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Exact holomorphic differentials on a quotient of the Ree

curve.

Neil Dummigan, Shabieh Farwa ∗

September 9, 2013

Abstract

We produce several families of exact holomorphic differentials on a quotient X
of the the Ree curve in characteristic 3, defined by X : yq − y = xq0(xq − x) /Fq,
(where q0 = 3s, s > 1 and q = 3q2

0
). We conjecture that they span the whole space

of exact holomorphic differentials, and prove this in the cases s = 1 and s = 2, by
calculating the kernel of the Cartier operator.

§ 1 Introduction

For a nonsingular projective curve C over a field K, H0(C,Ω1) is the K-vector space
of holomorphic (i.e. everywhere regular) differentials on C (defined over K). Such a
differential is said to be exact if it is of the form df for some function f ∈ K(C). If f is
constant then df = 0. If f is non-constant then f necessarily has at least one pole, and
if K has characteristic 0 then df will have a pole in the same place. So in characteristic
0, there are no non-zero exact holomorphic differentials. But in characteristic p > 0,
where pth powers differentiate to 0, a pole whose order is a multiple of pmight disappear
upon differentiation, and there can be non-zero exact holomorphic differentials. Inside
H0(C,Ω1), the subspace of exact holomorphic differentials is the kernel of the Cartier
operator C. It seems like a natural problem, given a curve C/K with char(K) = p > 0,
to calculate this subspace. There are at least two further ways to motivate this problem.

First, dimKH0(C,Ω1)C=0 = dimKHom(αp, JC [p]), the so-called a-number of the Jaco-
bian JC of C [LO, Equation 5.2.8]. Here JC [p] is the sub-group-scheme of p-torsion,
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and αp ≃ Spec(K[x]/xp) is the group-scheme of pth-roots of 0. Note that each element
b ∈ K gives an endomorphism of αp, via x 7→ bx, so Hom(αp, JC [p]) is naturally a K-
vector space. This a-number is an important invariant of JC [p]. For instance, a+f ≤ g,
where f = dimFp(JC [p](K)) is the “p-rank” of JC . For more, see [FGMPW], [LO].

Second, suppose that K is finite, that E/K is an elliptic curve, and consider E as a
“constant” elliptic curve over the global field K(C). Then morphisms from C to E,
defined over K, are identified with K(C)-rational points of E. It may happen that αp

is isomorphic to a subgroup-scheme of E[p], necessarily kerF : E → E(p), the kernel of
the pth-power Frobenius morphism. In fact, this is always true when E is supersingular
(in which case the kernel of the Verschiebung V : E(p) → E is also isomorphic to
αp). Then the Selmer group for the isogeny F is identified with the flat cohomology
H1(C,αp), which in turn is identified with H0(C,Ω1)C=0, [U, Proposition 3.3(b)]. For
a supersingular E/K, an invariant differential ω (on any isogenous curve) is exact, and
if θ : C → E(p) is a K(C)-rational point on E(p) then the pullback θ∗(ω) is an exact
holomorphic differential on C. In this way E(p)(K(C))/F (E(K(C))) is embedded as
a subgroup of H0(C,Ω1)C=0, and the cokernel is the F -torsion in the Shafarevich-Tate
group of E/K.

Friedlander et. al. [FGMPW] calculate the space of exact holomorphic differentials
on the Suzuki curve C : yq − y = xq0(xq − x), with q = 2q20,where q0 = 2s, s ≥ 1, of
genus g = q0(q− 1), in order to determine the a-number of its Jacobian. The fact that
the characteristic is 2 ensures that the exact differentials are simply those of the form
f2 dx, and one just has to find a basis for those f with divisor bounded such that f2 dx
is holomorphic.

Gross [G] calculates the space of exact holomorphic differentials on the Hermitian curve
C : yq+1 = xq+x /Fq2 , (where q = pf is a prime power), of genus g = q(q−1)/2, in order
to bound from below the order of the Shafarevich-Tate group, and thereby to improve
a bound for the sphere-packing density of the Mordell-Weil lattice E(K(C))/const ≃
HomK(JC , E). (This free, finitely-generated abelian group has on it an even integral
quadratic form, given by twice the degree of a morphism. This construction of lattices
is due to Elkies.) The finite group F

×

q2
acts on C/Fq2 by the automorphisms (x, y) 7→

(αq+1x, αy), and this abelian group action decomposes H0(C,Ω) into one-dimensional
pieces (spanned by xmyn dy withm,n ≥ 0 andm+n ≤ q−2) on which the group acts by
distinct characters. The Cartier operator necessarily permutes these one dimensional
spaces, so to find its kernel one only needs to know which of these basis elements it
kills, so again the calculation is relatively simple.

In both cases the Jacobian JC is isogenous to Eg for a certain supersingular elliptic
curve E. If JC is isomorphic to Eg (i.e. “superspecial”) then things are simple, as
JC [p] ≃ E[p]g, so a = g, f = 0, and every holomorphic differential is exact. For the
Hermitian curve, JC ≃ Eg if and only if q = p, while for the Suzuki curve it never
happens. (We are grateful to R. Pries for correcting an error in an earlier version.)
The fact that in general JC is isogenous, but not isomorphic, to Eg is at the root of
the subtlety of the situation.
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The Suzuki curve enjoys automorphisms by the finite simple group Sz(q) =2B2(q),
while the Hermitian curve is acted upon by a finite projective unitary group PU3(q).
The third family of Deligne-Lusztig curves (see [H]) comprises those acted upon by the
finite simple Ree groups 2G2(q), where q = 3q20,with q0 = 3s, s ≥ 1. The function field
of the Ree curve C ′/Fq is given by Fq(C

′) = Fq(x, y1, y2), with

yq1 − y1 = xq0(xq − x) (1)

yq2 − y2 = xq0(yq1 − y1). (2)

The genus of C ′ is g = 3
2q0(q − 1)(q + q0 + 1), and it has 1 + q3 Fq-rational points,

including one point at infinity. Let X (of genus 3
2q0(q − 1)) be the non-singular model

of the function field of the affine curve defined by (1). It is a quotient of C ′/Fq, via the
map π : C ′ → X such that (x, y1, y2) 7→ (x, y1). From now on, for the sake of simplicity
we will replace y1 by y, so (the function field of) X is defined by the equation

yq − y = xq0(xq − x). (3)

We seek the exact holomorphic differentials for the quotient X rather than for the Ree
curve itself, since it seems to be a more tractable problem. (We are grateful to the
referee for pointing out that for the Ree curve, even an explicit basis for H0(C ′,Ω1) is
not known.) Furthermore, X is a direct analogue of the Suzuki curve, being defined
by an equation that looks the same. For both X and the Suzuki curve there is an
action of F×

q , by (x, y) 7→ (αx, αq0+1y), but unlike the Hermitian case, this does not
decompose H0(X,Ω1) into one-dimensional eigenspaces. Despite this, the Suzuki curve
may be dealt with fairly easily because the characteristic is only 2. The source of the
extra difficulty in characteristic 3 is identified in Remark 1, in Section 3. For more on
quotients of X, see [CO1, CO2].

Conjecture 1.1. Let q0 = 3s, q = 3q20, with s ≥ 1, and let X/Fq be a complete
nonsingular model of the curve yq − y = xq0(xq − x). The dimension of the space
H0(X,Ω1)C=0, of exact holomorphic differentials on X, is

d :=
2q0
27

(

14q20 + 9
)

+
1

12

(

11q20 + 9
)

.

