess the potential distribu-

tions of biomes in India in 2070 under different climate 

change scenarios using a consensus approach based on an 

ensemble of several different GCMs, (ii) identify regions 

of the country that are potentially vulnerable to biome 

shifts in the future, and (iii) quantify measures of uncer-

tainty associated with these predictions. Our projections 

were developed at a spatial resolution of 0.083 decimal 

degrees (~100 sq. km) for two different climate change 

scenarios based on the newly developed representative 

concentration pathways (RCPs) of the Coupled Model  

Inter-comparison Project Phase 5 (CMIP5) – RCP 4.5 and 

8.5. RCP 8.5 represents a business-as-usual scenario with 

no coordinated global effort on climate change mitiga-

tion, while RCP 4.5 represents a ‘stabilizing’ scenario 

where emissions stabilize shortly after 2100 (IPCC, 

2013)
1
. 

Methods 

Modelling current biome distribution 

We used the WWF-ecoregions map
 
to delineate the cur-

rent distribution of biomes in the Indian subcontinent
49

. 

The map recognizes 11 major biomes for the Indian  

region (Figure 1) based on the biogeographic classifica-

tions of Udvardy (1975), MacKinnon (1997), and Rodgers 

and Pawar (1988)
49

. The WWF-ecoregions map has also 

been used for similar assessments to understand species 

and biome shifts due to climate change in other parts of 

the world
47,50–54

. 

 We used the high-resolution climate data derived from 

the WorldClim climate database (http://www.worldclim. 

org) to model the current distribution of biomes in India 

at a resolution of 5 arc-min (approx. 9 km  9 km)
55

. The 

database provides 19 bioclimatic variables representing 

annual, seasonal and extreme environmental conditions 

for the time period 1950–2000. These data are widely 

used in similar examinations of climate-induced species 

and biome redistributions because of their global cover-

age and accessibility
20,50,51,56–58

, and also compare well 

with the archived monthly data of India Meteorological 

Department (IMD)
46

. 

 To account for multicollinearity amongst bioclimatic 

variables, we only selected predictor variables that were 

largely uncorrelated with others (Table S1, see Supple-

mentary Material online) and were biologically meaning-

ful
20,21

. Our final set of explanatory variables included 

annual mean temperature, annual temperature range, 

mean annual precipitation, precipitation seasonality, pre-

cipitation of driest quarter, precipitation of warmest quar-

ter, precipitation of the coldest quarter and elevation. 

 We modelled the current distribution of biomes (from 

Olson et al.
49

) using an ensemble-based machine learning 

technique, the random forest (RF) algorithm
59

. We chose 

RF over other techniques since a preliminary analysis in-

dicated that it outperformed other approaches, including 

multinomial logistic regression and general boosting 

models for modelling current biome distributions (results 

not provided here), as has also been shown in previous 

studies
33,60

. In addition, the technique is also robust 

against over-fitting
61

. RF builds a number of decision 

trees based on a subset of the data (the training set), while 

the remaining data comprise the ‘out-of-bag’ sample and 

are used to estimate predictive error. Each tree is built  

using a random subsample (with replacement) of both the 

training dataset and predictor variables, and each tree 

‘votes’ for the final class for each pixel. Finally, a class is 

assigned to each pixel based on a simple majority of 

votes for each class from all the trees grown
59

. All  

analyses were carried out using the ‘random forest’ pack-

age
59

 as implemented in R
62

. 

 We constructed our model using a subset of the availa-

ble data for the Indian subcontinent, generated by sam-

pling every fourth pixel using a systematic sampling 

scheme to account for spatial autocorrelation. Our final 

dataset included 10,424 pixels of which 75% was used as 

the training dataset to construct the RF model and the  

remaining 25% as the test dataset to assess predictive  

error. Our final model, which was used to predict biome 

distributions for the entire Indian subcontinent, was based 

on 800 classification trees with a subset of two randomly  

selected predictors chosen for splitting each node of the 

tree. 

http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
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Figure 1. Distribution of different biomes in India (a) as delineated by Olson et al.49 and (b) as modelled by the random forest 
(RF) algorithm based on current climate. 

 

 

Model validation 

The accuracy of the RF model in predicting the current 

distribution of different biomes was evaluated for indi-

vidual biomes as well as for the country as a whole. For 

individual biomes, we carried out a pixel-by-pixel  

comparison of the observed and predicted distribution of 

each biome to obtain the overall accuracy, commission 

and omission errors. The kappa () statistic was used to 

evaluate the predictive accuracy of the RF model for the 

country as a whole
63

. 

