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Abstract—The design of sparse spatially stretched tripole
arrays is an important but also challenging task and this pagr
proposes for the very first time efficient solutions to this poblem.
Unlike for the design of traditional sparse antenna arrays,the
developed approaches optimise both the dipole locations én
orientations. The novelty of the paper consists in formulaihg
these optimisation problems into a form that can be solved byhe
proposed compressive sensing and Bayesian compressive seg
based approaches. The performance of the developed apprdees
is validated and it is shown that accurate approximation of a
reference response can be achieved with a &7reduction in the
number of dipoles required as compared to an equivalent undrm
spatially stretched tripole array, leading to a significantreduction
in the cost associated with the resulting arrays.

Index Terms—Sparse array, spatially stretched, tripole, com-
pressive sensing, Bayesian compressive sensing.

. INTRODUCTION
A. Related Work

theory says that when certain conditions are met it is ptessib
to recover some signals from fewer measurements than used
by traditional methods [13]. It is possible to use CS to desig
sparse sensor arrays by obtaining a close approximation of a
desired beam response using as few array elements as possibl

Further work has also shown that it is possible to improve
the sparseness of a solution by considering a reweighted
norm minimisation problem [17], [20]-[22]. The aim of these
methods is to bring the minimisation of thHe norm of the
weight coefficients closer to that of the minimisation of the
lp norm. To do this an iterative method is required to solve a
series of reweighte] minimisation problems, where locations
with small weight coefficients are more heavily penalisethth
locations with large weight coefficients.

Alternatively, the problem can be converted into a prob-
abilistic framework (termed Bayesian compressive sensing
(BCS)) [23], with some suggested advantages to BCS as
compared to traditional CS based implementations. However

For uniform linear arrays (ULAs), an adjacent antennan important point of interest is that the problem can be
separation of no larger than half of the operating wavelengtolved by the relevance vector machine (RVM) optimisation

is used to avoid the introduction of grating lobes [1], [2hiF

framework [24], which is efficient to use as also supported

can become prohibitive in terms of the cost associated Wwéh tby the comparisons shown in the design examples section
number of antennas required. Instead, sparse arrays bexoroé this paper. Additionally, using BCS can remove the need
desirable alternative due to the fact that the nonunifortanea to fine tune the error limits or sparsity associated with the
of their adjacent antenna separations avoids grating leb&s implementations of CS above [25]. Such approaches have been
when the mean adjacent antenna separation is greater tliandgaplied in the design of sparse arrays with real valued and
the operating wavelength [3]. complex valued weight coefficients [26]-[28], where the tinul

However, the sidelobe behaviour of sparse arrays is unptask BCS scheme [29], is applied in the case of complex valued
dictable. This means that optimisation of the antennaioeat weight coefficients.
is required in order to achieve a desired beam responseThe methods discussed above have been implemented as-
Such optimisation can be achieved by stochastic optimisasming the arrays consist of isotropic array elements. As a
tion methods such as genetic algorithms (GAs) [4]-[6], an@sult, the polarisation of a signal is not taken into act¢oun
simulated annealing (SA) [7], [8]. Difference sets and atmowhen considering the performance of an array. Instead surray
difference sets have also been successfully used in thgrdediased on vector sensors, [19], [30], provide a desirabbersdt
of sparse arrays, [9], [10], and merged with GAs to helfive as they allow the measurement of both the horizontal and
give an improved performance, [11], [12]. The disadvantagertical components of the received waveform. For example,
of GAs, and similar design methods, is the potentially lontie vector sensors used could be crossed dipoles (two erthog
computation time and the possibility of convergence to anoanally orientated dipoles) [19], [31]-[33], or tripoleshfee
optimal solution. orthogonally orientated dipoles) [34], [35].

More recently, the area of compressive sensing (CS) hasdVhen tripoles are used it is possible to measure the full
been explored [13], and CS-based methods have been miectromagnetic (EM) field at a given point [35]. These asray
posed in the design of traditional sparse arrays [14]-[CH. have been applied in the area of direction and polarisation
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estimation [34]. Due to the close proximity of the three

orthogonal dipoles that make up each tripole there can be
issues with mutual coupling when implemented in practice. /
As a result, the concept of spatially stretched tripolesT(SS
has been developed and used in the area of direction of larriva y
(DOA) estimation [35]. An SST is a tripole where the three ’
orthogonal dipoles are spread over a given geometry, lgadin
to reduced mutual coupling effects. L

B. Contributions

In this work for the first time the problem of designind, 2. 21 S tioies ant he directons they are aied .. y and 2
sparse SST arrays (SSSTAs) is addressed. Unlike for #h€the axes of a Cartesian coordinate systemdrid the number of dipoles
design of traditional sparse arrays there are now two optsed.
misation problems to solve, i.e. finding the optimal locasio
and orientations for the dipoles. It is proposed to use CS and
BCS based design methods that go beyond the state of the afthe spatial steering vector of the array is given by
in order to solve these problems.