Theorem 1.2. d is a lower bound for the dimension of H0(X,Ω1)C=0 (i.e. for the
a-number of the Jacobian of X), for all s ≥ 1.

Theorem 1.3. In the cases s = 1 and s = 2, d is equal to the dimension of H0(X,Ω1)C=0.

We should make some remark on one of the motivating problems. The zeta function of
X/Fq is

(1 + 3q0t+ qt2)q0(q−1)(1 + qt2)q0(q−1)/2

(1− t)(1− qt)
.

Let E1, E2/Fq be elliptic curves with zeta functions

(1 + 3q0t+ qt2)

(1− t)(1− qt)
and

(1 + qt2)

(1− t)(1− qt)
,
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respectively. Letting Li = HomK(JX , Ei), for i = 1, 2, we find that rank(L1) = 2q0(q−

1) and rank(L2) = q0(q − 1), and that JX is isogenous to E
q0(q−1)
1 × E

q0(q−1)/2
2 . This

isogeny is not an isomorphism, and for s = 1 or 2 a simple reason is that our calculations
show that a 6= g. In what follows, we omit details, but see the proofs of Propositions
11.11 and 14.10 of [G] for the method by which ranks are calculated, minimal norms
bounded from below and determinants bounded from above. Note that for the refined
upper bound for the determinant of the lattice, a lower bound for dimH0(X,Ω1)C=0

is required, which is precisely what we have. Let the centre density of a lattice L of

rank n be δ := (min/4)n/2

(detL)1/2
, where min is the minimal norm. This is the sphere-packing

density divided by the volume of a unit n-dimensional sphere. For L1, for s = 1 we
have n = 156 and find log2(δ) ≥ −80.9, while for s = 2 we have n = 4356 and find
log2(δ) ≥ 710. For comparison, looking at records for known dense lattices in nearby
dimensions in Table 1.3 of [CS], for n = 150, log2(δ) = 113.06 and for n = 4098,
log2(δ) = 11279. For L2 our bounds are even worse compared to record known lattices.
Still, it seems to be an interesting problem to determine invariants of these lattices. In
the case of the Hermitian curve, the precise determinants are calculated in [D1], while
the structure of the Shafarevich-Tate group is obtained in [D2].

In Section 2 we introduce useful functions u and v on X, and find a basis for the space
of holomorphic differentials on X, comprising certain elements of the form xaybucvd dx,
with 0 ≤ b ≤ 2 and various restrictions on the other exponents. In Section 3 we
introduce the Cartier operator, and calculate its action on the 81 differentials of the
form ω = xαyβuγvδ dx with 0 ≤ α, β, γ, δ ≤ 2. Since C(f3ω) = fC(ω), this determines
which of our basis elements are exact. In Section 4 we prove Theorem 1.2 by producing
as many exact holomorphic differentials as we can. In Section 5 we consider a natural
action of the group F

×
q on H0(X,Ω1), and show that the eigenspaces are of dimensions

3q0±1
2 . The Cartier operator permutes these eigenspaces, so we may consider its kernel

on each separately. In Section 6, we prove Theorem 1.3 by calculating these kernels
in the cases s = 1 and s = 2. Throughout the paper, we work over K = Fq, but the
calculations look exactly the same over any extension.

We thank the anonymous referee for their thoughtful reading, and their help in improv-
ing both the organisation and the substance of this paper.

§ 2 The holomorphic differentials on X

Recall that X/Fq is a nonsingular projective model of the affine curve yq−y = xq0(xq−
x), where q0 = 3s and q = 32s+1, s ≥ 1.

Proposition 2.1. X/Fq is irreducible with a single point at infinity (i.e. in the com-
plement of the affine curve), denoted by P∞. The rational functions on X/Fq, defined
by

1, x, y, u = x3q0+1 − y3q0 , and v = x2y3q0 − u3q0
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are regular on X \ {P∞}. At P∞, the pole orders of these functions are

−ord∞(1) = 0, − ord∞(x) = q, − ord∞(y) = q + q0,

−ord∞(u) = q + 3q0, − ord∞(v) = 2q + 3q0 + 1.

The element xu
v is a uniformizer at P∞.

We omit the proof, since it is elementary, and essentially identical to that of Lemma
1.8 of [HS].

The pullback of u to the Ree curve C ′ is among the functions defined by Pederson [P],
who calls it ω1. (All rational functions on C ′ that do not involve y2 may be considered
functions on X.) We have had to introduce v here for our purposes, but it is analogous
to the function on the Suzuki curve denoted fq+2q0+1 by Hansen and Stichtenoth [HS].

From the above definitions of u and v, one can easily verify the following relations in
Fq(X):

y3 = x2u+ v ; (4)

uq0 = xq0x− y ; (5)

vq0 = x2q0y − u . (6)

Proposition 2.2. The curve X has genus g = 3
2q0(q − 1). The differential dx has

divisor div(dx) = (2g − 2)P∞.

Proof. If (α, β) ∈ X(Fq) \ {P∞}, then β is one of the q roots of the equation

yq − y = αq0(αq − α).

If h(y) := yq − y − αq0(αq − α), then h and dh
dy have no common roots, so all the roots

of yq − y = αq0(αq − α) are distinct. Thus we have q distinct points for which (x− α)
is zero. But −ord∞(x−α) = −ord∞(x) = q, so all of these zeros are simple zeros, and
hence

ord(α,β)dx = ord(α,β)d(x− α) = 0,

showing that dx has no zeros on X(Fq)− {P∞}. Since deg(div(dx)) = 2g − 2 ,

div(dx) = (2g − 2)P∞. (7)

Now we find the genus. From v = x2y3q0 − u3q0 we get

dv = 2xy3q0dx

⇒ ord∞(dx) = ord∞(dv)− ord∞(x)− ord∞(y3q0). (8)

Since −ord∞(v) is coprime to 3, −ord∞(dv) = −ord∞(v) + 1 = 2q + 3q0 + 2. Putting
this in (8) gives

ord∞(dx) = 3q0(q − 1)− 2. (9)
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But (7) shows that ord∞(dx) = 2g − 2. Comparing with (9) gives

g =
3

2
q0(q − 1)

Define a set I of indices (a, b, c, d) ∈ Z
4 by the following conditions:

1. a, b, c, d ≥ 0.

2. a+ b+ c+ 2d ≤ 3q0 − 1.

3. If a+ b+ c+ 2d = 3q0 − 2 then 0 ≤ c ≤ 2q0 − 2. Writing c = 2q0 − 2− i, where
0 ≤ i ≤ 2q0 − 2, either (i) b+3d < 2+ 3i and d ≤ q0+i

2 or (ii) b+3d = 2+ 3i and
0 ≤ d ≤ q0 − 2.

4. If a+b+c+2d = 3q0−1 then 0 ≤ c ≤ q0−2. Writing c = q0−2−j, b+3d ≤ 2+3j.

Lemma 2.3. The differential xaybucvd dx is holomorphic if and only if (a, b, c, d) ∈ I.

This can be checked using Propositions 2.1 and 2.2

Proposition 2.4. Define J = {(a, b, c, d) ∈ I | 0 ≤ b ≤ 2 and 0 ≤ c, d ≤ q0−1}. Then
{xaybucvd dx | (a, b, c, d) ∈ J} is a basis for H0(X,Ω1).

Proof. The holomorphic differentials xaybucvddx, for (a, b, c, d) ∈ J , have distinct orders
at P∞. (See the proof of Proposition 3.7 of [FGMPW], which is the characteristic 2
analogue.) Hence they are linearly independent. If one counts the elements of J ,
there are exactly g of them, hence the corresponding differentials must form a basis for
H0(X,Ω1).