Future potential biome distribution, consensus in  
projections and uncertainty 

The RF model was then used to predict the future poten-

tial distribution of biomes in the Indian subcontinent for 

2070 under two different emission scenarios – RCP 4.5 

and 8.5. We used climate data from 19 different GCMs 

for the RCP 4.5 scenario, and from 17 GCMs for the RCP 

8.5 scenario
55

 (Table S2, see Supplementary Material 

online). A recent study has shown that CMIP5-based en-

semble temperature and precipitation projections are able 

to capture the broad-scale climate patterns in India
64

. Fur-

ther, the use of several GCMs allowed us to additionally 

assess uncertainties associated with the use of different 

models that generate future climate projections using dif-

ferent parameters and numerical methods. 

 The RF model was run separately for each GCM, and a 

final map of potential future biome distribution for each 

emission scenario (RCP 4.5 and 8.5) was generated by 

combining the outputs of all GCMs using a simple vote 

counting method, where each pixel was assigned the  

biome that was most frequently predicted by the different 

GCMs. We also generated a ‘confidence map’ for our 

projections to account for the variability amongst GCMs 

in their predictions of future climate by calculating, for 

each pixel, the percentage of GCMs that predicted the  

biome assigned to that pixel. We termed confidence in 

our projections as ‘high’ for pixels where the agreement 

between GCMs was more than 75%, ‘moderate’ when it 

ranged between 50% and 75%, and ‘low’ when it was 

less than 50%. Similarly, we also generated an uncertain-

ty map for the subcontinent by summing, for each pixel, 

the number of different biomes predicted by all the 

GCMs for each of the two emission scenarios. 

 Finally, to get an estimate of the extent to which areas 

predicted to undergo potential biome shifts in the future 

have already been transformed by humans, we summa-

rized human population densities for these pixels using 

data from the Global Rural Urban Mapping Project
65,66

 

(http://sedac.ciesin.columbia.edu/grumpv1), and also

http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
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Table 1. Accuracy of the random forest model in predicting the current distribution of biomes for the Indian subcontinent. Error 

of omission refers to a class present at a particular pixel, but not predicted by the model, and error of commission refers to  

a class predicted to be present by the model, when in reality it is not. Producer’s accuracy is calculated as the total number of  

pixels correctly predicted/total number of pixels known to exist for a particular class and consumer’s accuracy is calculated as the  

 total number of pixels correctly predicted/total number of pixels of that class predicted in the classified image 

 Omission Commission Producer’s Consumer’s  

Biome  error (%) error (%) accuracy (%) accuracy (%) 
 

Tropical and subtropical moist broadleaf forests 4.1 4.8 96.0 95.2 

Tropical and subtropical dry broadleaf forests 6.7 6 93.8 94.0 

Tropical and subtropical coniferous forests 35.1 19.6 39.9 80.4 

Temperate broadleaf and mixed forests 19.9 18.4 83.5 81.6 

Temperate coniferous forests 66.1 32.9 60.2 67.9 

Tropical and subtropical grasslands, savannas and shrublands 84.9 1.2 54.1 98.9 

Flooded grasslands and savannas 11.1 10.6 90 89.4 

Montane grasslands and shrublands 8.8 10.6 91.9 89.4 

Deserts and xeric shrublands 3.5 4.5 96.6 95.5 

Rock and Ice-covered areas 43.4 19.1 69.8 80.9 

 

 

estimated the fraction of these pixels that currently lie 

within protected zones (national parks and wildlife sanc-

tuaries) of the country. 

Results 

Modelling current biome distributions 

We were able to model the current distribution of biomes 

with a high degree of accuracy (Figure 1). The classifica-

tion error rates for individual biomes was typically low 

(see Table 1 and Table S3, Supplementary Material 

online for error matrix), and the overall predictive accuracy 

for the country as a whole was 93.41%. The kappa coeffi-

cient of 0.91 indicated an almost perfect agreement be-

tween the modelled and observed biome distribution map. 

Misclassified pixels occurred most frequently around the 

boundaries of biomes. 

Biome shifts under climate change 

Although we modelled all biomes for the sake of com-

pleteness, we exclude the ‘mangrove’ biome from our  

interpretations here as its distribution is not necessarily 

climatically determined. Our model results indicate a 

consistent increase in the spatial extent of three biomes – 

tropical and subtropical moist broadleaf forest, tropical 

and subtropical dry broadleaf forest, and montane grass-

lands and shrublands – by 2070 under both emission sce-

narios (Figure 2 and Table 2; projections for 2050 are 

additionally provided in Figure S1 and Table S4 the Sup-

plementary Material online). The remaining biomes show 

a contraction in their range extents by 2070 (Figure 2 and 

Table 2; see Figure S1 and Table S4, Supplementary Ma-

terial online for 2050 estimates). 