As a result, it is now necessary to formulate the problem to s:(0,9)
include the fact that there are three potential dipoles ah ea Y
point on the sampling grid and the signal model now includ

polarisation information (requiring alterations to the @sd

— [1 o e*j27rdsinesin¢//\
—j27r(1\/[—1)dsin95in¢/)\]T (1)
Where ) is the wavelength of interest anfd}” indicates the

BCS f lati It ible t i located dimol transpose operation. The spatial-polarization coherentov,
- formuia lons). It is possible 1o avold co-located Aol ;o contains information about a signal’s polarisationl a
by viewing them as a special case of the minimum ad]acqgtgiven by [34], [35]:

dipole separation not meeting a physical size constrairf [1

However, if the methods in [17] are directly applied in this sin 7y cos 6 cos gpe’" — cosysin ¢
case, then although there will be a minimum spacing betwee, (0, ¢,v.1m) = sin 7y cos 0 sin gpe?" — cosy cos ¢
antenna locations, there can still be multiple dipoles ahea L — siny sin fe’"

location. Therefore it is necessary to consider co-located [ sp.2(0,0,7,1m)

dipoles as breaking the size constraint. Here, the design of = spy(0,0,7,m) (2
SSSTAs utilising the size constraint is implemented in two $p.(0,0,7,m)

ways: i) An iterative minimum distance sampling method ) - o

(IMDSM) with CS and BCS; ii) an altered iterative reweighted?"€ré 7 € [0,7/2] is the auxiliary polarization angle and

minimisation scheme (AIRMS). When integrating the CS/BC% € [, m) is the polarization phase difference.

based method with the IMDSM it is also important to account NOW the array can be splitinto three sub-arrays, one paralle

for the response due to the previously fixed dipoles whdd 8ach axis. Withf € {z,y, z}, the steering vector of each

deciding what the reference response in the current iGeratiSUP-array is given by:

IS. _ _ _ Sp(0, 0,7, m) = sp,(0,6,7,1))85(0, ). (3)

The remainder of this paper is structured as follows: Sec- o

tion Il gives details of the proposed design methods, irioigd 1€ response of the array is given by

the array model being used (ll-A), a review of CS an_d BCS p(0,6,7,1) = (0, 6, v, 1) W, (4)

(II-B and II-C) and the proposed IMDSM and reweighted

design methods for SSSTAs (II-D and II-E). In Section IIWwith

design examples are presented to verify the effectiverfabg o

proposed methods and conclusions are drawn in Section V.

wherew; = w,; is the complex weight coefficient for the

dipole located at the point: = 1 and orientated parallel to

the x-axis and{.}’ denotes the Hermitian transpose. Note

A. Array Model that for an SSSTA ifw, 1 # 0, thenw,; = w.; = 0, as
there can be only one dipole present. Similarly

H
== [wx,lawy,lawz,lw- wwz,l\/fawy,M;wz,M] ) (5)
Il. PROPOSEDDESIGNMETHODS

Figure 1 shows an example of a linear SSSTA.possible
dipole locations are spread along the y-axis with an adjacen s(0,¢,7v,n7) = [s2,1(0,¢,7,1), Sy,1(0, 0,7, 1),
separation ofd. For each possible dipole location there are 5:1(0,0,7,1), .., e (6, 0,7,m),
three potential orientation directions, one parallel toheaxis. T
Also sphown is a signal with its directionpof arrival (DOA) sy (0,0,7,m), 5200, 0,7, (6)
defined by the anglesand¢, with 0 < 0 < n/2 and—=n/2 < wheres, 1(0, ¢,v,n) is the contribution of the dipole located
¢ < /2 [34], [35]. A plane-wave signal model is assumedat the pointm = 1 to the overall steering vector parallel to
i.e. the signal impinges upon the array from the far field. the z-axis.
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B. Compressive Sensing for SSSTA Design Now decompose; to ¢ = an”i 14m»s Gm € RT, to
r(,gformulate (10). Note, the upper limit on the sum3i&/
as there ar@ potential dipole orientations at each location.
In vector form,q = 1”7q, where 17 = [1,---,1] and

SupposeP. (0, ¢,v,n) is the desired beam response as
function of 6, ¢,y andn. Then the problem is to match the

designed response to this desired response for the fulleran .
of 9,g¢>,fy ands values of interest while ?inding the optimiseqqg = [q1,--- ,qsm]". Then (10) can be rewritten as
dipole locations and orientations. min 17q
First, consider Figure 1 as being a grid of potential dipole q
locations. HereM is a large number and sparseness is then subject to [[p, — Swilz < a
introduced by selecting the weight coefficients to give ag fe [Winll2 < gm, m=1,...,3M. (12)

active dipoles as possible, or in other words as few-nerm N | PR th d traint i
valued weight coefficients as possible, while still giving 102e, ava uetho tq”t”h u ,I me(;ms € secon ¢ copfhraln !nht
designed response close to the desired one. Note, a Mrge ) ensures that the real and imaginary parts of the weig

means it is more likely that the optimal locations will appeaCoeﬁICIent con_tamed Wi wil bOt.h be equal to zero. This
llows the desired sparsity to be introduced.