§ 3 Exact differentials and the Cartier operator

Let K be a field of characteristic p > 0, and C/K any nonsingular projective curve. We
will use the (non-linear) Cartier operator C, which maps the space ΩC of meromorphic
differentials on C to itself.

Proposition 3.1. Some of the properties of the Cartier operator are as follows [S,
Section 10].
(1) If ν is not a pth power in the function field K(C), then every f ∈ K(C) can be
expressed as

f = fp
0 + fp

1 ν + ...+ fp
p−1ν

p−1 (10)

for suitable fi ∈ K(C). We define

C(f dν) = fp−1dν. (11)
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(2) C is well-defined, independent of the choice of ν.
(3) C is additive: C(ω1 + ω2) = C(ω1) + C(ω2) for all ω1, ω2 ∈ ΩC .
(4) For any differential ω on C and g ∈ K(C), C(gpω) = gC(ω).
(5) C(ω) = 0 if and only if ω is exact.

Proposition 3.2. The exact meromorphic differentials on X/Fq are precisely those of
the form

ω = (f3
0 + f3

1x)dx, for f0, f1 ∈ Fq(X). (12)

Proof. It is clear that x is not a cube in Fq(X), as if it were then so would be y, by
(3), so every function in Fq(X) would be a cube, which is not true of course, as Fq(X)
is not perfect. (Alternatively, as suggested by the referee, we can see from Proposition
2.1 that the pole order of v is not divisible by 3.) Now from Proposition 3.1(1) we can
write every function f ∈ Fq(X) as

f = f3
0 + f3

1x+ f3
2x

2, (13)

and C(f dx) = f2 dx, so by Proposition 3.1(5), ω = f dx is exact if and only if it is of
the form

ω = (f3
0 + f3

1x)dx.

(Observe how one can “integrate” such a differential without trying to divide by zero.)

Remark 1: There is a possibility that cancelation of poles takes place between the
two terms f3

0 dx and f3
1x dx. The difficulty this causes, in determining which exact

differentials are holomorphic, does not arise in the characteristic 2 case, where there is
only one term (f2

0 d ν) in the expression for an exact differential. To find a basis for the
exact holomorphic differentials on the Suzuki curve, one simply takes {f2

0 d x}, where
f0 runs through a basis for L((g − 1)P∞) = {f ∈ K(C)|div(f) ≥ −(g − 1)P∞}.

Recall (from Proposition 2.4), a basis for the space of holomorphic differentials on
X, involving certain xaybucvddx. Each is a cube times one of the 81 things given by
xαyβuγvδdx, with 0 ≤ α, β, γ, δ ≤ 2. So if we know how the Cartier operator applies
to these 81 differentials then we know how it applies to any element in the basis.

Proposition 3.3. If ω = xαyβuγvδdx, with 0 ≤ α, β, γ, δ ≤ 2, then C(ω) is given by
Table 1 below.

