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Abstract

Inverse and ill-posed problems which consist of reconstructing the unknown support
of a source from a single pair of exterior boundary Cauchy data are investigated. The
underlying dependent variable, e.g. potential, temperature or pressure, may satisfy
the Laplace, Poisson, Helmholtz or modified Helmholtz partial differential equations
(PDEs). For constant coefficients, the solutions of these elliptic PDEs are sought as
linear combinations of explicitly available fundamental solutions (free-space Greens
functions), as in the method of fundamental solutions (MFS). Prior to this application
of the MFS, the free-term inhomogeneity represented by the intensity of the source is
removed by the method of particular solutions. The resulting transmission problem
then recasts as that of determining the interface between composite materials. In
order to ensure a unique solution, the unknown source domain is assumed to be star-
shaped. This in turn enables its boundary to be parametrised by the radial coordinate,
as a function of the polar or, spherical angles. The problem is nonlinear and the
numerical solution which minimizes the gap between the measured and the computed
data is achieved using the Matlab toolbox routine lsqnonlin which is designed to
minimize a sum of squares starting from an initial guess and with no gradient required
to be supplied by the user. Simple bounds on the variables can also be prescribed.
Since the inverse problem is still ill-posed with respect to small errors in the data
and possibly additional ill-conditioning introduced by the spectral feature of the MFS
approximation, the least-squares functional which is minimized needs to be augmented
with regularizing penalty terms on the MFS coefficients and on the radial function for
a stable estimation of these couple of unknowns. Thorough numerical investigations
are undertaken for retrieving regular and irregular shapes of the source support from
both exact and noisy input data.

Keywords: Inverse problem; Method of fundamental solutions; Nonlinear optimization;
Source domain identification.
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1 Introduction

The determination of the support of a source contained in a given underlying medium from
knowledge of the Cauchy data on the exterior boundary is investigated. As a practical proce-
dure it resembles non-destructive testing of materials. Closely related to this inverse problem
is that of detecting an unknown anomaly (defect) contained in a given domain from tomo-
graphic scaning on the skin/surface of the specimen under investigation. The inverse source
problem investigated in this study is also closely related to the inverse potential gravimetry
problem in which one is interested in determining the density inside the Earth from gravi-
metric measurements on its surface, see Novikov (1938) and Isakov (1990). Another possible
application of our inverse source domain identification could be electroencephalography, see
Jourhmane (1993), which is a non-invasive scanning tomographic technique of imaging/ mea-
suring the electrical activity of the brain.

Prior to the present study, there were a few works which investigated the reconstruc-
tion of a source domain from boundary measurements from, mainly theoretical perspec-
tives. The underlying medium was subject to various excitations such as electrical, i.e.
Laplace’s/Poisson’s equation for the potential in electroencephalography, see Ito and Liu
(2013) and Canelas et al. (2014), thermal, i.e. the modified Helmholtz equation for the
temperature in a fin, see Mamud et al. (2014), or acoustics, i.e. the Helmholtz equation for
the pressure, see Ikehata (1999).

In this paper, the aim is to reconstruct numerically in a stable and accurate manner the
source domain entering all the aforementioned stationary elliptic fields. We employ a com-
bined meshless technique with nonlinear optimization which recently has proved successful
in a related study by the authors, see Bin-Mohsin and Lesnic (2014), concerned with the
reconstruction of an inhomogeneity entering the modified Helmholtz equation.

We mention that for the potential field our problem and methodology is similar to that
developed recently by Martins (2012). However, in our study we investigate Helmhholtz-
type equations as well. We also do not avoid ill-conditioning by parameterising the unknown
shape with a finite set of trigonometric polynomials, but rather keep the shape general and
deal with it using regularization.

The plan of the paper is as follows. In Section 2, we introduce the mathematical formu-
lation of the inverse source domain problem and state the available uniqueness results. In
Section 3, we describe the MFS with the inhomogeneity removal, as well as the nonlinear
minimization proposed for reconstructing the star-shape support of the unknown source.
Section 4 presents and discusses thorough numerical results in which the convergence of the
objective function with the number of iterations is analysed. Also, the stability of the nu-
merical solution with respect to noise in the input data is investigated. Finally, Section 5
presents the conclusions of the work.

2 Mathematical formulation

We consider the inverse problem of determining an unknown source domain inhomogeneity
Ω2 compactly contained in a bounded domain Ω ⊂ R

d, d = 2, 3, appearing in the elliptic
equation

∇2u + k2u = F1 + (F2 − F1)χΩ2
in Ω, (1)
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where χΩ2
denotes the characteristic function of the domain Ω2, u ∈ H1(Ω) is the potential,

F1, F2 ∈ L2(Ω) are given source intensities which are assumed to be known and k is a
known real or complex number or function. We assume that all the domains involved have
a Lipschitz regularity boundary. From equation (1) one can observe that Ω2 represents the
support of the source function F2 if F1 ≡ 0.