 Drier and currently more arid tropical regions appear 

particularly at risk, with most of the drier tropical biomes 

likely to be replaced by wetter biomes in the future. By 

2070, tropical and subtropical moist broadleaf forests are 

likely to completely replace tropical and subtropical 

grasslands, savannas and shrublands, and also occupy 

about 51% of the area currently covered by tropical and 

subtropical coniferous forests, about 24% of the area of 

temperate broadleaf and mixed forests, about 18% of the 

area of tropical and subtropical dry broadleaf forests and 

about 5% of the deserts and xeric shrublands (see Table 

S5 Supplementary Material online for pairwise biome 

transitions for each scenario). Tropical and subtropical 

dry broadleaf forests will occupy about 23% of the area 

currently covered by deserts and xeric shrublands, and 

5% of the area of tropical and subtropical moist broadleaf  

forests. 

 Further, about 16% of the area of deserts and xeric 

shrublands will be occupied by savannas and grasslands. 

Temperate regions, on the other hand, will likely be dom-

inated by a warmer climate. Montane grasslands and 

shrublands will potentially occupy about 86% of the area 

currently covered by ice, 8% of the area of temperate  

coniferous forest and 3% of temperate broadleaf and 

mixed forests. 

 Overall, 486,243 sq. km
 

(14%) and 628,965 sq. km
 

(18%) of the Indian subcontinent are predicted to experi-

ence biome shifts by 2070 under the RCP 4.5 and 8.5 

scenarios respectively (Figure 3). Most of the areas vul-

nerable to biome shifts are concentrated in the east-

central, northern and western parts of India, largely at the 

ecotones between biomes (Figure 3). Of the pixels pre-

dicted to undergo biome shifts under the RCP 4.5 and 8.5 

scenarios, 7.78% and 8.07% respectively, lie within pro-

tected areas. Of the total area of India that is currently 

protected, which includes national parks and wildlife 

sanctuaries, ~18% and 24% will potentially experience 

biome shifts by 2070 under the RCP 4.5 and 8.5 scenarios 

respectively. Although some parts of eastern and northern 

India that are vulnerable to biome shifts have human

http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
http://www.currentscience.ac.in/Volumes/111/01/0147-suppl.pdf
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Table 2. Predicted change in the spatial extent of different biomes by 2070, expressed as a percentage of the current area 

under the RCP 4.5 and RCP 8.5 scenarios. Estimates represent mean percentage change summarized across 19 GCMs for  

 RCP 4.5 and 17 GCMs for RCP 8.5, for each biome 

Biome RCP 4.5 RCP 8.5 
 

Tropical and subtropical grasslands, savannas and shrublands  –73.62 (–83.52, –63.73) –83.1 (–91.63, –74.56) 

Rock and ice-covered areas –71.79 (–76.14, –67.44) –78.24 (–81.48, –75) 

Tropical and subtropical coniferous forests  –33.1 (–39.51, –26.7) –39.51 (–47.95, –31.07) 

Temperate broadleaf and mixed forests –15.7 (–24.28, –7.12) –31.43 (–43.86, –19) 

Deserts and xeric shrublands –16.25 (–23.13, –9.37) –28.78 (–40.83, –16.73) 

Flooded grasslands and savannas –14.61 (–20.78, –8.45) –25.45 (–33.7, –17.2) 

Temperate coniferous forests –7.3 (–12.13, –2.48) 0.42 (–8.25, 9.1) 

Tropical and subtropical dry broadleaf forests  7.28 (4, 10.57) 6 (0.03, 11.96) 

Montane grasslands and shrublands 11.26 (10.26, 12.27) 11.35 (10.39, 12.32) 

Tropical and subtropical moist broadleaf forests 9.77 (5.34, 14.21) 21.49 (10.53, 32.44) 

Values in parentheses are the lower and upper limits of the 95% confidence interval. 
 

 

 
 

Figure 2. Spatial distribution of different biomes in India as modelled by RF for (a) the present, (b) 2070 under the RCP 4.5 scenario and (c) 
2070 under the RCP 8.5 scenario. 

 

 

densities as high as 1000 persons km
–2

, human population 

densities in other areas are much lower (Figure 3); nearly 

half of the area predicted to undergo biome shifts has 

density <200 km
–2

,
 
while ~20% has density <100 km

–2
 

(Figure 3). 