ω/dx C(ω)/dx

1 1 0
2 x 0
3 y 0
4 u 0

5 v x
2q0
3 u

q0
3 + v

q0
3

6 x2 1
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7 y2 x
2q0
3

8 u2 x2q0

9 v2 x
5q0
3

+1 u
q0
3 + xq0+1 v

q0
3 − x

2q0
3 y u

q0
3 − y v

q0
3

10 xy x
q0
3

11 xu xq0

12 xv 0

13 yu x
4q0
3

14 yv −x
2q0
3 u

2q0
3 − u

q0
3 v

q0
3

15 uv −x
4q0
3 u

2q0
3 + x

2q0
3 u

q0
3 v

q0
3 − v

2q0
3

16 x2y −u
q0
3

17 x2u −x
2q0
3 u

q0
3 − v

q0
3

18 x2v −xq0x+ y

19 xy2 x
q0
3 u

q0
3

20 y2u −x
2q0
3 v

q0
3

21 y2v u
2q0
3 v

q0
3

22 xu2 x
5q0
3 u

q0
3 + xq0 v

q0
3

23 yu2 x
4q0
3 v

q0
3

24 u2v x2q0y − u

25 xv2 x
4q0
3

+1 u
2q0
3 − x

2q0
3

+1 u
q0
3 v

q0
3 + x v

2q0
3

26 yv2x xq0+1 u
q0
3 v

q0
3 + x

2q0
3 y u

2q0
3 + x

q0
3
+1 v

2q0
3 + y u

q0
3 v

q0
3

27 uv2x x
4q0
3 y u

2q0
3 − x

2q0
3 y u

q0
3 v

q0
3 + y v

2q0
3

28 xyu xq0 u
q0
3 − x

q0
3 v

q0
3

29 xyv −x
4q0
3

+1 + x
q0
3 y

30 xuv −x2q0+1 + xq0y

31 yuv −x
2q0
3 u

2q0
3 v

q0
3 + u

q0
3 v

2q0
3

32 x2y2 u
2q0
3

33 x2u2 x
4q0
3 u

2q0
3 − x

2q0
3 u

q0
3 v

q0
3 + v

2q0
3

34 x2v2 x2q0+2 + xq0+1 y + y2

35 y2u2 x
2q0
3 v

2q0
3

36 y2v2 x
5q0
3

+1 y − x
2q0
3 y2 + x

q0
3
+1 u

q0
3 v

2q0
3 − y u

2q0
3 v

q0
3

37 u2v2 x2q0 y2 + xq0+1 u+ yu

38 x2yu x
2q0
3 u

2q0
3 + u

q0
3 v

q0
3

39 x2yv −xq0+1 u
q0
3 + x

q0
3
+1 v

q0
3 − y u

q0
3

40 x2uv −x
5q0
3

+1 u
q0
3 − xq0+1 v

q0
3 − x

2q0
3 y u

q0
3 − y v

q0
3

41 xy2u −x
q0
3 u

q0
3 v

q0
3

42 xy2v x
2q0
3

+1 v
q0
3 + x

q0
3 y u

q0
3

43 y2uv x
4q0
3 y u

q0
3 + x

2q0
3 y v

q0
3 − u

2q0
3 v

2q0
3

44 xyu2 xq0 u
q0
3 v

q0
3 + x

q0
3 v

2q0
3

45 xu2vx x
5q0
3 y u

q0
3 + xq0 y v

q0
3
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46 yu2v −x
4q0
3 y v

q0
3 + u

q0
3
+1

47 xyv2 −x
4q0
3

+1 y + x
2q0
3

+1 u
2q0
3 v

q0
3 + x

q0
3 y2 − xu

q0
3 v

2q0
3

48 xuv2 x2q0+1 y + xq0 x2 + xu

49 yuv2 −x
4q0
3 y2 + x

2q0
3 y u

2q0
3 v

q0
3 + x

q0
3
+1 u− y u

q0
3 v

2q0
3

50 xyuv −x
4q0
3

+1 v
q0
3 + xq0 y u

q0
3 − x

q0
3 y v

q0
3

51 x2y2u x
2q0
3 y − u

2q0
3 v

q0
3

52 x2y2v x
q0
3
+1 u

q0
3 v

q0
3 + y u

2q0
3

53 x2yu2 x
4q0
3 y + x

2q0
3 u

2q0
3 v

q0
3 − u

q0
3 v

2q0
3

54 x2u2v x
4q0
3 y u

2q0
3 − x

2q0
3 y u

q0
3 v

q0
3 + y v

2q0
3

55 x2yv2 x
4q0
3

+2 v
q0
3 + xq0+1 y u

q0
3 − x

q0
3
+1 y v

q0
3 − y2 u

q0
3

56 x2uv2 x
5q0
3

+1 y u
q0
3 + xq0+1 y v

q0
3 − x

2q0
3 y2 u

q0
3 − y2 v

q0
3

57 xy2u2 x
5q0
3 y + x

q0
3 u

q0
3 v

2q0
3

58 y2u2v x
2q0
3 y v

2q0
3 − u

2q0
3

+1

59 xy2v2 −x
4q0
3

+1 y u
q0
3 + x

q0
3 y2 u

q0
3 + xu

2q0
3 v

2q0
3

60 y2uv2 −x
4q0
3

+1 y2 u
q0
3 + x

q0
3
+1 u

q0
3
+1 + y u

2q0
3 v

2q0
3

61 xu2v2 x
5q0
3 y2 u

q0
3 + xq0 y2 v

q0
3 − x

2q0
3

+1 u
q0
3
+1 − xu v

q0
3

62 yu2v2 x
4q0
3 y2 v

q0
3 + xq0+1 u

q0
3
+1 − x

q0
3
+1 u v

q0
3 − y u

q0
3
+1

63 x2yuv −xq0+1 u
q0
3 v

q0
3 + x

2q0
3 y u

2q0
3 − x

q0
3
+1 v

2q0
3 + y u

q0
3 v

q0
3

64 xy2uv −x
2q0
3

+1 v
2q0
3 − x

q0
3 y u

q0
3 v

q0
3

65 xyu2v xq0 y u
q0
3 v

q0
3 + x

q0
3 y v

2q0
3

66 xyuv2 x
4q0
3

+1 y v
q0
3 + xq0 y2 u

q0
3 − x

q0
3 y2 v

q0
3 − xu

q0
3
+1

67 x2y2u2 −x
4q0
3 y u

q0
3 + x

2q0
3 y v

q0
3 + u

2q0
3 v

2q0
3

68 x2y2v2 x
2q0
3

+2 v
2q0
3 − x

q0
3
+1 y u

q0
3 v

q0
3 + y2 u

2q0
3

69 x2u2v2 x
4q0
3 y2 u

2q0
3 − x

2q0
3 y2 u

q0
3 v

q0
3 + y2 v

2q0
3

70 y2u2v2 x
2q0
3 y2 v

2q0
3 − x

q0
3
+1 u

q0
3
+1 v

q0
3 + y u

2q0
3

+1

71 x2y2uv −x
5q0
3

+1 y + x
2q0
3 y2 − x

q0
3
+1 u

q0
3 v

2q0
3 − y u

2q0
3 v

q0
3

72 x2yu2v x
4q0
3 y2 + x

2q0
3 y u

2q0
3 v

q0
3 − x

q0
3
+1 u− y u

q0
3 v

2q0
3

73 x2yuv2 xq0+1 y u
q0
3 v

q0
3 − x

2q0
3 y2 u

2q0
3 + x

q0
3
+1 y v

2q0
3 − y2 u

q0
3 v

q0
3

74 xy2u2v x
5q0
3 y2 − x

2q0
3

+1 u+ x
q0
3 y u

q0
3 v

2q0
3

75 xy2uv2 x
2q0
3

+1 y v
2q0
3 − x

q0
3 y2 u

q0
3 v

q0
3 + xu

2q0
3

+1

76 xyu2v2 xq0 y2 u
q0
3 v

q0
3 + x

2q0
3

+1 u
2q0
3

+1 + x
q0
3 y2 v

2q0
3 + xu

q0
3
+1 v

q0
3

77 x2y2u2v −x
4q0
3 y2 u

q0
3 + x

2q0
3 y2 v

q0
3 − x

q0
3
+1 u

q0
3
+1 + y u

2q0
3 v

2q0
3

78 x2y2uv2 x
5q0
3

+1 y2 + x
2q0
3 v + x

q0
3
+1 y u

q0
3 v

2q0
3 − y2 u

2q0
3 v

q0
3

79 x2yu2v2 −x
4q0
3

+2u+ x
4q0
3 v + x

2q0
3 y2 u

2q0
3 v

q0
3 + x

q0
3
+1 y u− y2 u

q0
3 v

2q0
3

80 xy2u2v2 x
5q0
3

+2 u+ x
5q0
3 v − x

2q0
3

+1 y u+ x
q0
3 y2 u

q0
3 v

2q0
3 4− xu

2q0
3

+1 v
q0
3

81 x2y2u2v2 −x
4q0
3

+2 u
q0
3
+1 − x

4q0
3 u

q0
3 v + x

2q0
3 v

q0
3
+1 + x

q0
3
+1y u

q0
3
+1+

y2u
2q0
3 v

2q0
3
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Table 1: The Cartier Operator

Proof. In order to apply the Cartier operator, we first express each f = xαyβuγvδ,
with 0 ≤ α, β, γ, δ ≤ 2, in the form f = f3

0 + f3
1x + f3

2x
2. For this recall (5) and the

definitions of u and v:
y = uq0 − xq0 x ; (14)

u = x3q0 x− y3q0 ; (15)

v = y3q0 x2 − u3q0 . (16)

Using these relations, we can express all of the above 81 monomials in the form

f = f3
0 + f3

1x+ f3
2x

2.

For 1 and x, it is obvious that f3
2 = 0, therefore C(dx) = C(x dx) = 0. Similarly from

(14),

y dx = [(u
q0
3 )3 − (x

q0
3 )3 x] dx. (17)

In the above equation f0 = u
q0
3 and f1 = x

q0
3 , while f2 = 0, so consequently C(ydx) = 0.

Similarly, C(u dx) = 0. Also, (16) shows that

v dx = [(−uq0)3 + (y
q0
3 )3 x2] dx. (18)

Thus f2 = y
q0
3 , so C(vdx) = y

q0
3 dx, which shows that v dx is not exact. However if we

consider xv dx, then from

xv dx = [(xy
q0
3 )3 − (uq0)3 x] dx, (19)

it is clear that f2 = 0, therefore C(xv dx) = 0, so xv dx is an exact differential.
We give just one more complicated example to illustrate how the results in the table
were obtained. We show how to calculate entry 35.

From (14) and (15), we have

y2u2dx = [x7q0+3 uq0 + x5q0+3 y3q0 + y6q0 u2q0 ] dx

+ [x8q0+3 + x3q0 y3q0 u2q0 + xq0 y6q0 uq0 ]x dx

+ [x6q0 u2q0 + x4q0 y3q0 uq0 + x2q0 y6q0 ]x2dx.

From the above equation, f3
2 for y2u2 is

f3
2 = [x2q0 u

2q0
3 + x

4q0
3 yq0 u

q0
3 + x

2q0
3 y2q0 ]3.

Hence
C(y2 u2dx) = [x2q0 u

2q0
3 + x

4q0
3 yq0 u

q0
3 + x

2q0
3 y2q0 ] dx. (20)

10



The above expression involves yq0dx and y2q0dx, which are not in the basis forH0(X,Ω1)
in Proposition 2.4, so we need to replace them using (4):

y3 = x2u+ v

⇒ (y3)
q0
3 = (x2u+ v)

q0
3

⇒ yq0 = (x2u)
q0
3 + (v)

q0
3 . (21)

Putting these values in (20), we have

C(y2u2dx) =[x2q0 u
2q0
3 + x

4q0
3 u

q0
3 (x

2q0
3 u

q0
3 + v

q0
3 ) + x

2q0
3 (x

4q0
3 u

2q0
3 − x

2q0
3 u

q0
3 v

q0
3 + v

2q0
3 )] dx

=[x2q0 u
2q0
3 + x2q0 u

2q0
3 + x

4q0
3 u

q0
3 v

q0
3 + x2q0 u

2q0
3 − x

4q0
3 u

q0
3 v

q0
3 + x

2q0
3 v

2q0
3 ] dx

=x
2q0
3 v

2q0
3 dx.