By defining

u =:

{

u1 in Ω1 := Ω\Ω2,
u2 in Ω2,

(2)

equation (1) can be rewritten as the following transmission problem:

∇2u1 + k2u1 = F1 in Ω1, (3)

∇2u2 + k2u2 = F2 in Ω2, (4)

u1 = u2 on ∂Ω2, (5)

∂u1

∂n
=

∂u2

∂n
on ∂Ω2, (6)

where n denotes the outward unit normal to the boundary. It might be also useful to remark
that the right-hand side of equation (1) can be re-expressed as F1χΩ1

+ F2χΩ2
.

Associated to (3)-(6) we also have prescribed one pair of Cauchy boundary data on ∂Ω,
namely,

u1 = f on ∂Ω, (7)

∂u1

∂n
= g on ∂Ω. (8)

The inverse problem then requires the determination of the triplet solution (u1, u2, ∂Ω2) sat-
isfying equations (3)-(8). Such an important inverse problems arises in gravimetry, where
one would like to determine the density of the Earth from the Cauchy data measurements
of the gravity and its normal derivative on its surface. Other related obstacle identification
problems and results in various fields are discussed by El-Badia and Ha-Duong (2000) and
Isakov (2009).

The reconstruction of the source domain Ω2 is nonlinear and ill-posed. One serious issue
here is the uniqueness of solution from a single pair of Cauchy data (7) and (8). Unlike
the inverse conductivity problem of electrical impedance tomography (EIT) in which the
knowledge of the Dirichlet-to-Neumann map suffices to determine uniquely an isotropic con-
ductivity, in the problem under investigation a single pair of Cauchy data contains all the
information necessary for reconstruction, see Alves et al. (2009), in the sense that any other
Cauchy data pair does not add any further information. Thus, one could take, without loss
of generality, homogeneous Dirichlet data f ≡ 0 in (7) and non-identically zero Neumann
data 0 6≡ g ∈ H−1/2(∂Ω) in (8).

The following theorems give the classes of star-shaped, convex and polygonal obstacles
for which uniqueness holds.

In the case of Laplace’s/Poisson’s equation, i.e. k = 0 in (1), we have the following
uniqueness theorem in the class of star-shaped domains, see Isakov (1990, 2006), Hettlich
and Rundell (1999), and Isakov et al. (2011).
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Theorem 1. Let k = 0 in (1). If F1 and F2 are given real constants, then the inverse
problem (3)-(8) has at most one solution Ω2 in the class of star-shaped domains with respect
to their centre of gravity, i.e. barycentre.

In the case of the modified Helmholtz equation, i.e. k = ik′ with k′ ∈ R
∗
+ in (1), we have the

following uniqueness theorem in the class of convex domains, see Isakov (1990) and Mamud
et al. (2014).

Theorem 2. Let k = ik′ with k′ ∈ R
∗
+ in (1). If F1 ≡ 0 and F2 > 0, then the inverse

problem (3)-(8) has at most one solution Ω2 in the class of convex domains provided that, in
addition, u is prescribed in an interior a priori known ball included in Ω2.
In the absence of this latter interior observation so far, one can only determine the centroid
and the effective radius of Ω2.

Finally, in the case of the Helmholtz equation, i.e. k ∈ R
∗
+ in (1), if F1 ≡ 0, Ω2 is a polygon

and 0 6= F2 ∈ L2(Ω2) is an unknown function which is locally Holder continuous with ex-
ponent α ∈ (0, 1] in the neighbourhood of each vetex of ∂Ω2, then one can recover uniquely
the convex hull [Ω2] of Ω2 in the problem (3)-(8), see Ikehata (1999).

Once the uniqueness of solution has been discussed, the next topic is to reconstruct the
source domain Ω2 numerically. Recently, the method of fundamental solutions (MFS) has
proved, see Bin-Mohsin and Lesnic (2012, 2014), and Lesnic and Bin-Mohsin (2012), versatile
and easy to use in detecting cavities, rigid inclusions and contact impedance obstacles, as
well as inhomogeneities in inverse geometric problems governed by the modified Helmholtz
equation. For a recent review of the MFS, as applied to solving inverse geometric problems,
see Karageorghis et al. (2011). In this paper, we investigate yet another application of the
MFS to reconstruct the source domain Ω2 from the Cauchy data (7) and (8).

