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Abstract 

The effects of the composition of the microporous layer (MPL) on the through-plane 

permeability of the gas diffusion layers (GDLs) used in polymer electrolyte fuel cells 

(PEFCs) have been thoroughly experimentally investigated in this paper. For a given PTFE 

loading in the MPL, the GDL permeability was found to decrease with increasing carbon 

loading and this is due to the increase in the thickness of the MPL. For all the investigated 

carbon loadings of the MPL, the permeability values of the GDLs were found to have 

common trends for the PTFE loadings ranging from 10 to 50 % (by weight): the GDL 

permeability increases when the PTFE loading in the MPL is increased from 20 to 50 %; the 

GDL permeability decreases when the PTFE loading in the MPL is increased from 10 to 20 

%; and the GDL permeability is a minimum at 20 % PTFE loading present in the MPL. On 

the other hand, the permeability of the GDL was found to depend on the carbon loading of 

the MPL in the PTFE range 0-10 %. The effects of the MPL composition on the MPL 

permeability were found to be similar to those on the GDL permeability. However, the 

permeability values of the MPLs of the same composition, which were supposed to be ideally 

the same, were found to significantly vary. This was attributed to the MPL penetration into 

the body of the carbon substrates.           

Keywords: PEFCs; Gas diffusion layer; Microporous layer; Gas permeability; PTFE loading;         

Carbon loading.  

  



3 

 

1. Introduction 

Polymer electrolyte fuel cells (PEFCs) are a promising clean power conversion technology 

for a wide range of portable, automotive and stationary applications and this is in particular 

due to its high efficiency and low-temperature start-up [1-2]. A gas diffusion layer (GDL) is 

one of the main components used in PEFCs as it acts as a multifunctional component. 

Namely, it distributes the reactant gases to the catalyst layer where the reaction takes place; it 

improves the electrical contact with the catalyst layer; and it drives the liquid water away 

from the catalyst layer [3-5]. To efficiently perform the above functions, the GDL is usually 

wet-proofed [3-7]. Further, it is normally coated with the so-called micro-porous layer (MPL) 

on the side facing the catalyst layer in order to enhance the electrical contact with the catalyst 

layer and properly handle the liquid water emerging from the cathode catalyst layer [1-2,9-

10]. The MPL is a mixture that typically consists of carbon black and PTFE particles [1, 11]. 

The effects of the MPL and its composition on the performance of PEFCs have been 

investigated by many researchers [3-4, 7-8, 12]. The areas of research in this regard are 

typically on the effects of the loading of the wet-proofing agent [13-17], and the type of 

carbon black [16, 18]. Ismail et al. [19] found that the through-plane permeability of the GDL 

increases as the PTFE loading in the MPL increases from 25 to 50 %. This was justified by 

the findings obtained by Uchida et al. [15]. Park et al. [18] found that a maximum fuel cell 

performance is obtained with an MPL carbon loading of 0.5 mg cm-2. Jordan et al. [7] 

reported that the better fuel cell performance is achieved when the loading of the Acetylene 

Black carbon is between 1.25 and 1.9 mg cm-2. Also, they found that the PEFC performs 

better with the sintered MPL loaded with Acetylene Black carbon than with Vulcan XC-72R 

and this is mainly due to the uniform distribution of the PTFE loading in the MPL loaded 
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with Acetylene Black carbon. Similarly, it has been shown that the performance of the PEFC 

is highly sensitive to the PTFE loading either in the carbon substrate or in the MPL [19-21]. 

As stated earlier, the literature has shown that the permeability of the GDL increases with 

increasing PTFE loading in the MPL [21-22]. However, such a results was drawn from either 

a single value for the carbon loading and/or a limited number of PTFE loadings. In this paper, 

the sensitivity of the through-plane permeability of the GDL to a wide spectrum of MPL 

carbon and PTFE loadings has been investigated for the first time. This spectrum represents 

30 different MPL compositions that result from 5 different carbon loading (ranging from 0.5 

mg cm-2) and 6 different PTFE loadings (ranging from 0 to 50%). This research is important 

because obtaining accurate values for the permeability of the porous media of the membrane 

electrode assembly (MEA) is essential to obtain realistic saturation profiles in the modelled 

PEFCs. 

2. Materials and methods 

The carbon substrate used to prepare the coated GDLs was SGL 10BA which was provided 

by SGL Carbon GmbH (Meitingen, Germany). The carbon powder and the PTFE dispersion 

used in the MPL ink were Ketjenblack EC-300J (AkzoNobel, the Netherlands) and 60 wt. % 

PTFE (Sigma-Aldrich, UK), respectively. 