The table shows in particular that among the 81 differentials considered, the only
exact ones are dx, x dx, y dx, u dx and xv dx. The exactness of these differentials may
be verified directly: dx = d(x), x dx = d(−x2), y dx = d(−uq0x − xq0x2), u dx =
d(x2q0xy − vq0x) and xv dx = d(x3yq0x + uq0x2). The expressions for y dx, u dx and
xv dx, may be verified easily using (4), (5) and (6).

§ 4 Proof of Theorem 1.2

We define certain classes Ai, Bi, Ci, Di of exact holomorphic differentials. That
denoted “g dx” consists of all differentials f3g dx with f = xαuγvδ; 0 ≤ γ, δ ≤ q0

3 − 1,
with whatever further condition on α, γ and δ is necessary to make the differentials
ω = f3gdx holomorphic. We will make these conditions explicit later, while counting
the number of differentials in each of these classes.

A1: dx,
A2: x dx,
A3: y dx,
A4: u dx,
A5: xv dx.

Although y3dx is an exact holomorphic differential, it is not in the basis in Proposi-
tion 2.4. However, from (4) we may express it in terms of the basis differentials as
y3dx = (x2u + v)dx. This illustrates the fact that an exact differential may be a lin-
ear combination of non-exact basis elements. Similarly we need to express each of the
following exact holomorphic differentials in terms of the basis elements:

uq0dx, u2q0dx, vq0dx

y3dx, y3uq0dx, y3u2q0dx, y3vq0dx

y6dx, y6uq0dx, y6u2q0dx, y6vq0dx.

11



In fact, we need to look at all of the above multiplied by each of 1, x, y, u and xv (55
possibilities). Although y9dx is an exact holomorphic differential, we do not consider
y9dx, since

y9dx = x6u3dx+ v3dx,

which is a linear combination of differentials in class A1. In a similar way we can ignore
the differentials involving the higher cubic powers of y. Thus we obtain the following
classes.

B1: y3dx = (x2u+ v)dx,
B2: y3ydx = (x2yu+ yv)dx,
B3: y3udx = (x2u2 + uv)dx,
B4: y3xvdx = (x3uv + xv2)dx,
B5: y6dx = (x3xu2 − x2uv + v2)dx,
B6: y6ydx = (x3xyu2 − x2yuv + yv2)dx,
B7: uq0xdx = (xq0x2 − xy)dx,
B8: uq0ydx = (xq0xy − y2)dx,
B9: uq0udx = (xq0xu− yu)dx,
B10: uq0xvdx = (xq0x2v − xyv)dx,
B11: uq0y3ydx = (xq0+3yu+ xq0xyv − x2y2u− y2v)dx,
B12: uq0y3udx = (xq0+3u2 + xq0xuv − x2yu2 − yuv)dx,
B13: uq0y3xvdx = (xq0+3xuv + xq0x2v2 − x3yuv − xyv2)dx,
B14: uq0y6ydx = (xq0+3x2yu2 − xq0+3yuv + xq0xyv2 − x3xy2u2 + x2y2uv − y2v2)dx.
Similarly with the help of the remaining possibilities (among those 55, stated earlier),
we define some other classes of exact holomorphic differentials as follows.

y6udx = (x3u3x− x2u2v + uv2)dx

= x3u3xdx− (x2u2v − uv2)dx.

Since x3u3xdx is already on A2, a new list of exact differentials is (denoted by)
y6udx ⇒C1: (x2u2v − uv2)dx.
Note that discarding x3u3xdx reduces the pole order, allowing more possibilities for f3.

Similarly we just state the other such classes. All of the the following classes are
obtained by discarding one (previously defined) differential, except for C14, which is
obtained by discarding two differentials, belonging to B8 and C4.

u2q0xdx ⇒ C2 : (xq0x2y + xy2)dx,

u2q0udx ⇒ C3 : (x2q0v − xq0xyu− y2u)dx,

vq0xdx ⇒ C4 : (xq0y2 − xu)dx,

vq0udx ⇒ C5 : (x2q0−3xyv − xq0−3x2y2u− xq0−3y2v + u2)dx,

12



vq0xvdx ⇒ C6 : (xq0x2y2u+ xq0y2v − x3u2 − xuv)dx,

y3u2q0xdx ⇒ C7 : (xq0+3xyu+ xq0x2yv + x3y2u+ xy2v)dx,

y3u2q0udx ⇒ C8 : (x2q0x2uv + x2q0v2 − xq0+3yu2 − xq0xyuv − x2y2u2 − y2uv)dx,

y3vq0udx ⇒ C9 : (x2q0yuv + x2q0−3xyv2v − xq0xy2u2 + xq0−3x2y2uv − xq0−3y2v2 + u3x2 + u2v)dx,

y3vq0xvdx ⇒ C10 : (xq0+3xy2u2 − xq0x2y2uv + xq0y2v2 − x3u3x2 + x3u2v − xuv2)dx,

y6uq0udx ⇒ C11 : (xq0+3u2v − xq0xuv2 − x2yu2v + yuv2)dx,

y6u2q0xdx ⇒ C12 : (xq0+6yu2 − xq0+3xyuv + xq0x2yv2 + x3x2y2u2 − x3y2uv + xy2v2)dx,

y6u2q0udx ⇒ C13 : (x2q0+3xu2v − x2q0x2uv2 + xq0+3yu2v − xq0xyuv2 + x2y2u2v − y2uv2)dx,

y6vq0udx ⇒ C14 : (x2q0x2yu2v − x2q0yuv2 − u3x2v + u2v2)dx.

Among the 55 possibilities stated earlier, we may discard the remaining ones, as they
are linear combinations of previously determined classes, e.g. y3xdx = (x3u + xv)dx,
which is a linear combination of two exact holomorphic differentials already present in
A4 and A5.

Recall from Proposition 3.2 that the exact differentials on X are of the form

ω = (f3
0 + f3

1x)dx, for f0, f1 ∈ Fq(X).

There is a possibility that both f3
0dx and f3

1xdx are not holomorphic (e.g. fi =
xαiyβiuγivδi with αi + βi + γi + 2δi > q0 − 1) but that cancelation of poles allows
the sum to be holomorphic. This motivates us to consider the non-holomorphic exact
differentials

uq0vq0dx, v2q0dx, u2q0vq0dx, uq0v2q0dx, u2q0v2q0dx,

y3uq0vq0dx, y3v2q0dx, y3u2q0vq0dx, y3uq0v2q0dx, y3u2q0v2q0dx,

y6uq0vq0dx, y6v2q0dx, y6u2q0vq0dx, y6uq0v2q0dx, y6u2q0v2q0dx,

and similarly each of the above multiplied by x, (hence 30 possibilities altogether).
Among these possibilities, here we state only those which lead us to some new classes
Di’s of exact holomorphic differentials. The rest can be discarded, as they lead only to
linear combinations of Ai’s, Bi’s, Ci’s and Di’s.