3 The method of fundamental solutions (MFS)

Prior to applying the MFS, we need to move the right-hand side source inhomogeneities F1

and F2 in (3) and (4) to the boundary conditions (5)-(8). This is done by finding particular
solutions to (3) and (4), e.g. in the form of the Newton potential for Poisson’s equation
when k = 0, see Atkinson (1985). For the general case, we refer to the technique of Alves
and Chen (2005), as well as to the references therein. However, as in our investigation the
objective is to find the support Ω2 of F2 rather than its value which, in fact, is assumed to
be known, we will consider the particular, but important, case, see Ito and Liu (2013) and
Canelas et al. (2014), that F is piecewise constant within Ω, i.e. F1 and F2 are constants
in (3) and (4). Without loss of generality, we can further assume that F1 = 0 and F2 = 1.
Then, equations (3) and (4) become

∇2u1 + k2u1 = 0 in Ω1, (9)

∇2u2 + k2u2 = 1 in Ω2. (10)

We now decompose

u2 = uh
2 + up

2, (11)
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where the homogeneous part uh
2 satisfies

∇2uh
2 + k2uh

2 = 0 in Ω2, (12)

and the inhomogeneous part is just a particular solution of equation (10) (in the whole R
d)

given by, see for example Jin and Zheng (2005),

up
2(x) =

|x|2
2d

, if k = 0, (13)

up
2(x) =

1

k2
+

{

I0(−ik|x|) if ik ∈ R
∗
−

J0(k|x|) if k ∈ R
∗
+

(x ∈ R
2), (14)

up
2(x) =

1

k2
+

{

sinh(−ik|x|)
|x|

if ik ∈ R
∗
−

sin(k|x|)
|x|

if k ∈ R
∗
+

(x ∈ R
3), (15)

where of course, in the three-dimensional case the limits in (15) are equal to unity at the origin
x = 0. Besides, the functions J0 and I0 denote the Bessel and the modified Bessel functions
of the first kind of order 0, respectively. These special functions are analytical everywhere
(including the origin) and in Matlab they are evaluated using routines besselj(0,k*r) (for
J0) and besseli(0,k*r) (for I0).

With the superposition (11), the transmission interface conditions (5) and (6) become

u1 = uh
2 + up

2 on ∂Ω2, (16)

∂u1

∂n
=

∂uh
2

∂n
+

∂up
2

∂n
on ∂Ω2, (17)

In (17), the normal derivatives of the particular solutions (13)-(15) are given by

∂up
2

∂n
(x) =

x · n
d

, if k = 0, (18)

∂up
2

∂n
(x) =

{

− ikx·n
|x|

I1(−ik|x|) if ik ∈ R
∗
−

−kx·n
|x|

J1(k|x|) if k ∈ R
∗
+

(x ∈ R
2), (19)

∂up
2

∂n
(x) =







(x·n)
|x|2

[

−ik cosh(−ik|x|) − sinh(−ik|x|)
|x|

]

if ik ∈ R
∗
−

(x·n)
|x|2

[

k cos(k|x|) − sin(k|x|)
|x|

]

if k ∈ R
∗
+

(x ∈ R
3), (20)

for x ∈ ∂Ω2, where J1 and I1 denote the Bessel and the modified Bessel functions of the first
kind of order 1, respectively. They are evaluated using the routines besselj(1,k*r) (for
J1) and besseli(1,k*r) (for I1).

Once the particular solution up
2 has been prescribed as in (13)-(15), it can be removed

from u2 such that uh
2 = u2−up

2 satisfies the homogeneous equation (12). Then, we can apply
the MFS for the composite material Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅, as described in Berger
and Karageorghis (1999) for the Laplace equation and in Bin-Mohsin and Lesnic (2011) for
Helmholtz-type equations in layered materials. This consists of approximating the solutions
u1 and uh

2 of the elliptic homogeneous equations (9) and (12) by finite linear combinations
of fundamental solutions of the form

u1,2N(x) =

2N
∑

j=1

ajGk(x, ξj
1), x ∈ Ω1, (21)

uh
2,N(x) =

N
∑

j=1

bjGk(x, ξj
2), x ∈ Ω2, (22)
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where a = (aj)j=1,2N and b = (bj)j=1,N are unknown coefficients to be determined, (ξj
1)j=1,2N

are source points located outside the annular domain Ω1, (ξj
2)j=1,N are source points located

outside the domain Ω2, and Gk is the fundamental solution of the elliptic equation ∇2u +
k2u = 0 given by, see e.g. Alves and Chen (2005),

Gk(x, ξ) =







ln |x − ξ| if k = 0
K0(−ik|x − ξ|) if ik ∈ R

∗
−

Y0(k|x − ξ|) if k ∈ R
∗
+

(x ∈ R
2), (23)