For the purpose of this study, 30 sets of MPL-coated GDL samples, representing 30 realistic 

MPL compositions, were prepared. Each set consists of 6 samples.  

The composition of the MPL was varied by varying the amounts of the carbon black and 

PTFE used to prepare the MPL ink. Namely, the carbon black loading was set first and 

subsequently the amount of PTFE was set as a weight percentage of the entire MPL weight. 

The carbon loadings covered were: 0.5, 1.0, 1.5, 2.0 and 2.5 mg cm-2. For each carbon 
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loading, the PTFE loading was set to represent 0, 10, 20, 30, 40 and 50 wt. % of the weight of 

the formed MPL. It should be note that, by measuring the masses of the GDL samples before 

and after MPL coating, the actual mass of the MPL loadings were found to be more or less 

the same as the desired ones. For example, for 2.0 mg cm-2 carbon loading and a 50 wt. % 

PTFE loading, the PTFE loading in the units of mg cm-2 is 2.0 and therefore the entire MPL 

loading is 4 mg cm-2. 

The calculated amount of carbon black and the PTFE dispersion were manually mixed until a 

paste-like material was formed. Isopropyl alcohol was added to the formed mixture and the 

resulting slurry was placed in an ultrasonic bath (U300H, Ultrawave Ltd, UK), with a power 

35 W, until an ink with a good dispersion was formed. Using nitrogen, the ink was then 

manually sprayed onto the samples of the carbon substrates attached to a heated plate [22]. 

The spray gun used was 100LG (Badger, USA). The temperature of the plate was set to about 

80 ฀ in order to evaporate the alcoholic components as the ink was applied to the substrate. 

The samples of the carbon substrates were cut out from the main sheet and made circular with 

a 2.50 cm diameter [20]. The MPL-coated GDLs were then heat-treated to a temperature 120 Ԩ for 1 hour, at 280 Ԩ for 30 minutes and finally sintered at 350 Ԩ for 30 minutes using 

nitrogen gas to uniformly distribute the PTFE particles throughout the MPL [8, 13-14]. The 

thickness of the GDL samples was measured both before and after the MPL-coating using a 

micrometre. Each sample was measured at 4-equally-spaced positions within it to provide a 

representative average value of the thickness of the sample. 

The experimental setup of this work has been previously used in [19-20] for investigating the 

through-plane permeability, see Fig. 1. As shown in Fig. 1, the setup consists of upper and 

lower fixtures, with the sample fixed between the two fixtures as described in [22]. Nitrogen 

flows through the sample and the pressure drop across the sample was measured at 7 equally-
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spaced flow rates. The flow controller used was an HFC-202 (Teledyne Hastings, UK) with a 

range of 0.0-0.5 SLPM and the differential pressure sensor used was aPX653 (Omega, UK) 

with a range of േ12.5 Pa. 

[Insert Fig. 1]  

Data analysis 

Low flow rates were used and therefore the inertial losses were assumed negligible. 

Consequently, Darcy’s Law was used to solve for the permeability of the GDL sample before 

and after the MPL-coating [20]:  

  (1) 

where is the pressure drop across the sample,  is the thickness of the sample,  is the 

dynamic viscosity of nitrogen estimated at the test temperature (about 20 ฀),  is the gas 

permeability of the GDL sample calculated at the test temperature and  is the velocity of the 

flowing gas. Fig. 2 shows a typical pressure gradient-velocity experimental data. To estimate 

the permeability, these experimental data were curve-fitted to Equation (1). 

[Insert Fig. 2] 

The through-plane gas permeability of the MPLs can be estimated making use of the 

assumption that the pressure drop across the entire sandwich is an algebraic summation of the 

pressure drops across the MPL and the carbon substrate. To this end, the following equation 

can be used to solve for the permeability of the MPL [19]: 

  (2) 
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where , and  are the gas permeability coefficients for the microporous layer, 

the MPL-coated GDL and the carbon substrate, respectively; and ,  and   are 

the thicknesses of the microporous layer, the MPL-coated GDL and the carbon substrate, 

respectively. To determine the thickness of the MPL, cross-section scanning images were 

used. Notably, in these images, the thickness of the MPL varies widely. Therefore, the 

thickness of the MPL was estimated at as many points as possible in order to have a well-

representative value of the MPL thickness; see, for example, Fig. 3.    