We begin with uq0 vq0xdx.

uq0 vq0xdx = (x3q0x2y − x2q0xy2 − xq0x2u+ xyu)dx

= x2q0(xq0x2y + xy2)dx+ (x2q0xy2 − xq0x2u+ xyu)dx,

where (xq0x2y + xy2)dx ∈ C2, so we have a new class D1 given as follows,

D1: (x2q0xy2 − xq0x2u+ xyu)dx.

(One may check that this exact differential is holomorphic, using Lemma 2.3.) In a

13



similar way we construct the following classes,

uq0 v2q0dx = (x5q0xy2 − x4q0y3 + x3q0xyu− x2q0y2u+ xq0xu2 − yu2)dx

= (x5q0xy2 − x4q0x2u− x4q0v + x3q0xyu− x2q0y2u+ xq0xu2 − yu2)dx

= x3q0D1− x2q0C3− x2q0−3C7−D2+ xq0D3,

where
D2: (x2q0y2u+ yu2)dx,
D3: (x2q0−3x2yv + xq0−3xy2v + xu2)dx.
One may check using Table 1 that each of D2 and D3 is exact. In fact, D3, shows up
in the calculation of the kernel of the Cartier operator in the case s = 1 (see Section 6
below). This is what suggested the decomposition −D2+ xq0D3, and that we should
seek similar decompositions as follows.

y3 uq0 v2q0dx = (x5q0+3y2u+ x5q0xy2v − x4q0+3xu2 + x4q0x2uv − x4q0v2

+ x3q0+3yu2 + x3q0xyuv − x2q0x2y2u2 − x2q0y2uv + xq0+3u3

+ xq0xu2v − u3x2y − yu2v)dx

= x3q0+3D2− x2q0C8− x2q0−3C12+ xq0+3u3A1+ x3q0D4−D5+ xq0D6,

where
D4: (x2q0xy2v − xq0+3xu2 − xq0x2uv + xyuv)dx,
D5: (x2q0x2y2u2 + x2q0y2uv + u3x2y + yu2v)dx,
D6: (x2q0xyuv + x2q0−3x2yv2 + xq0x2y2uv + xq0−3xy2v2 + xu2v)dx.
Similarly by expanding y6uq0 v2q0dx, we have

(x5q0+3x2y2u2 − x5q0+3y2uv − x5q0xy2v2 − x4q0+6u3 − x4q0v3 + x3q0+3u3x2y

− x3q0+3yu2v + x3q0xyuv2 − x2q0+3u3xy2 + x2q0x2y2u2v − x2q0y2uv2 + xq0+3u3x2u

− xq0+3u3v + xq0xu2v2 − x3u3xyu+ u3x2yv − yu2v2)dx

= x3q0+3D5− x2q0C13− x4q0+6u3A1− x4q0v3A1− xq0+3u3B1− x3u3D1+ x3q0D7+D8+ xq0D9,

where
D7: (x2q0+3y2uv + x2q0xy2v2 + xq0+3xu2v − xq0x2uv2 + x3yu2v + xyuv2)dx,
D8: (x2q0x2y2u2v − x2q0y2uv2 − xq0+3u3x2u+ u3x2yv − yu2v2)dx,
D9: (x2q0+3yu2v − x2q0xyuv2 + xq0x2y2u2v − xq0y2uv2 + x3u3v + xu2v2)dx.

We can try to construct more exact holomorphic differentials using the classes Ci’s,
e.g. uq0C6, y3uq0C6 and y6uq0C6 etc., but they only give us the same classes as
discussed above, so we can ignore them. It can be observed that in each class, containing
differentials of the form f3gdx, the pole order of g allows multiplication by f3 = y3

and y6, but considering such possibilities never gives us any new classes, e.g.

y6D2 = x3u3D1−D8, (22)

Given these thwarted attempts to construct more, we begin to suspect that the whole
space of exact holomorphic differentials on the curve X is spanned by those in the
classes Ai, Bi, Ci and Di.
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The elements we have produced are all of the form f3g dx, where gdx can be any of the
42 forms given by the Ai’s, Bi’s, Ci’s and Di’s. Next we introduce certain restrictions
on the monomial f = xαuγvδ, to make f3gdx a linear combination of elements of the
basis in Proposition 2.4, then we count the number of such elements in each of the 42
classes. We state these restrictions, for each class, in the following table. (It is taken
as read that α ≥ 0 and 0 ≤ γ, δ ≤ q0

3 − 1.)

Classes Restrictions on α, γ and δ.

A1, A2, A3, A4 α+ γ + 2δ ≤ q0 − 1

A5, B1, B2, B3 α+ γ + 2δ ≤ q0 − 2

B4, B5, B6, C1 α+ γ + 2δ ≤ q0 − 3

B7, B8, B9, C4 Either α+ γ + 2δ ≤ 2q0
3 − 2

or α+ γ + 2δ = 2q0
3 − 1 with γ + δ ≤ q0

3 − 1

B10, C2 α+ γ + 2δ ≤ 2q0
3 − 2

B11, C6 Either α+ γ + 2δ ≤ 2q0
3 − 3

or α+ γ + 2δ = 2q0
3 − 2 with γ + δ ≤ q0

3 − 1

B12 Either α+ γ + 2δ ≤ 2q0
3 − 3

or α+ γ + 2δ = 2q0
3 − 2 with γ + δ ≤ q0

3 − 2

B13, C7, C11 α+ γ + 2δ ≤ 2q0
3 − 3

B14, C10 Either α+ γ + 2δ ≤ 2q0
3 − 4

or α+ γ + 2δ = 2q0
3 − 3 with γ + δ ≤ q0

3 − 2

C3, C5, D3 α+ γ + 2δ ≤ q0
3 − 1

C8, C9, D1, D2, D4, D6 α+ γ + 2δ ≤ q0
3 − 2

C12 α+ γ + 2δ ≤ 2q0
3 − 4

C13, C14, D5, D7, D8, D9 α+ γ + 2δ ≤ q0
3 − 3

Table 2: Restrictions on f .

The following table summarises the results of counting the number of elements in each
class.
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Classes Number of differentials

A1, A2, A3, A4
q2
0

2·32
(q0 + 3)

A5, B1, B2, B3
q2
0

2·32
(q0 + 1)

B4, B5, B6, C1
q2
0

2·32
(q0 − 1)

B7, B8, B9, C4 q0+3
23·34

(14q20 + 21q0 + 27)

B10, C2 q0+3
23·34

(14q20 − 15q0 + 27)

B11, C6 q0−3
23·34

(14q20 + 15q0 + 27) + q0
2·32

(q0 + 3)2

B12 q0−3
23·34

(14q20 + 51q0 + 27)

B13, C7, C11 q0−3
23·34

(14q20 + 15q0 + 27)

B14, C10 q0−3
23·34

(14q20 − 3q0 − 27)

C3, C5, D3 q0+3
23·34

(2q20 + 21q0 + 27)

C8, C9, D1, D2, D4, D6
q2
0
−9

23·34
(2q0 + 9)

C12 q0−3
23·34

(14q20 − 39q0 − 27)

C13, C14, D5, D7, D8, D9
q2
0
−9

23·34
(2q0 − 9)

Table 3: Number of differentials in each class.

Lemma 4.1. Let ω1 = f3
1 g1dx and ω2 = f3

2 g2dx be two holomorphic differentials,
(where fi = xαiuγivδi; αi ≥ 0, 0 ≤ γi, δi ≤

q0
3 − 1) such that ord∞(ω1) = ord∞(ω2).