Gk(x, ξ) =











1
|x−ξ|

if k = 0
exp(−ik|x−ξ|)

|x−ξ|
if ik ∈ R

∗
−

exp(ik|x−ξ|)
|x−ξ|

if k ∈ R
∗
+

(x ∈ R
3), (24)

where Y0 and K0 denote the Bessel and the modified Bessel functions of the second kind
of order 0, respectively. These special functions have both a logarithmic singularity at
the origin and are evaluated in Matlab using the routines bessely(0,k*r) (for Y0) and
besselk(0,k*r) (for K0). One can avoid this singularity at the origin by employing the
non-singular functions J0 and I0 in place of Y0 and K0, respectively, as in the boundary
knot method (BKM) of Chen and Hon (2003). However, the meshless BKM, due to its
spectral expansion character, it inherently introduces additional unwanted ill-conditioning
and therefore, we do not follow this method here. Instead, we still use a meshless method,
namely, the MFS but which by being based on the fundamental solution (23) (or (24)) it
exhibits a singularity at the origin (when |x−ξ| = 0). The use of this fundamental solution is
further justified rigorously through the denseness results of Bogomolny (1985) and Alves and
Chen (2005). Moreover, for simplicity, we do not employ the complex version of the MFS for
the Helmholtz equation in two-dimensions based on the Hankel function of the first kind of
order zero, namely, H

(1)
0 = J0 + iY0 because the singular character is still maintained in the

imaginary part Y0, see Ennenbach and Niemeyer (1996). The only slight difference, which

in practice may happen very rarely, between using Y0 instead of H
(1)
0 is when Y0(k|x − ξ|)

may accidentally become very small giving poor or spurious numerical results, see Barnett
and Betcke (2008). We remark that the normalisation constants usually appearing in the
fundamental solution (23) (or (24)) have been omitted, as they were incorporated in the
unknown coefficients a and b in (21) and (22), respectively. Finally, we mention that all the
analysis of the section can easily be extended to include anisotropic homogeneous materials
having as their leading part in (1) the anisotropic Laplace-Beltrami operator

∑d
i,j=1 Kij

∂2u
∂xi∂xj

,

where (Kij)i,j=1,d denotes the symmetric and positive conductivity tensor. The main change

then is to replace the radial distance |x| by the geodesic distance xT K−1x, see e.g. Jin and
Chen (2006).

In what follows, for simplicity, we explain the inverse methodology in two-dimensions
but a similar technique applies to three-dimensional problems as well, see Karageorghis et
al. (2013).

The placement of source and collocation points is similar to that employed by Bin-Mohsin
and Lesnic (2014), as follows. The source points (ξj

1)j=1,N 6∈ Ω are placed on a (fixed) dilated

pseudo-boundary ∂Ω′ of similar shape as ∂Ω. The remaining source points (ξj
1)j=N+1,2N ∈ Ω2

and (ξj
2)j=1,N 6∈ Ω2 are placed on contraction and dilation (moving) pseudo-boundaries ∂Ω′

2

and ∂Ω′′
2 similar to ∂Ω2 at a distance δ > 0 in the inward and outward directions, respectively.

Without loss of generality, we may assume that the simply-connected domain Ω is the
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unit circle B(0; 1). We also assume that the unknown support of the source F2 is star-shaped
with respect to the origin, i.e.

∂Ω2 = {r(θ)(cos(θ), sin(θ))|θ ∈ [0, 2π)}, (25)

where r is a 2π-periodic smooth function with values in (0, 1). The class of star-shaped
domains is required for the uniqueness of a solution in the case k = 0 in Theorem 1, and it
is also sufficiently general to model a wide range of shapes, e.g. circles, ellipses, rounded-
rectangles, beans, acorns, kites, etc. that are usually tested in the inverse shape detection
literature, see e.g. Ivanyshyn and Kress (2006), and Karageorghis and Lesnic (2009). In
this setup of particular domains Ω and Ω2, the collocation and source points are uniformly
distributed as follows, see Bin-Mohsin and Lesnic (2014),

Xi = (cos(θi), sin(θi)), Xi+N = ri(cos(θi), sin(θi)), i = 1, N, (26)

ξj
1 = R(cos(θj), sin(θj), ξj+N

1 = (1 − δ)Xj+N , ξj
2 = (1 + δ)Xj+N , j = 1, N, (27)

where θi = 2πi/N , ri := r(θi) for i = 1, N , R > 1 and δ ∈ (0, 1).
The unknown radii vector r = (ri)i=1,N , characterising the star-shaped support Ω2, to-

gether with the unknown MFS coefficients a and b, giving the approximations of the solutions
u1 and u2, are simulateneously determined by imposing the transmission conditions (16), (17)
and the Cauchy data (7), (8) at the collocating points (26) in a least-squares sense. This
results into minimizing the following (regularized) least-squares nonlinear objective function:

T (a,b, r) :=

∥

∥

∥

∥

∥

u1 − f

∥

∥

∥

∥

∥

2

L2(∂Ω)

+

∥

∥

∥

∥

∥

u1

∂n
− gǫ

∥

∥

∥

∥

∥

2

L2(∂Ω)

+

∥

∥

∥

∥

∥

u1 − uh
2 − up

2

∥

∥

∥

∥

∥

2

L2(∂Ω2)

+

∥

∥

∥

∥

∥

∂u1

∂n
− ∂uh

2

∂n
− ∂up

2

∂n

∥

∥

∥

∥

∥

2

L2(∂Ω2)