on the grid thus allowing for a better performance. Howevez?’,

the tradeoff is that ifAf is too large the efficiency of the Now define
algor_ithm deteriqrates. W [q1, R(we 1), =1 (we1)qa, ..., —I (w2 p0)]7,
This problem is formulated as ¢ = [1,0,0,1,0,0,---,1,0,0] (13)

min||w||;,  subjectto ||p, — SW|z < o, @) b, = [R(p,). I(p,)]" (14)
where ||w||; is the I; norm of the weight coefficients [13], @nd T
p,. is the vector holding the desired beam response at the 0 0
sampled angular and polarisation points of inter&sts the R(s:1) 1(s:1)
matrix composed of the corresponding steering vectorspand —I(8e,1)  R(Se1)
places a limit on the allowed difference between the desired . 0 0
and the designed responses. Minimising theaorm has the S= R(sy1) I(sy.1) , (15)
effect of minimising the number of dipoles used, while the —I(s,1)  R(sy1)
constraint ensures a reasonable approximation of the ideal : :
reference response_is achieveq. If the s_izexdt increased, _ R(szm)  I(Szum)
more error can be introduced into the flngl response, Wh|ch —I(sz.) R(szum)
would be expected to allow a sparser solution to be achieved. ) . ] )
Note, ||.||» indicates thd, norm. where R(.) is the real component anf.) is the imaginary

In detail, p, andS are respectively given by component. Then, the final formulation is as follows
. PN APN
p. = [PT(917¢1a717n1)7~--vpr(9L7¢L77LanL>]Ta (8) mV%n we
S = [3(917¢17715n1)7"'73(9L7¢L7,7L777L)]T) (9) SUbjeCt to ||F5173,Av||2 S «

: . . . mlle < g =1, -- .
where L is the number of points sampled at each dimension [Winll2 < g, =1, 3M. (16)

of the desired beam response. In this warkis the ideal Note, the values,, for m = 1,...,3M are included with
response, i.e. a value of one for the mainlobe and zeros tae weight coefficients imv. This is so that it is not necessary
the other entries. Notd, has to be large enough to ensure ato predefine their values, instead the algorithm finds them at
angular and polarisation points of interest are considered the same time as the optimised weight coefficients. As atiesul
Since the coefficients are complex valued, (7) can be refir-is necessary for the vectdr to select the vglueam for

mulated as a modifiei norm minimisation [36]: minimisation and the zeros are introduced if8do ensure
) N the same values do not contribute to the error between the
min qeR ideal reference response and the achieved response inghe fir

subject to ||p, —SW||2 < a, [(w)]s1 <¢ (10) constraintin (16). Finally, as the weight coefficients hbeen
split into real and imaginary parts, the response given by th
where - productSi™ will contain the real and imaginary parts of the
Wy = Z [ W[ (11) achieved response sgpgrately. This means the referertempat
— m has to be split in a similar manner giving (14).

However, unlike thd, norm, thel; norm does not penalise
andw,, = [R(wn),I(wy)]T for m = 1,...3M contains all non-zero valued coefficients equally. Instead, largesfc
the real and imaginary components of the complex weigfitients are penalised more heavily. To further improve the
coefficient given by then'" entry in w. Here, the variable sparseness of the array and get a better approximation of the
q has been introduced and requires minimising. By keepiignorm minimisation, large reweighting terms can be applied
[(w)|; less than this value the effect is to minimise the to the smaller weight coefficients so that they are penalised
norm of all of the absolute weight coefficients. more heavily [17], [18], [20]-[22].
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When applied to the above modifiéd norm minimisation It is known that for the likelihood functiof®(p|wg) and

problem we get the following the priorsP(wr) andP(p), the following applies
. < T A . PPrlwr)P(wW
. N on F
subject to IIPT ~ W <o This allows the problem to be written as
6:n||W'rrL||2 <qm, m=1,---,3M, (17) (B D
_ _ _ w w
where now ¢ = [6},0,0,85,0,0,...,8,,,0,0" and Wp = I{Algxp< (pF7|>(IE)> )( F>>- (21)
st = (Jwi t| 4+ €)~L. Herei is the current iterationyw F
holds the current estimate of the weight coefficients, * The prior P(wg) is the same asP(w;) to model the

contains the weight coefficients, from the previous itemrati relationship between the real and imaginary parts of thghtei
for the m!” dipole ande is a small value roughly equal to thecoefficients, while still enforcing sparsity. It is given B(w )
minimum desired weight coefficient. The iterative algamth and found as follows:

would then follow the steps below: 5 52)
1) Seti = 0 and find an initial estimate of the weight P(wr) /7> wr|a, 5°YP(@)P(5°)dads”, (22)

coefficients by solving (16). _ where P(a) is the multi-task shared hyperpriors,
2) 1 =1+1, and find the reweighting terms,,. a = [d1,d1,....a1]7, given by a Gamma distribution,
3) Solve (17). , , andP(52) is a shared Gamma hierarchial prior, where
4) Repeat steps 2 to 3 untilwé|lp = |wiTlp = s .
|[wi=2||o i.e. until the number of active locations has o o2 N3 — _ImYEm
a =(2 m T 23
remained the same for three iterations. Here define PWrla,o7) = (2m5) T}_:Il dme (23)
wi = [wi wi, .. w3M]T. gives
The addition of the rewelghtlng term, which is calculatethgs
coefficients from the previous iteration, means all 1zeno WE opt =