Then
−[ord∞(g1)− ord∞(g2)] = 3kq + 9lq0 + 3m, (23)

where k, l, m ∈ Z, with |m| < q0
3 and |l| < 2q0

3 − 1.

Proof. Let ω1 and ω2 be as above.

ord∞(ω1) = ord∞(ω2)

⇔ −ord∞(g1)− (−ord∞(g2)) = −ord∞(f3
2 )− (−ord∞(f3

1 )). (24)
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Since fi = xαiuγivδi ,

−ord∞(f3
i ) = 3[(αi + γi + 2δi)q + 3(γi + δi)q0 + δi]

⇒ −ord∞(f3
2 )− (−ord∞(f3

1 )) = 3[(α2 + γ2 + 2δ2)q + 3(γ2 + δ2)q0 + δ2]

− 3[(α1 + γ1 + 2δ1)q + 3(γ1 + δ1)q0 + δ1]

= 3[kq + 3lq0 +m], such that k, l and m ∈ Z,

with l and m satisfying the conditions stated above.

Proof. of Theorem 1.2.

Each of the classes Ai, Bi, Ci and Di consists of exact holomorphic differentials ω =
f3gdx, for certain monomials f in x, u and v. With the help of Lemma 4.1, it can
be verified that no two such differentials have the same orders at P∞, e.g. from B1
and B2 we have g1 = x2u + v, with −ord∞(g1) = 3q + 3q0, and g2 = x2yu + yv, with
−ord∞(g2) = 4q + 4q0. Then −ord∞(g1) − (−ord∞(g2)) = −q − q0, which is not of
the form 3kq + 9lq0 + 3m with |m| < q0

3 , and |l| < 2q0
3 − 1. We can show the same for

each other pair of classes. In particular, all these differentials are different, i.e. there is
no overlap between the classes. To count them we add up all the numbers of elements
in the 42 classes, as listed individually in the table, giving us a lower bound for the
dimension of the space of exact holomorphic differentials. It is precisely

2q0
27

(

14q20 + 9
)

+
1

12

(

11q20 + 9
)

,

so we have proved Theorem 1.2.

Conjecture 1.1 is that this lower bound is the exact dimension.

Remark 2: The above sum must obviously be an integer, but we can also see this
directly from the formula. Of course 2q0

33
(14q20 + 9) is an integer since the numerator

is divisible by 33 (as 3|q0). But also 1
3·4(11q

2
0 + 9) ∈ Z, since 11q20 + 9 ≡ 11 × 1 + 9 ≡

0 (mod 4), and 11q20 + 9 is obviously divisible by 3.

Remark 3: For any large s, comparing the (conjectured) dimension d of the space
of exact holomorphic differentials to the genus g = 3

2q0(q− 1) shows that it is approxi-

mately a quarter of g. To be precise, lim
s→∞

d
g = 56

243 .

§ 5 A group action on H0(X,Ω1)

Let ζ ∈ Fq be a primitive (q − 1)st root of unity. Define an Fq-linear automorphism θ
of the function field Fq(X) by θ(x) = ζ x, θ(y) = ζq0+1 y. (This preserves the equation
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yq − y = xq0(xq −x).) This θ then also acts naturally as an automorphism of the curve
X/Fq, and as an Fq-linear transformation of H0(X,Ω).

θ :































x 7→ ζ x

y 7→ ζq0+1 y

u 7→ ζ3q0+1 u

v 7→ ζ3q0+3 v

dx 7→ ζ dx.

(25)

For each i(mod(q − 1)), let Ai be the subspace of H0(X,Ω1) on which θ acts as multi-
plication by ζi. Note that this is independent of the choice of ζ, in fact it is an isotypic
component for the action on H0(X,Ω1) of the cyclic group G ≃ F

×
q generated by θ.

Since the order of G is coprime to the characteristic, we have

H0(X,Ω1) =
⊕

i(mod(q−1))

Ai (26)

The following lemma (suggested by the referee) is immediate.

Lemma 5.1.

xaybucvd dx ∈ Ai ⇐⇒ a+ b(q0 + 1) + c(3q0 + 1) + d(3q0 + 3) + 1 ≡ i (mod q − 1).

Lemma 5.2. C(A3i) ⊆ Ai

Proof. Let ω3i ∈ A3i. It follows from the definition in Proposition 3.1 that C commutes
with automorphisms of the curve. Hence

θC(ω3i) = C(θω3i)

= C(ζ3iω3i)

= ζiC(ω3i).

From the above it is clear that C(ω3i) ∈ Ai, hence C(A3i) ⊆ Ai.

Remark 4: Since 32s+1 = q ≡ 1 (mod(q − 1)), C therefore permutes the Ai in cycles
of length dividing 2s+ 1.

Equation (26) and Lemma 5.2 easily imply the following.

Proposition 5.3.

ker(C) =
⊕

i(mod(q−1))

ker(C|Ai)

We are indebted to the referee for showing us what to use for the proof of the following.
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Proposition 5.4.

dim(Ai) =







3q0+1
2 if i is odd,

3q0−1
2 if i is even.

Proof. Consider the projection π : X → Y , where Y is the quotient of X by the
group G of automorphisms generated by θ. Recall that G is cyclic of order q − 1,
so π is a morphism of degree q − 1. Recall also that yq − y = xq0(xq − x), that
θ(x) (i.e. the pullback θ∗(x)) is ζx and θ(y) = ζq0+1y. If P = (α, β) ∈ X(Fq) with
α 6= 0, then θk(P ) = (ζkα, ζk(q0+1)β), so the stabiliser of P under the action of G is
trivial, and P is not a ramification point for π. At the other extreme, P0 := (0, 0)
and P∞ are fixed points for the action of G, with ramification index (q − 1). There
remain (q − 1) points Pβ := (0, β) for β ∈ Fq − {0}. We have θ(Pβ) = Pβζq0+1 . Since
q−1 = (q0+1)(3q0−3)+2, so that g.c.d.(q0+1, q−1) = 2, it follows that these points
form two orbits of size (q − 1)/2 for the action of G, and all have ramification index 2.
There are four branch points for π, with inverse images of sizes 1, 1, (q−1)/2, (q−1)/2.

Now we are ready to find the genus g(Y ) of Y , using Hurwitz’s formula 2g(X) − 2 =
deg(π)(2g(Y )−2)+

∑

P∈X(Fq)
(eP −1), for the tamely ramified cover π : X → Y , where

the eP are the ramification indices. Since g(X) = 3
2q0(q − 1), we get

3q0(q − 1)− 2 = (q − 1)(2g(Y )− 2) + 2(q − 2) + (q − 1) = (q − 1)(2g(Y ) + 1)− 2.

Hence g(Y ) = 3q0−1
2 . Since A0 = π∗H0(Y,Ω1), this proves the case i = 0 of the

proposition.

To prove the other cases, we turn to Lemma 4.3 of Bouw [B], who credits it to Kani
[K]. Let Q1 = π(P∞), Q2 = π(P0), Q3 and Q4 be the branch points of π. The sizes of
the inverse images are n1 = n2 = q − 1 and n3 = n4 = (q − 1)/2. In Bouw’s notation,
ℓ = q − 1 and we have numbers bj and aj for 1 ≤ j ≤ 4. Since ordP∞

(x) = q, x is
a uniformiser at each of the q points Pβ for β ∈ Fq. At P∞, xu/v is a uniformiser,
by Proposition 2.1. Since θ∗(x) = ζx while θ∗(xu/v) = ζ−1xu/v (using (25)), we find
that b1 = −1 while b2 = b3 = b4 = 1. Now ai is defined to be the multiple of ni such
that 0 ≤ ai < ℓ and aibi/ni ≡ 1 (mod ℓ/ni). It follows that a1 = q − 2, a2 = 1 and
a3 = a4 = (q − 1)/2.