+ λ1

{

‖a‖2 + ‖b‖2
}

+ λ2‖r′‖2, (28)

where λ1, λ2 ≥ 0 are regularization parameters to be prescribed. These parameters are
introduced in order to ensure/improve the stability of the nonlinear Tikhonov regularization
functional (28). In (28), the Neumann data (8) was input as being a noisy perturbation gǫ of
the exact data g in order to simulate the errors which are inherently present in any practical
measurement. The last term in (28) represents a first-order derivative smoothness constraint
on our desired shape for Ω2, and is defined as:

‖r′‖2 =
N

∑

i=1

(

ri − ri−1

θi − θi−1

)2

, (29)

with the convention that r0 = rN and θ0 = 0. Weighting/normalisation of the first 4 terms
in (28) may be considered in order to avoid possible over-minimizations of individual terms
but in our numerical experiments performed in Section 4 this was found unnecessary.
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Introducing the MFS approximations (21) and (22) into (28) results in

T (a,b, r) =

N
∑

i=1

[

2N
∑

j=1

ajGk(Xi, ξ
j
1) − f(Xi)

]2

+

2N
∑

i=N+1

[

2N
∑

j=1

aj
∂Gk

∂n
(Xi−N , ξj

1) − gǫ(Xi−N)

]2

+
3N
∑

i=2N+1

[

2N
∑

j=1

ajGk(Xi−N , ξj
1) −

N
∑

j=1

bjGk(Xi−N , ξj
2) − up

2(Xi−N)

]2

+
4N
∑

i=3N+1

[

2N
∑

j=1

aj
∂Gk

∂n
(Xi−2N , ξj

1) −
N

∑

j=1

bj
∂Gk

∂n
(Xi−2N , ξj

2) −
∂up

2

∂n
(Xi−2N)

]2

+λ1

{

2N
∑

j=1

a2
j +

N
∑

j=1

b2
j

}

+ λ2

N
∑

j=1

(rj − rj−1)
2, (30)

where in the last term we have redenoted λ2/(2π/N)2 by λ2.
The above minimization imposes 4N regularised equations in the 4N unknowns (a,b, r).
The noisy flux data gǫ is input as

gǫ(Xi) = (1 + ρi p)g(Xi), i = 1, N, (31)

where p represents the percentage of noise and ρi is a pseudo-random noisy variable drawn
from a uniform distribution in [–1, 1] using the MATLAB c© command -1+2*rand(1,N).

In equation (30), the normal derivative of Gk, via (23) and (24), is given by

∂Gk

∂n
(x, ξ) =











(x−ξ)·n
|x−ξ|2

if k = 0
ik(x−ξ)·n

|x−ξ|
K1(−ik|x − ξ|) if ik ∈ R

∗
−

−k(x−ξ)·n
|x−ξ|

Y1(k|x − ξ|) if k ∈ R
∗
+

(x ∈ R
2) (32)

∂Gk

∂n
(x, ξ) =











− (x−ξ)·n
|x−ξ|3

if k = 0
(−ik|x−ξ|−1) exp(−ik|x−ξ|)

|x−ξ|3
(x − ξ) · n if ik ∈ R

∗
−

(ik|x−ξ|−1) exp(ik|x−ξ|)
|x−ξ|3

(x − ξ) · n if k ∈ R
∗
+

(x ∈ R
3) (33)

where Y1 and K1 denote the Bessel and the modified Bessel functions of the second kind
of order 1, respectively. These special functions have are evaluated using the routines
bessely(1,k*r) (for Y1) and besselk(1,k*r) (for K1). In two-dimensions, i.e. d = 2,
the normal n to the boundary ∂Ω1 is given by

n(X) =

{

(cos(θ), sin(θ)), X ∈ ∂Ω,
1√

r2(θ)+r′2(θ)
(−r′(θ) sin(θ) − r(θ) cos(θ), r′(θ) cos(θ) − r(θ) sin(θ)), X ∈ ∂Ω2.

(34)

In this formula, the derivative r′ is approximated using finite differences as

r′(θi) ≈
ri − ri−1

θi − θi−1

, i = 1, N. (35)

The routine lsqnonlin does not require the user to provide the gradient and, in addition,
it offers the option of imposing lower and upper bounds on the elements of the vector of
unknowns (a,b, r) through the vectors lb and ub.
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4 Numerical results and discussion

For simplicity, we consider numerical realisations in the two-dimensions only, with the three-
dimensional case being deferred to future work. In all numerical experiments, the initial
guess for the unknown vectors a and b are 0, and the initial guess for Ω2 is a circle centred
at the origin of radius 0.7. The Matlab toolbox routine lsqnonlin was run iteratively until
a user-specified tolerance of XTOL = 10−6 was achieved, or until when a user-specified
maximum number of iterations MAXCAL = 1000× 4N was reached. We have also set the
simple bounds on the variable (a,b, r) as the box [−1010, 1010]2N × [−1010, 1010]N × (0, 1)N .
The choices of the regularization parameters λ1 and λ2 in (30) were based on trial and error,
but nevertheless more research work needs to be undertaken in the future on the rigorous
selection of multiple regularization parameters, see e.g. Chen et al. (2008) and Belge et al.
(2002).