It is worth noting that as it stands the solutions to (16) andnax P®y)
(17) do not strictly give an SSSTA in the result. This is bessau F
currently there is no way of guaranteeing there can only beadich after integrating ove#? and simplifying gives:
single dipole at a given location. In other words the progose
methods are in effect finding a sparse weight coefficientorect  wp, ,,, = max (/P(Wplﬁ)p, é)p(é|pF)da> . (25)
without considering the locations of the associated dgole we

The methods detailed in Section II-D and Section II-E capquation (23) considersM points as there are three potential
both be used to overcome this issue and ensure that thereif@es at each location.

valued coefficients are penalised in a more uniform manner. (/ PWela,62)P(PpWr)PR)P(52 )
) F F g ) 2 Je2
dads (24)

no co-located dipoles, guaranteeing an SSSTA. Note,
C. Bayesian Compressive Sensing for SSSTA Design PWr|pp,a) = /P(WFlf)pfi &*)P(5%)ds? (26)

When considering BCS for sparse array design, [26]-[2 nd from Bayes' theorem
there are two formulations of BCS that can be used. Firstly

there is a single task (ST) BCS formulation [23] which can P(Wrlpp, & 5%)P(5%) =
be implemented using a RVM [24]. Alternatively multi task Ppplwe, 52)P(Wr |8, 2)P(52) 97
(MT) BCS, [29], can be used when there are multiple CS JPPplwr, 62)P(Wr|a, %) dwr &7)

measurements and the statistical relationships betwesm th From (23), the fact that a Gamma hlerarchlal prior is placed

can be exploited. This could include measurements at nlmltlpmp( 2) and the fact thaP(wp|p -, 52) can be modelled as
time instances, or in the case of sparse array design if phelltia Gaussian likelihood, then

or complex weight coefficients have to be minimised [27]. As o © 4 a2t
a result MT-BCS is well suited to the problem being addressed P(Wrlpp,a) = (/0 A e dt) X
and is formulated in what follows. L pel = (Bagr ot (3M)2)

Firstly, consider matching the real and imaginary parthef t (14 srg Wr — Ap) "3 (W — fip))
achieved array response to that of the ideal referencemespo (J2 thur-1-le—tdr) (2mBrrr—2) D [det(S3)

— Swy = Dr, (18) (28)

whereF € {R,I}, Dy andD; are zero mean Gaussian errowherefy 1 andSyr—» are parameters associated with the
vectors, with a variance of?, wg = R(w), w; = —I(w), MT-BCS process chosen to encourage sparsity. In (28) the

S=[R(ST, 1977, p, = Pr+iPs Pr = [R(Pr),I(pz)]T mean and covariance are given by:
andp; = [R(p;),I(p;)]*. The problem now is to find the W o~ 38
solutions to solve Bp =

I@ (29)
wp = maxPWelpp). (19) b ( +S S) : (30)
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respectively, wheréA = diagla) = diaga,asg, ..., asnm). ‘ l 2 3 ;4 MTl
Note, this gives a Student’sdistribution for?(wp|p, &). R S 00 -0
When considering the remaining term in (25) a delta func- d

tion approximation can be used [27]. This is because a closed

form solution is not possible. Note,
o L . Fig. 2. lllustration of the iterative sampling method usedhered,, is the
P@pr) < PHrlAPE) size constraint being applied, the potential aperture of the array amd

indicates a dipole location.
[0’ (/'P(ﬁF|WF,5'2)’P(WF|é, 5’2)