[Insert Fig. 3]  

3. Results and discussion 

Effects of carbon loading  

Fig. 4 shows the through-plane gas permeability of the MPL-coated GDLs as a function of 

the carbon loading of the MPL. It should be noted that the PTFE loading is kept constant at 

20 wt% in this work, a value frequently utilised in the literature [14-16].  As anticipated, the 

figure shows that the permeability of the carbon substrate (1.78 ൈ 10-11 m2) reduces by an 

order of magnitude when coated with an MPL containing as low as 0.5 mg cm-2 of carbon 

loadings. The subsequent increase in the carbon loading of the MPL results in gradual and 

significantly less decrease in the permeability of the GDL.  The initial sharp decrease in the 

permeability is mainly attributed to the addition of substantially low-porosity MPL. On the 

other hand, the subsequent decrease in the permeability with increasing carbon loading is 

mainly due to the increase in the thickness of the MPL. Similar results were obtained in [14-

16]. 

[Insert Fig. 4] 
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Effects of PTFE loading 

 Fig. 5 shows the estimated through-plane permeability of the MPL-coated GDLs as a 

function of the PTFE loading for the various considered carbon loadings, namely 0.5, 1.0, 

1.5, 2.0 and 2.5 mg cm-2 in the MPL. All the curves show three common trends for all the 

carbon loadings investigated. The first one of these common trends is that, after 20 % PTFE 

loading, the permeability increases with increasing PTFE loading in the MPL. This has been 

justified in the literature by stating that the relatively large PTFE particles cannot penetrate 

the relatively small pores within the carbon agglomerate but the larger pores between these 

agglomerates. This increases the sizes of the agglomerates and consequently increases the 

porosity of the carbon-PTFE mixture [11, 15, 18-20]. This has been confirmed by the pore 

size distribution (PID) measurements, conducted by Uchida et al. [15], which show that the 

pore size increases as PTFE loading in the carbon-PTFE mixture increases. The second 

common trend is that the permeability of the GDL decreases when the PTFE loading in the 

MPL is increased from 10 to 20 %. This can be explained by stating that (i) the increase in 

the PTFE loading increases the thickness of the MPL, and (ii) the PTFE loading is not 

sufficiently high to make its ‘positive’ porosity-increasing effect overcome its ‘negative’ 

thickness-increasing effect. Note that by ‘positive’ effect we mean that it increases the 

permeability and by ‘negative’ effect we mean that it decreases the permeability. The last 

common trend is that the gas permeability of the coated GDL is a minimum with a 20 wt. % 

PTFE loading in the MPL.  

Interestingly, the PTFE loading is sensitive to the carbon loading in the PTFE loading range 

from 0 to 10 %. Namely, the permeability in this range: (i) decreases for the 0.5 mg cm-2 

carbon loading, (ii) remains almost the same for 1.0 mg cm-2 carbon loading, and (iii) 

increases for the 1.5, 2.0 and 2.5 mg cm-2 carbon loadings. Apparently, the 0.5 mg cm-2 
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carbon loading is not sufficiently high to completely cover the large pores on the surface of 

the carbon substrate. Fig. 6 shows that, with 0.5 mg cm-2, the skeleton of the carbon substrate 

can be clearly seen. This also justifies the large gap between the permeability values of the 

GDL coated with 0.5 mg cm-2 and those coated with higher carbon loadings. Therefore, 

adding some PTFE material to the carbon black reduces the size of the above large pores and 

consequently decreases the permeability. For relatively large carbon loadings, i.e. 1.5, 2.0 and 

2.5 mg cm-2, it appears that the carbon loading is sufficiently high to completely cover the 

large pores on the surface of the substrates and to ‘absorb’ the relatively low added PTFE 

amount. As explained above, the added PTFE particles increase the porosity, and 

consequently the permeability of the MPL. Apparently, the 1.0 mg cm-2 carbon loading is the 

loading at which the above competing effects of the 10 % PTFE loading are counterbalanced. 

However, the authors think that the above justification for the trends in the PTFE loading 

range from 0-10 % require some supporting evidences and therefore further complementary 

investigation is required.  