In what follows, we take k = 0 for examples 1(a) and 2(a), k′ = 1 for examples 1(b) and
2(b), and k = 1 for examples 1(c) and 2(c). In the subsequent figures 2–6 and 8–11, we
graphically represent the initial guess by (−−−), the numerical reconstruction by (− ◦ −)
and the exact target by (—–).

4.1 Example 1. (reconstructing a circular source domain)

We consider first retrieving a circle centred at the origin of radius R0 = 0.5. That is, we seek
the star-shape approximation (25) for the polar radius function

r(θ) ≡ R0 = 0.5, θ ∈ [0, 2π). (36)

For the three cases of k that we consider we take the following examples with analytical
solutions satisfying equations (9) and (10).

4.1.1 Example 1(a). (k = 0, Laplace’s equation)

In the case k = 0, equations (9), (10) and (12) become

∇2u1 = 0 in Ω1, (37)

∇2u2 = 1 in Ω2, (38)

∇2uh
2 = 0 in Ω2. (39)

From (13) we also have that

up
2(r, θ) =

r2

4
, (r, θ) ∈ R+ × [0, 2π). (40)

We then take the analytical solutions of the equations (37)-(39) to be given by

u1(r, θ) =
R2

0

2
ln

(

r

R0

)

+
R2

0

4
, (r, θ) ∈ (R0, 1) × [0, 2π), (41)

u2(r, θ) =
r2

4
, (r, θ) ∈ (0, R0) × [0, 2π), (42)

uh
2(r, θ) = 0, (r, θ) ∈ (0, R0) × [0, 2π). (43)
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Based on (41), the input Cauchy data (7) and (8) are given by

u1(1, θ) = f(θ) =
R2

0

2
ln

(

1

R0

)

+
R2

0

4
, θ ∈ [0, 2π), (44)

∂u1

∂n
(1, θ) = g(θ) =

R2
0

2
, θ ∈ [0, 2π), (45)

and, based on (25) and (40), the transmission interface conditions (16) and (17) become

u1(r(θ), θ) = uh
2(r(θ), θ) +

r2(θ)

4
, θ ∈ [0, 2π), (46)

∂u1

∂n
(r(θ), θ) =

∂uh
2

∂n
(r(θ), θ) +

r(θ)

2
, θ ∈ [0, 2π). (47)

From Theorem 1, we know that (36), (41) and (42) is the unique solution of the problem
(37), (38), (44), (45), (5) and (6) in the class of star-shaped domains (25) with respect
to the origin. In order to find this solution, we solve numerically, as described in Section
3, the inverse problem given by equations (37), (40), (44)-(47) to retrieve the analytical
solution (r(θ), u1(r, θ), u

h
2(r, θ)) given by equations (36), (41) and (43). Also, once uh

2 has
been obtained, equations (11) and (40) yield u2.

4.1.2 Example 1(b). (k = ik′ with k′ ∈ R
∗
+, modified Helmholtz equation)

In the case k = ik′ with k′ ∈ R
∗
+, equations (9), (10) and (9) become

∇2u1 − k′2u1 = 0 in Ω1, (48)

∇2u2 − k′2u2 = 1 in Ω2, (49)

∇2uh
2 − k′2uh

2 = 0 in Ω2. (50)

From (13) we also have that

up
2(r, θ) = − 1

k′2
+ I0(k

′r), (r, θ) ∈ R+ × [0, 2π). (51)

We then take the analytical solutions of the equations (48)-(50) to be given by

u1(r, θ) = B0K0(k
′r), (r, θ) ∈ (R0, 1) × [0, 2π), (52)

u2(r, θ) = A0I0(k
′r) − 1, (r, θ) ∈ (0, R0) × [0, 2π), (53)

uh
2(r, θ) = (A0 − 1)I0(k

′r) − 1 +
1

k′2
, (r, θ) ∈ (0, R0) × [0, 2π), (54)

where

A0 =
K1(k

′R0)

I0(k′R0)K1(k′R0) + I1(k′R0)K0(k′R0)
,

B0 = − I1(k
′R0)

I0(k′R0)K1(k′R0) + I1(k′R0)K0(k′R0)
, (55)

where we have used that K ′
0 = −K1 and I ′

0 = I1. Based on (52), the input Cauchy data (7)
and (8) are given by

u1(1, θ) = f(θ) = B0K0(k
′), θ ∈ [0, 2π), (56)

∂u1

∂n
(1, θ) = g(θ) = −B0k

′K1(k
′), θ ∈ [0, 2π), (57)
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and, based on (25) and (51), the transmission interface conditions (16) and (17) become

u1(r(θ), θ) = uh
2(r(θ), θ) + I0(k

′r(θ)) − 1

k′2
, θ ∈ [0, 2π), (58)

∂u1

∂n
(r(θ), θ) =

∂uh
2

∂n
(r(θ), θ) + k′I1(k

′r(θ)), θ ∈ [0, 2π). (59)

Then, we solve numerically, as described in Section 3, the inverse problem given by equa-
tions (48), (50), (56)-(59) to retrieve the analytical solution (r(θ), u1(r, θ), u

h
2(r, θ)) given by

equations (36), (52) and (54). Also, once uh
2 has been obtained, equations (11) and (51)

yield u2.