XP(52)dWFd52>7’(é)a (31) size constraint. In this work we use the idea of the IMDSM
_ ) and AIRMS algorithms proposed in [17] to ensure an SSSTA
with a mode given by is achieved as the final solution.
Bopt = max L(3), (32) Note, that the iterative natgre o_f the IMSDM based ap-
a proaches means that the relationship betw&eor « and the
where algorithms performance becomes less predictable. Canside
1 — the fact that the value ot/ used affects where the first dipole
L(7) = -3 Z <10g <|I +SA S |) + (3M + 2Bmr-1) is located. This then defines the remaining aperture, wihich i
F again sampled using/ grid points. As a result the density
of the sampling grid in the next iteration varies depending
on where the previous dipole was placed and the valuk of
a%hich in turn makes it difficult to predict how the performanc
will be effected byM. The effects ofa can also be hard to
predict for similar reasons.
o oo\ tar 1) CS Based IMDSM: To begin with, the full aperture
WF,opt = (d'ag(aopt)+5 S) S Pp- (34)  of the array is uniformly sampled and an estimate of the
weight coefficients found using (16), with the first clustdr o
dipoles that are too close together being merged to give the
WAIT.opt = WR.opt + FWT.opt- (35) first location as shown in Figure 2. At this point if there are
. . ) multiple dipoles at the merged location the least significan
Note, that as for the CS formulation discussed in thge giscarded to leave a single dipole present. The remmainde
previous subsection the MT-BCS scheme detailed here jsihe aperture is then uniformly sampled, ensuring that the
unable to guarantee an SSSTA as an outcome. This is becaysg dgipole will be at least the distance of the size constrai
itis in effect finding a sparse weight coefficient vector witl 5\yay This process is then repeated until there is no room for
considering where the associated dipoles are located. Ag,aner dipoles.
result, it is possible that there could be multiple dipoles ¢ js worth noting that this method has involved the merger
present at the optimised locations (optimised locatiofisrse ¢ ginole locations and has the potential for some dipoles
to the locations with one or more non-zero valued weiglt he discarded in order to avoid co-located dipoles. As a
coefficients). This means the desired reduction in mutualg i the weight coefficients may no longer be optimal fer th
coupling effects when implemented in practice will not bgjyen dipole locations and orientations. However, the tiocs
achieved. Instead to ensure an SSSTA the methods discusgeq orientations can be used to efficiently implement a fixed
in the following subsections should be considered. beamformer, by minimising the sidelobe levels while kegpin
a unitary response for the mainlobe location. This is dedail
D. lterative Minimum Distance Sampling Method for SSSTAs  below in Section 11-D3.
In the above two formulations, there is no way to ensure 2) MT-BCS Based IMDSM: In essence the same iterative

that an SSSTA is achieved. This is due to the fact that orffjjocedure is followed in this instance. The initial set oigin

minimised, rather than considering if there are any cotketa USing the MT-BCS procedure detailed in Section II-C. For
dipoles. subsequent iterations some changes have to be made to ensure

To solve this problem it is proposed to extend the ideRat the method of solving the problem can account for the fac
of imposing a physical size constraint on the optimisatidffat some dipole locations and orientations have been fixéd a
from [17]. However, when directly applied these methodsonWill be contributing to the overall response.
ensure that there is a minimum distance between the optimise AS @ result, consider the following
antenna locations. Therefore, in this instances they coatd s _ & S _ &
guarantee an SSSTA as there can potentially be three dipoles Pr = Sz, Pr=SWr, (36)
at each antenna location. As a result, it is necessary to algbere p, and p, are found by subtracting the response
consider the fact that co-located dipoles at a given lonatam due to the locations fixed in the previous iteration from the
also be seen as breaking the minimum separation of a physiedérence response in the previous iteration. Then from the

x log <p£(| +8A T8 p, + 2[3MT,2) ) . (33)

As the mode of a student-t distribution is equal to its me
the resulting weight coefficients are given by [27]

The final optimal weight coefficient vector is then given by



IEEE TRANSACTIONS ON SIGNAL PROCESSING 6

remaining uniformly sampled aperture in the current iferat to get a solution that meets the size constraint value. It may
we constructS and the resulting estimate of the weighbe expected that increasidg should allow an improvement
coefficients are given by = Wg ,pr + jWr,ope. Following in the algorithms performance as it is more likely to get the
the MT-BCS scheme detailed in Section II-C the solution isoptimal locations included on the sampling grid. This also
N\ makes it more likely that two or more dipoles will be located
Wr opt = (diag(éo,,t) +S S) S Pp. (37) closer together than the size constraint making it hardgeto
a valid solution.

This process is repeated, with the merging and discarding
of dipoles. As a result it is again necessary to use the method
for redesigning the weight coefficients detailed below.

3) Fixed Beamformer Design for Given Dipole Locations This section provides design examples to verify the ef-
and Orientations: After obtaining the dipole locations andfectiveness of the proposed methods. All examples are im-
orientations using the CS-IMDSM or BCS-IMDSM, it isplemented on a computer with an Intel Xeon CPU E3-1271
necessary to re-design the coefficients of the array to gecai (3.60GHz) and 16GB of RAM.
closer approximation to the desired responses. This issaicla
fixed beamformer design problem and can be solved using the _
method described below, which is applicable to any artyitra‘rA" Broadside Example
array geometry. Here a broadside design example will be considered to

The redesign of the weight coefficients is achieved byerify the effectiveness of the proposed methods. Note, two
minimising the sidelobe levels subject to a unitary responsff-broadside design examples (which indicate the progose

IIl. DESIGNEXAMPLES

for the mainlobe direction. This can be formulated as methods can be effective for mainlobes over the entire angul
. 5 — S . range) has been omitted to conserve space but can be provided
r\,rvlm 1P = S(Winask © Wre)|l2 on request to interested readers.