Uncertainty of projections 

For most pixels, there is a high level of agreement in the 

predictions of future biome classes amongst the different 

GCMs for both emission scenarios (Figure 4). About 69% 

(81%) of the country shows high agreement amongst the 

different GCMS used for RCP 8.5 (4.5) scenario, while 

29% (18%) and 2% (0.64%) of the country show moder-

ate and low agreement respectively. This is also reflected in 

the number of different biomes predicted for each pixel 

by different GCMs (Figure 5). For any given pixel, the 

number of different predicted future biomes ranges from 

1 to 5, with different GCMs predicting at most 1 or 2 dif-

ferent potential biomes for large parts of the country 

(Figure 5). 

Discussion 

Our results indicate that in the absence of targeted cli-

mate change mitigation initiatives, over 628,000 sq. km 

of the Indian subcontinent will potentially undergo biome 

transitions by the latter part of the century. Arid and
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Figure 3. Regions of India predicted to undergo biome shifts (as shown by non-grey areas in the map) by 2070 under (a) 
RCP 4.5 scenario and (b) RCP 8.5 scenario. Approximately 14% (486,243 sq. km) and 18% (628,965 sq. km) of the coun-
try are predicted to witness potential biome shifts by 2070 under the RCP 4.5 and RCP 8.5 scenarios respectively. The  
legend describes the population density (persons/sq. km) of areas predicted to undergo biome shifts for the two scenarios.  

 

 

 
 

Figure 4. Level of agreement among the different general circulation models (GCMs) for (a) RCP 4.5 and (b) RCP 8.5. 
Yellow areas on the map are those with high level of agreement amongst GCM predictions (>75% of the GCMs predicted 
the same biome), red areas are those with moderate agreement (> 50%, but <75%) among GCMs, and orange areas are 
those with low agreement (<50%) among the GCMs. For RCP 8.5, 69% of the area shows high, 29% moderate and 2% 
low agreement, while for RCP 4.5, 81% shows high, 18% moderate and 0.6% low agreement. 

 

 

semi-arid vegetation in tropical and subtropical parts of 

the country are likely to be replaced by moist broad-

leaved forests, while in temperate and high-elevation  

regions, montane grasslands and shrublands are predicted 

to expand at the expense of temperate broadleaved and 

mixed forests. These results are consistent with climate 

predictions from global and regional models, which sug-

gest increases in precipitation and temperature over large 

parts of the country in the future
67,68

. 

 Using just temperature, precipitation and elevation, our 

RF model was able to capture the current distribution of 

biomes in India with a high degree of accuracy (>90%), 

although there were differences between individual  

biomes, with some modelled more accurately than others 

(Table 1). Climatic variables associated with rainfall and 

temperature thus appear to be important regulators of 

coarse-scale biome distributions in India, such that direc-

tional changes in these drivers are likely to lead to biome 

shifts in the future. The biome-level classifications em-

ployed in this study are, however, fairly coarse-grained, 

with each biome, in turn, comprising multiple eco-regions 

characterized by distinct vegetation associations. Olson
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Figure 5. Number of biomes predicted for each pixel by the different GCMs for (a) RCP 4.5 and (b) RCP 8.5 scenarios. 
More the number of biomes, less reliable are the predictions and vice versa. 

 

 

et al.
49

 in fact recognized a total of 52 distinct ecoregions 

within India. At the level of these finer-scale ecoregions, 

the total area of the country that will potentially witness 

drastic vegetation shifts in the future is likely to be much 

higher than what our coarse biome-level estimates sug-

gest. 

 Our results indicate that the spatial extent of the cli-

mate space that characterizes the ‘tropical and subtropical 

moist broadleaf forest biome’ in India, which includes 

both wet evergreen and moist deciduous forests, is likely 

to increase in the future. Overall, the spatial extent of this 

biome is predicted to increase by ~20% by 2070, with 

range increases largely occurring at the drier limits of the 

biome range, where moist broadleaf forests transition into 

‘tropical and subtropical dry broadleaf forests’. These re-

sults are in agreement with Zelazowski et al.
26

 who also 

reported on the potential for humid forest expansion into 

seasonal forest areas in mainland Southeast Asia and 

eastern India. Wet evergreen forests, which are currently 

restricted to the Western Ghats and North East India, both 

biodiversity hotspots, appear to be relatively stable and 

less at risk of undergoing large-scale biome shifts. Our 

results are additionally supported by other studies of  

future potential vegetation in the Indian subcontinent
43,44

, 

and are also in accordance with outputs from regional 

climate models which predict the greatest future increases 

in rainfall over the west coast and NE India
67

. 