4.1.3 Example 1(c). (k ∈ R
∗
+, Helmholtz equation)

In the case k ∈ R
∗
+, we take the analytical solutions of equations (9), (10) and (12) to be

given by

u1(r, θ) = D0Y0(kr), (r, θ) ∈ (R0, 1) × [0, 2π), (60)

u2(r, θ) = C0J0(kr) + 1, (r, θ) ∈ (0, R0) × [0, 2π), (61)

uh
2(r, θ) = (C0 − 1)J0(k

′r) + 1 − 1

k2
, (r, θ) ∈ (0, R0) × [0, 2π), (62)

where

C0 =
Y1(kR0)

Y0(kR0)J1(kR0) − Y1(kR0)J0(kR0)
,

D0 =
J1(kR0)

Y0(kR0)J1(k′R0) − Y1(k′R0)J0(k′R0)
, (63)

where we have used that Y ′
0 = −Y1 and J ′

0 = −J1. From (13) we also have that

up
2(r, θ) =

1

k2
+ J0(kr), (r, θ) ∈ R+ × [0, 2π). (64)

Based on (60), the input Cauchy data (7) and (8) are given by

u1(1, θ) = f(θ) = D0Y0(k), θ ∈ [0, 2π), (65)

∂u1

∂n
(1, θ) = g(θ) = −D0kY1(k), θ ∈ [0, 2π), (66)

and, based on (25) and (64), the transmission interface conditions (16) and (17) become

u1(r(θ), θ) = uh
2(r(θ), θ) + J0(kr(θ)) +

1

k2
, θ ∈ [0, 2π), (67)

∂u1

∂n
(r(θ), θ) =

∂uh
2

∂n
(r(θ), θ) − kJ1(kr(θ)), θ ∈ [0, 2π). (68)

Then, we solve numerically, as described in Section 3, the inverse problem given by equa-
tions (9), (12), (65)-(68) to retrieve the analytical solution (r(θ), u1(r, θ), u

h
2(r, θ)) given by

equations (36), (60) and (62). Also, once uh
2 has been obtained, equations (11) and (64)

yield u2.
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Initially, we have performed several numerical runs with various values of the input MFS
parameters and, for illustrative purposes, we have decided to show in figures 1–6 only a
typical selected set of results obtained with δ = 0.5, R = 2 and N = 20.

We consider first the case of exact data, i.e. p = 0 in equation (31). Figure 1 shows
the unregularised nonlinear least-squares objective function (30) with λ1 = λ2 = 0, as a
function of the number of iterations for examples 1(a)–1(c). From this figure it can be seen
that a monotonic decreasing convergence is obtained for all examples. Furthermore, the
convergence is faster for example 1(a) than for examples 1(b) and 1(c), but, at present, we
have no explanation why this occurs.

In figure 2, we present the numerically reconstructed inner boundary for various numbers
of iterations for no noise and no regularization for example 1(a). From this figure, it can be
seen that the reconstructed inner source domain becomes accurate starting from 20 iterations
up to 40 iterations. We also observe that as the number of iterations increases over 100, the
reconstruction starts to be unstable and inaccurate.

We also add p = 10% noise in the flux g as in equation (31). The numerically obtained
results for noise p = 10% with no regularization for various numbers of iterations for example
1(a) are shown in figure 3. From this figure, we note that the numerical solutions become
less accurate as the number of iterations increases.

The corresponding regularized results obtained with different values of the regularization
parameters λ1 = λ2 ∈ {10−9, 10−6, 10−3} after 500 iterations are shown in figures 4–6 for
examples 1(a)–1(c), respectively. From these figures, we observe that λ1 = λ2 = 10−3 yields
the most accurate results for all Examples 1(a)–1(c).