subject to R(Syrr, (Winask 0 Wye)) = 1 Although the AIRMS does not necessarily require the
I(S (W o\iye)) = 0 (38) weight coefficients to be redesigned, they have been here in
MEAEmask = Hre ’ order to allow a fairer comparison between all three design
whereW,,ast = [Winask, Winask]? andW,,.sx is a series of methods considered. Unless otherwise stated, the example
1s and Os to ensure only the correct dipole orientations @ensiders the scenario 8 = 301 with a maximum possible
used,W,e = [R(Wy), I(wy)]T, & = ( R(S) —I(9) > aperture of 1Q. For the MT-BCS based deign method the
e resmATresd o I(S) R(S) )’ wvalues of3yr_1 and By r_o are set as suggested in [29],
Syrz only considers the mainlobe direction andlenotes the with the value ofs? being found from the CS-IMDSM and
Hadamard product. AIRMS design examples. In this work the CS-IMDSM and
AIRMS are implemented using cvx, a package for specifying
E. Altered Iterative Reweighted Minimisation Scheme for and solving convex programs [37], [38].
SSSTAS Note, the selection of\/ has been made to get close to

: . . . . . the sampling density suggested in [21], while also accognti
To avoid the merging and discarding of dipoles as requw%ir the fact that the proposed methods have to consider three

for IMDS.M’ this wor_k also Proposes an AIRMS. H_ere t_h%]ntennas at each grid point rather than a single antenna.
rewe_lghtlng scheme in (17) is adapted to also penallse«mpg\s discussed for the proposed methods it is also hard to
Ioc.at|o_ns that are co—.Iocated or th.at are 100 close togéliigs predict how changing/ will effect the performance of the
This gives the following reweighting scheme algorithms (in the case of the AIRMS a solution is not even

(Jwi='+ et m=1 always guaranteed). Experience with different design ¢tasn
suggest thatM/ = 301 for a 10\ aperture usually ensures a
suitable solution will be achieved by at least one of thedhre
proposed methods.

Now the iterative procedure is repeated until a solutiort tha For completeness the response from an equivalent ULA is
complies with the size constraint being enforced is obthinealso provided as a further comparison. To ensure optimised
Unfortunately, this algorithm will not always guarantee dipole locations and orientations for the ULAS, solve the

viable solution, due to the presenceeoin the calculation of minimisation in (38) withw,,,,sx = [1,1,1,...,1]7 to allow

reweighting terms. The inclusion efis required for numerical the three dipole orientations at each location to be consitle

stability, but prevents a zero weight coefficient in the eatr Then a neww,,,s; iS constructed in order to keep only

iteration guaranteeing a zero weight coefficient in the nedtte most significant dipole orientations at each locatiome T

iteration. Based on the authors’ experience with differeminimisation in (38) is then resolved to give the final opted

design parameters, if a solution is possible it will usudléy dipole orientations and locations.

achieved in less thano iterations. As a broadside design example is being considered the
It is also hard to predict if a solution will be achieved, omainlobe is given byd,;;, = 0° for ¢ = 90°, with the

the performance level achieved, based on the selectiar .of sidelobe regions defined Iy, = [10°,90°] for ¢, = £90°

This is as the choice af/ greatly effects how likely we are and being sampled every’. The polarisation information is

Sty =14 (lwi 'l +e)~' m > 1 and constraint met (39)
(e)! otherwise
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TABLE Il
Dipole locations and orientations for the broadside AIRMSign example.
n|do/X]axis| n|do/X | axis| n] dn/\ | axis
1 1.50 X 4 4.17 y 7 6.70 y
_ 2| 230 X 5] 5.00 X 8| 7.60 y
g 3| 327 y 6 | 5.80 y 9 | 8.47 X
g z
&
&
-70} : 732;'“{'33“3"”? ] B
— AIRMS An‘:l n'=2 n‘:3n‘:4 n‘:5 N6 n=7 n=8 n=9 n=1M=11
_8—090 —7‘0 —5‘0 —1;0 —1‘0 1‘0 :;0 E;O 7‘0 90 )
6 (degrees)

Fig. 4. Dipole orientations for broadside example designsthg CS-

. . . IMDSM.
Fig. 3. Designed broadside responses.

TABLE |

Dipole locations and orientations for the broadsideIBI®SM design The following performance measgres are_ summarised . n
example. Table V: aperture length, mean adjacent dipole separation
_ _ _ (Ad), number of dipoles required (also given a%aeduction
N|dn/Alaxis|n[dn/A | aXiS| N | dn/A | axis as compared to an equivalent ULA), norm of the error
1] 034 x |5] 379 | x | 9| 767 | y bet the desired and achieved S
> T 118  x 161 464 x 10 857 | 2 etween the desired and achieve respod_:jsgs{ Wopt||2:
3] 202 | x | 7| 559 | x | 11| 948 | z wherew,,; are the optimised weight coefficients for a given
4| 28 | x | 8] 653 ] x method), the amplitude of the peak sidelobe closest to the

mainlobe, the computation time and the number of iterations
required by each method.