 The spatial extent of tropical and subtropical dry 

broadleaf forests is likewise predicted to increase, albeit 

to a lesser extent (~5%), with increases once again occur-

ring at the drier end of the biome range at the expense of 

more arid vegetation types. Overall, within the tropical 

and subtropical regions of India, range loss is expected to 

be the greatest for these drier vegetation types, including 

grasslands, savannas and other mixed tree–grass forma-

tions, and xeric habitats. Our results suggest that ‘tropical 

and subtropical grasslands, savannas and shrublands’ are 

especially vulnerable to biome shifts, potentially reducing 

in future by over 80%. However, this may be an overes-

timate given that we were not able to model this biome 

with a particularly high degree of accuracy (Table 1). The 

‘tropical and subtropical grasslands, savannas and shrub-

lands’ biome, as classified by Olson et al.
49

, currently  

only comprises the tall grass systems of the Gangetic 

plain at the Himalayan foothills. However, other savanna 

and mixed tree–grass formations (ecoregions) also occur 

within the more arid biomes in the country
69,70

. These 

systems harbour unique biodiversity and support critical 

populations of several open habitat species
71–73

, but are 

also amongst the most threatened habitats as a result of 

land-use change and tree-planting activities
74,75

. Our  

results suggest that these habitats are likely to be even 

more at risk in the future, with ongoing anthropogenic 

threats compounded by the potential for climate-driven 

biome shifts. 

 Amongst the temperate biomes of the country, the 

‘temperate broadleaf and mixed forests’ of the Himalaya 

appear particularly at risk, losing as much as a third of 

their potential area. The vulnerability of these Himalayan 

temperate forests has also been highlighted by Chaturvedi 

et al.
44

 based on their analysis of future potential vegeta-

tion of India using the IBIS DGVM, and is consistent 

with future temperature increases being particularly  

pronounced in northern India
44,67

. In contrast, our results 
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suggest little to no change in the total spatial extent of 

‘temperate coniferous forests’, but an expansion in the 

area covered by high-elevation ‘montane grasslands and 

shrublands’. Overall, there was also an increase in the 

mean elevation occupied by these biomes in the future 

(2070) relative to current conditions (data not shown), 

with montane grasslands and shrublands expanding to 

higher elevation areas currently covered by snow and ice. 

Although we currently lack long-term empirical data to 

confirm whether high-elevation grasslands in the Hima-

laya are in fact moving upwards to colonize previously 

non-vegetated areas, these results are consistent with  

reports of climate-induced elevational range shifts for 

several species in the Himalaya
76

. 

 There was a high level of agreement in the predictions 

of different climate models for large parts of the country, 

although we did detect some uncertainty associated with 

different models, particularly for areas predicted to un-

dergo biome shifts. In most of these cases, predictions 

from a subset of climate models indicated a potential bi-

ome shift whereas other models predicted no biome-shifts 

(i.e. number of predicted future biomes for the pixel was 

2). However, for some pixels, the number of potential  

future biomes predicted by different models was as high 

as 5, reflecting the variability in future climate predic-

tions of different GCMs. From a management perspec-

tive, recognition of uncertainties associated with potential 

future climates is important in order to more effectively 

integrate such uncertainty into management planning. 

 In contrast to more detailed process-based approaches, 

bioclimatic envelope models do not take into account the 

effects of several well-known drivers, including increas-

ing CO2 concentrations and resultant plant responses and 

feedbacks, and the role of disturbances such as fire in 

maintaining or altering biome boundaries
32,77

. Further-

more, they also do not account for intra-seasonal changes 

in rainfall and temperature patterns, or the effects of  

extreme rainfall events which have been reported to be 

increasing in frequency across large parts of the Indian 

subcontinent
78

. Future work that couples process-based 

DGVM models with high-temporal resolution regional 

climate models for India (e.g. CORDEX) will undoubted-

ly provide us with a more nuanced understanding of po-

tential future biome shifts. Nevertheless, we believe that 

our approach has provided valuable insights that serve as 

a first approximation for understanding and predicting 

potential biome shifts across the Indian subcontinent in 

the future. It is also important to recognize that even in 

the absence of a complete biome shift, climate change 

can induce species compositional changes within biomes 

with important implications for their functioning
19

. Thus, 

in addition to ensemble-based modelling efforts that use 

process-based DGVMs to predict biome and vegetation 

shifts at finer scales, there is also a need for long-term 

ground-based monitoring efforts in different biomes if we 

are to better understand climate change  

impacts on future vegetation dynamics in the Indian sub-

continent. 
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