Number of iterations
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U
n

re
g

u
la

ri
se

d
 o

b
je

ct
iv

e 
fu

n
ct

io
n

10-10

10-8

10-6

10-4

10-2

100

102

Example 1(a)
Example 1(b)
Example 1(c)

Figure 1: The unregularised objective function, as a function of the number of iterations,
for no noise for examples 1(a)-1(c).
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iter=20 iter=30 iter=40

iter=100 iter=500 iter=1000

Figure 2: The reconstructed inner source domain for various numbers of iterations for no
noise and no regularization, for example 1(a).

iter=20 iter=30 iter=40

iter=100 iter=500 iter=1000

Figure 3: The reconstructed inner source domain for various numbers of iterations for p =
10% noise and no regularization, for example 1(a).
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Figure 4: The reconstructed inner source domain after 500 iterations for noise p = 10% and
regularization, for example 1(a).
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Figure 5: The reconstructed inner source domain after 500 iterations for noise p = 10% and
regularization, for example 1(b).
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Figure 6: The reconstructed inner source domain after 500 iterations for noise p = 10% and
regularization with, for example 1(c).

4.2 Example 2. (reconstructing a bean shape source domain)

As a second example we consider recovering a bean shape source domain given by the star-
shape radial representation, see Bin-Mohsin and Lesnic (2014),

r(θ) =
0.5 + 0.4 cos(θ) + 0.1 sin(θ)

1 + 0.7 cos(θ)
, θ ∈ [0, 2π). (69)

In addition to being a more irregular shape to be retrieved than the previous simple circular
shape (36), it also prevents analytical solutions for u being explicitly available. In this case,
the Neumann data (8) is simulated numerically by solving first the direct problem given by
equations (5), (6), (9), (10) and the Dirichlet data (7) given by

u1(1, θ) = f(θ) = 0, θ ∈ [0, 2π], (70)

when the source domain Ω2 is known and given by the star-shape representation (25) with
the radial polar coordinate given by (69). Using the decomposition (11) in fact we solve (9),
(12), (16), (17) and (70) using the MFS expansions (21) and (22) to determine the solutions
u1 and uh

2 . This recasts to solving the following linear system of 3N equations with 3N
unknowns a = (aj)j=1,2N and b = (bj)j=1,2N :

2N
∑

j=1

ajGk(Xi, ξ
j
1) = 0, i = 1, N, (71)
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2N
∑

j=1

ajGk(Xi, ξ
j
1) −

N
∑

j=1

bjGk(Xi, ξ
j
2) = up

2(Xi), i = N + 1, 2N, (72)

2N
∑

j=1

aj
∂Gk

∂n
(Xi−N , ξj

1) −
N

∑

j=1

bj
∂Gk

∂n
(Xi−N , ξj

2) =
∂up

2

∂n
(Xi−N), i = 2N + 1, 3N. (73)

In particular, the flux (8) is also of interest because it will be the overdetermined data in
the inverse problem to be considered in the sequel. The normal derivative (8) is calculated
by differentiating (21), namely

∂u1,2N

∂n
(x) =

2N
∑

j=1

aj
∂Gk

∂n
(x, ξj

1), x ∈ ∂Ω, (74)

where ∂Gk/∂n is expressed from equation (32). This is shown in figures 7(a)-(c) for k =
0, k′ = 1 and k = 1, for δ = 0.3, R = 1.5 and various degrees of freedom N . From these
figures it can be seen that the numerical results are convergent, as the number of degrees of
freedom increases. Twenty, respectively forty evenly spread points out of the curves N = 40
(for k = 0 and k′ = 1), respectively, N = 80 (for k = 1) are chosen as Neumann numerically
simulated data (8) in the inverse problem which is solved using N = 20 (for k = 0 and
k′ = 1), respectively, N = 40 (for k = 1).
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Figure 7: The normal derivative (8) obtained by solving the direct problem (9), (12), (16),
(17) and (70) using the MFS with various values of N for k = 0, k′ = 1 and k = 1.

Figures 8 - 11 for example 2 represent the same quantities as those contained in figures 3
- 6 for example 1 and similar conclusions can be observed, though, clearly, the reconstruction
of the non-convex shape (69) is more involved than that of the simple circular shape (36).
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iter=100 iter=500 iter=1000

iter=1500 iter=2000 iter=4000

Figure 8: The reconstructed inner source domain for various numbers of iterations for p =
10% noise and no regularization, for example 2(a) with k = 0.
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Figure 9: The reconstructed inner source domain after 2000 iterations for noise p = 10% and
regularization, for example 2(a) with k = 0.
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Figure 10: The reconstructed inner source domain after 500 iterations for noise p = 10% and
regularization, for example 2(b) with k′ = 1.
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Figure 11: The reconstructed inner source domain after 500 iterations for noise p = 10% and
regularization, for example 2(c) with k = 1.
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5 Conclusions

In this paper, an inverse geometric problem which consists of reconstructing the unknown
support of a source in the Poisson equation from a single pair of exterior boundary Cauchy
data has been investigated using the MFS. Several examples have been investigated showing
that the numerical results are satisfactory reconstructions for the unknown support of a
source domain with reasonable stability against inverting noisy data. Regularization method
has been used in order to obtain stable and accurate numerical results. Extensions to three-
dimensional and time-dependent problems, see Harbrecht and Tausch (2011), will be the
subject of a future work.
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