given by y = 45° andn = 100°. For the CS-IMDSM and  Firstly, as expected, it can be seen that there are reasonabl
AIRMS examples the value af = 0.5 is used. small error values, suggesting that a good match to theedkesir

The responses for the CS-IMDSM, BCS-IMDSM andesponse has been achieved in each case. For two of the three
AIRMS design examples are shown in Figure 3. Whemroposed methods the error between the designed and desired
positive values off indicate the value rangé € [0°, 90°] response is less than that for the ULA. This suggests a better
for ¢ = 90°, while negative values df € [-90°, 0°] indicate approximation of the ideal response has been achievedtelesp
an equivalent range df € [0°, 90°] with ¢ = —90°. requiring less dipoles (48 less for BCS-IMDSM and 5%

For all three proposed methods the correct mainlobe Igss for AIRMS) and the introduction of sparsity. It can also
cation has been achieved (whereas the ULA example gdy& seen that by comparing the values/f a comparable
a 1° error), along with sufficient sidelobe attenuation. Formount of sparseness has been introduced by each of the
completeness the resulting dipole locations and orientati design methods, with the BCS-IMDSM performing slightly
(the axis to which the dipole is parallel to) are shown ihetter (and also giving the lowest response error).
Tables I, Il and lIl, respectively, where it is clear the size When considering the computation time it can be seen
constraint has been successfully enforced in all casesrd-igthat there is a difference between the three methods. The
4 illustrates the optimised orientations of the each of ipeld AIRMS has given a shorter computation compared to the CS-
locations for the CS-IMDSM designed example. HowevelMDSM which is explained by the fact that it requires fewer
figures for the other design methods are not shown due iterations as dipoles are not placed individually. Therals®
space requirements. If contacted they can be provided to theignificant reduction in the computation time between the
interested reader. Note, the dipole positions shown in tk&-IMDSM and BCS-IMDSM design examples. This would
Figure 4 do not accurately reflect the true dipole locationsuggest that the BCS-IMDSM design method is the more
The true locations should instead be determined from themputationally efficient IMDSM based design method. The
corresponding table provided. For comparisons sake the Uladthors’ experience with different design examples alsp su

orientations are detailed in Table IV. gests that this is consistently the case and that the diitere
TABLE Il TABLE IV
Dipole locations and orientations for the broadside BC®8M design Dipole orientations for the broadside ULA comparison exEmp
example.
n|laxis| n|axs| n | axis| n | axis| n | axis
n| do/X | axis| n|dn/X | axis| n | do/X | axis 1 y 6 z 10 y 14 y 18 y
1| 0.56 X 5| 448 y 9 8.12 y 2 X 7 X 11 y 15 X 19 z
2| 143 | y | 6| 544 | y | 10| 9.02 | y 3] z |8 y |12 vy [16]| z | 20| x
3] 25 | y | 7| 637 | y | 11| 989 | «x 41 x |9 y |18y [17| vy |21 vy
4] 348 | y |8 725 | y 5| x
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TABLE V TABLE VIl
Performance comparison for the broadside design examples. Performance comparison for the AIRMS broadside design plesn
CS BCS- M 101 201 301 401
Example IMDSM | IMDSM | AIRMS | ULA ApertureA NA 6.95 6.97 6.98
ApertureA 9.11 9.33 6.97 10 Ad/) NA 0.87 0.87 0.87
Ad/\ 0.91 0.93 0.87 0.50 Number of
Number of dipoles NA 9 9 9
dipoles 11 11 9 21 (% decrease) NA 57 57 57
(% decrease) 48 48 57 0 Error NA 0.48 0.46 0.45
Error 1.00 0.43 0.46 0.64 Amplitude of
Amplitude of closest sidelobe (dB] NA | -24.61 | -30.55 | -29.88
closest sidelobe (dB) -20.02 -31.47 -30.55 | -26.83 Computation
Computation time (seconds) NA | 34.06 | 62.03 | 99.06
time (seconds) 363.16 4.38 62.03 1.17 Number of
Number of iterations NA 2 3 2
iterations 11 11 3 2
TABLE IX
TABLE VI Performance comparison for varying valuescof
Performance comparison for the CS-IMDSM broadside desigmeles.
« 0.35 0.65 0.65
M 101 201 301 401 (method) (CS-IMDSM) | (CS-IMDSM) | (AIRMS)
ApertureA 9.08 7.19 9.11 9.13 ApertureA 5.31 8.89 6.10
M//\ 0.91 0.90 0.91 0.91 Ad/\ 0.88 0.89 0.87
Number of Number of
dipoles 11 10 11 11 dipoles 7 11 8
(% decrease) 48 52 48 48 (% decrease) 67 48 62
Error 1.07 1.12 1.00 1.25 Error 1.33 0.66 0.63
Amplitude of Amplitude of
closest sidelobe (dB) -14.18 | -17.85 | -20.02 | -10.47 closest sidelobe (dB -16.83 -21.22 -26.26
Computation Computation
time (seconds) 47.46 | 235.94 | 363.16 | 546.89 time (seconds) 379.95 339.11 71.84
Number of Number of
iterations 11 10 11 11 iterations 8 11 2
increases with the problem size. has remained reasonably constant and for the CS-IMSDM