[Insert Fig. 5 and Fig. 6] 

Through-plane gas permeability of MPLs 

As described in Section 2, Equation (2) was used to calculate the through-plane permeability 

of the MPLs of the coated GDLs. Fig. 7 shows the calculated MPL permeability values as a 

function of PTFE loading for all the carbon loadings investigated. As anticipated, the trends 

of the permeability curves of the MPLs are, in general, in accordance with those of the MPL-

coated GDLs.  It should be noted that the permeability values of the MPLs, which have the 

same PTFE loading, must be ideally the same as the composition is the same for all the above 

MPLs. For example, the MPLs with 20 % PTFE loading must all have ideally the same 

permeability value as the weight compositions of those MPLs are all the same, i.e. 20% PTFE 
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and 80% carbon black. However, this is not the case for the MPL permeability values shown 

in Fig. 7. Namely, there is a significant variation in the permeability values for the MPLs of 

the same composition. This is most likely to be due to the significant penetration of the MPL 

material into the body of the carbon substrates. The accurate estimation of the MPL 

penetration and subsequently the permeability of the MPL may be a topic of a future work.          

[Insert Fig. 7]  

4. Conclusions 

The effects of the composition of the MPL on the permeability of the GDLs have been 

experimentally investigated in this paper. As anticipated, for a given PTFE loading, the 

permeability was found to decrease with increasing carbon loading and this is mainly due to 

the increase in the thickness of the MPL. The trends and observations associated with the 

effects of the PTFE loading of the MPL on the through-plane permeability of the GDL can be 

summarised as follows: 

Ɣ  For all the investigated carbon loadings, the permeability of the GDL was found to be 

a minimum at 20% PTFE loading in the MPL. 

Ɣ  For all the investigated carbon loadings, the GDL permeability was found to increase 

when the PTFE loading of the MPL is increased from 20 to 50%. This was attributed 

to the increase in the porosity of the MPL induced by the large PTFE particles. 

Ɣ  For all the investigated carbon loadings, the GDL permeability was found to decrease 

when the MPL PTFE loading is increased from 10 to 20% and this is most likely due 

to the increase in the MPL thickness which results in higher mass transport resistance.  

Ɣ    The effects of the PTFE loading of the MPL on the GDL permeability depends on the 

carbon loading in the PTFE range 0-10%: (i) for a carbon loading of 0.5 mg cm-2, the 

GDL permeability decreases with increasing MPL PTFE loading, (ii) for a carbon 
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loading of 1.0 mg cm-2, the GDL permeability remain almost the same, and (iii) for a 

carbon loading of 1.5-2.5 mg cm-2, the GDL permeability increases with increasing 

PTFE loading. These results were explained in the text considering the competing 

effects of (a) the MPL coverage of the surface of the carbon substrate, and (b) the 

increase of the MPL porosity due to the addition of the PTFE particles. 

Finally, the through-plane permeability of the MPLs of all the cases were estimated. As 

anticipated, the were found to follow the same trends as those of the MPL-coated GDLs. 

Interestingly, the permeability values of the MPLs of the same composition were found to 

significantly vary. This was attributed to the MPL penetration into the body of the carbon 

substrates.          
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Nomenclature 

     GDL sample thickness / m 

     Permeability / m2 

     Pressure / Pa 

   Gas velocity / m s-1 
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Figure Captions 

Fig. 1 A schematic diagram of the experimental setup [19]. 

Fig. 2 Experimental data for the pressure gradient as a function of the velocity of the flowing 

gas.    

Fig. 3 SEM cross-section images of MPL-coated GDLs: the averaged MPL thicknesses for 

all cases from a – e are: 0.59, 1.02, 1.48, 1.69 and 2.38 × 10-4 m, for carbon loading of 0.5, 

1.0, 1.5, 2.0 and 2.5 mg cm-2 , respectively. 

Fig. 4 (a) An SEM image for a surface of a bare carbon substrate sample before coating, (b) 

The gas permeability of the GDL before and after coating, and MPL-coated GDL as a 

function of the carbon loading in the MPL, (c-d) SEM images for surfaces of after GDLs 

coating of 0.5 and 2.0 mg cm-2 carbon loadings, respectively. The PTFE loading is 20 wt% 

for both the cases.  

Fig. 5 (a) The curves representing the gas permeability of the MPL-coated GDLs as a 

function of PTFE loading for various carbon black loading, and (b) the above curves after 

excluding the 0.5 mg cm-2 carbon loading curve. 

Fig. 6 (a-e) SEM images for surfaces of MPL-coated GDLs with 10, 20, 30, 40, 50 wt% 

PTFE loading, respectively. The carbon loading is 2.0 mg cm-2 in all cases.    

Fig. 7 (a) The curves representing the gas permeability of the MPL as a function of PTFE 

loading for various carbon black loading, and (b) the above curves after excluding the 0.5 mg 

cm-2 carbon loading curve.  

 