To illustrate the effects of the value f used, now consider method the smallest separation has even occurred for the
the same design example again with the vallies= 101,201 largest value of)/. However, for the design of traditional
and M = 401, along with the original value ofif = 301. Sparse arrays using CS-based methods, increasing theofalue
The performance measures for the three proposed methddsvould lead to an expected increase in the mean adjacent
are summarised in Tables VI-VIII. dipole separation. This is because a denser grid will be able

As expected, increasing the value &f has increased the t0 give a closer approximating to the ideal locations and as a
computation for the three proposed design methods. Thisf@sult uses less dipole in total. By looking at the error leetw
because the design methods now consider a larger samplfiy designed responses and the ideal response, along with th
grid for each iteration, which in turn means a longer confmplitudes of the closest sidelobes, it can be seen that the
putation time. However, the effect on the other performan&&ect on the desirability of the designed response is aityil
measures used has proven to be harder to predict. hard to predict in advance.

For each of the design methods varying can alter the Finally, now consider the effect @f on the performance of
aperture of the designed array and the dipoles required & CS-IMDSM and AIRMS for the broadside design example.

implement it in practice. The mean adjacent dipole separatiTWo further values of will be consideredo = 0.35 and
0.65, respectively. The performance of the two methods for

these values is summarised in Table IX. For traditional CS
based problems it would be expected to see that increasing
the value ofa would increase the amount of error allowed,

TABLE VII
Performance comparison for the BCS-IMDSM broadside desigimples.

M 101 201 301 401 thus allowing extra sparsity to be introduced. Howevergher
Apertureh 9.05 | 949 | 933 | 888 we can see the iterative nature of the algorithms has made
Ad/A 091 | 095 | 093 | 089 predicting the effects of: difficult. Note, the reason why no
Number of . . .
dipoles 11 11 11 11 results are shown for AIRMS with = 0.35 is that no solution
(% decrease) 48 48 48 48 was obtained in this case.
Error 0.82 | 087 | 043 | 081
Amplitude of ) )
closest sidelobe (dB) -22.41 | -20.56 | -31.47 | -19.63 B. Discussion
Computation . . . . .
time (seconds) 343 | 286 | 438 | 38.00 This subsection presents a discussion of the main results
Number of in light of the implications for optimal parameter selectio
iterations 11 11 1 11 These points can be summarised as follows:
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1)

2)

3)

From the broadside design example it can be seen that
increasing the value oM always increases the cem
putation time as more grid points are being considered.
For CS or BCS it would be reasonable to expect that
increasingM would improve the solution in terms of
sparsity and desirability of the achieved response. Theln this work the problem of designing sparse SSSTA has
iterative nature of the algorithms makes it harder teeen addressed for the first time. Novel CS and BCS based
predict the effects on error between the reference apgproaches have been proposed to solve the problem of
achieved responses and the number of dipoles requirgtiultaneously optimising dipole locations and oriertas,
Experience suggests thaf = 301 is the best tradeoff With @ minimum spacing being used to avoid co-located
to make. dipoles. Design examples have been provided and show that an
The iterative nature of the algorithms has also madedgcurate approximation of a reference pattern can be ahiev
difficult to predict the effects of varying the value af using fewer dipoles than a comparable uniform SST array
for the CS-IMDSM and AIRMS. It is worth noting two (48%-67% reduction in the number of dipoles). This work
points. Firstly a value ohr = 0 would mean that the has focused on the design of linear SSSTAs for a single signal
approximation of the reference pattern would have olarisation of interest. In order to fully control a widenge of

be exact. This is unlikely to be possible when the ideaignal polarisations a planar array may be necessary. &xign
response is used. Secondly, a valuexof 1 will result the proposed approaches to this case is seen as an area for
in a response of all zeros and no dipoles being used, fagre research.
[0,0,...,1,...,0,0]" — [0,0,...,0,..,0,0] || = 1

The value ofL. has to be large enough to consider all

the angular and polarisation points of interest, as an ) ) .
acceptable response can not be guaranteed for the pol{g appreciate the support of the UK Engineering and Phys-
not directly considered. Increasirg further when this i@l Sciences Research Council (EPSRC) via the project

has been achieved adds computational complexity for R§yesian Tracking and Reasoning over Time (BTaRoT) grant
further gain in desirability of the array’s response. EP/K021516/1. We would like to thank the associate editor

for handling our paper and acknowledge the anonymous

(followed by AIRMS, when it gives a solution, and CS-
IMDSM).

IV. CONCLUSIONS
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It is also worth considering the problem of selecting whicheviewers’ comments that have helped improve this work.
of the three proposed methods should be used in a given situa-

tion. There are 4 criteria to be considered: guarantees of a s

lution, the sparsity introduced, error between the refeezeand
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