If we define Li, for 0 ≤ i < q − 1, to be the subspace of H1(X,OX) on which θ acts as
multiplication by ζi, then according to Lemma 4.3 of [B] in our case,

dimLi = g(Y )− 1 +
4

∑

j=1

〈

iai
q − 1

〉

,

where 〈a〉 is the fractional part of a. This gives

dimLi = g(Y )− 1 +

〈

i(q − 2)

q − 1

〉

+

〈

i

q − 1

〉

+ 2

〈

i((q − 1)/2)

q − 1

〉
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=
3q0 − 1

2
− 1 +

q − 1− i

q − 1
+

i

q − 1
+ 2〈i/2〉 =

3q0 − 1

2
+ 2〈i/2〉

=

{

3q0−1
2 i even;

3q0+1
2 i odd.

By Serre duality, dimAi = dimLq−1−i, and since q − 1 is even, the proposition follows.

Remark 5: One may check, using Proposition 2.4 and Lemma 5.1, that the following
3q0+1

2 differentials belong to our basis for H0(X,Ω1) and to A1, so must form a basis
for A1:

dx, x2vq0−1dx, x4uvq0−2dx, ... , xq0−3yuq0−2vdx, xq0−1yuq0−1dx,

yu
q0−1

2 v
q0−1

2 dx, x2yu
q0+1

2 v
q0−3

2 dx, ... , xq0−1uq0−1dx.

§ 6 Proof of Theorem 1.3

s = 1

The Ai are of size 5 for i odd, 4 for i even. The following shows, for a few of the Ai’s,
a basis (arranged in a lexicographical order).

A1 = 〈dx, yuvdx, x2v2dx, x2yu2dx, x4uvdx〉,

A2 = 〈xdx, xyuvdx, x3v2dx, x3yu2dx〉,

A3 = 〈yv2dx, y2u2dx, x2dx, x2yuvdx, x4yu2dx〉,

A4 = 〈xyv2dx, xy2u2dx, x3dx, x3yuvdx〉,

A5 = 〈ydx, y2uvdx, x2yv2dx, x2y2u2dx, x4dx〉,

A6 = 〈xydx, xy2uvdx, x3y2u2dx, x5dx〉.

These may be confirmed using Proposition 2.4 and Lemma 5.1, but the following in-
dicates how these bases were generated in practice. We start with the basis for A1

given by Remark 5. In getting from A1 to A2 we have more-or-less multiplied by x,
but we dropped x5uvdx as it is not holomorphic. To get from A2 to A3, again it is
mostly a case of multiplying by x. We have discarded the non-holomorphic x4v2dx, but
have gained two by replacing x4 (i.e. xq0+1) with y in both that and the holomorphic
x4yu2 dx.

As mentioned earlier, C maps each Ai to Ai/3, and permutes the Ai in cycles of length
dividing 2s + 1. For s = 1, one easily checks that it produces 8 length 3 cycles and 2
length 1 cycles (the latter for i = 0 and i = (q − 1)/2). For example

A1
C
−→ A9

C
−→ A3

C
−→ A1.
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Here we show calculations for a part of this cycle, A9
C
−→ A3, where

A9 = 〈uv2dx, y2dx, x2u2vdx, x4ydx, x8dx〉

If ω ∈ A9 then we can express ω as

ω = λ3
1(uv

2dx) + λ3
2(y

2dx) + λ3
3(x

2u2vdx) + λ3
4(x

4ydx) + λ3
5(x

8dx), with λi ∈ Fq.

If ω ∈ ker(C)|A9
then C(ω) = 0 shows

C(ω) = C(λ3
1(uv

2dx) + λ3
2(y

2dx) + λ3
3(x

2u2vdx) + λ3
4(x

4ydx) + λ3
5(x

8dx)) = 0

⇒ λ1C(uv
2dx) + λ2C(y

2dx) + λ3C(x
2u2vdx) + λ4C(x

4ydx) + λ5C(x
8dx) = 0

⇒ λ1C(uv
2dx) + λ2C(y

2dx) + λ3C(x
2u2vdx) + λ4xC(xydx) + λ5x

2
C(x2dx) = 0.

(27)

We use Table 1 to substitute into (27). This gives

λ1(x
4yu2 − x2yuv + yv2)dx+ λ2(x

2u2vdx) + λ3(x
4yu2 − x2yuv + yv2)dx+ λ4(x

2dx)

+ λ5(dx) = 0.

Since C(ω) ∈ A3, it can be expressed in terms of the generators of A3. The above
equation becomes

(λ1 + λ3)v
2ydx+ (0)y2u2dx+ (λ2 + λ4 + λ5)x

2dx+ (−λ1 − λ3)x
2yuvdx

+ (λ1 + λ3)x
4yu2dx = 0 (28)

To find ker(C|A9
), we have to find the null space of the associated matrix M9,3. We

solve the following:












1 0 1 0 0
0 0 0 0 0
0 1 0 1 1
2 0 2 0 0
1 0 1 0 0

























λ1

λ2

λ3

λ4

λ5













=













0
0
0
0
0













.

This gives

λ1 = −λ3

λ5 = −(λ2 + λ4).

From the above we have the following three linearly independent exact holomorphic
differentials:

(x2u2v − uv2)dx ; (29)

(x4y − y2)dx ; (30)

(x8 − x4y)dx = x3(x3x2 − xy)dx . (31)

These basis elements actually belong to our earlier lists, specifically C1, B8 and B7
respectively.
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For the length-1 cycles, we find that ker(C|A13
) is spanned by (x2u+ v)dx ∈ B1, while

ker(C|A0
) is spanned by x3(x2u2 + uv)dx ∈ B3 and (x3uv + xv2)dx ∈ B4. From these

and similar calculations, we find that the dimension of the space of exact holomorphic
differentials H0(X,Ω1)C=0, for s = 1, is 39 (compared with g = 117), and the basis
elements we find all lie on the lists Ai, Bi, Ci, Di.

s = 2

For s = 2 we can proceed in a similar manner to that described for s = 1, to find,
inside each Ai, a subset of our basis for H0(X,Ω1), of size 3q0+1

2 if i is odd, 3q0−1
2 if i is

even. For example, the following shows our basis (arranged in a lexicographical order)
for a few of the Ai’s.

A1 =〈dx, yu4v4dx, x2v8dx, x2yu5v3dx, x4uv7dx, x4yu6v2dx, x6u2v6dx, x6yu7vdx,

x8u3v5dx, x8yu8dx, x10u4v4dx, x12u5v3dx, x14u6v2dx, x16u7vdx〉

A2 =〈xdx, xyu4v4dx, x3v8dx, x3yu5v3dx, x5uv7dx, x5yu6v2dx, x7u2v6dx, x7yu7vdx,

x9u3v5dx, x9yu8dx, x11u4v4dx, x13u5v3dx, x15u6v2dx〉

A3 =〈yu3v5dx, y2u8dx, x2dx, x2yu4v4dx, x4v8dx, x4yu5v3dx, x6uv7dx, x6yu6v2dx,

x8u2v6dx, x8yu7vdx, x10u3v5dx, x10yu8dx, x12u4v4dx, x14u5v3dx〉

A4 =〈xyu3v5dx, xy2u8dx, x3dx, x3yu4v4dx, x5v8dx, x5yu5v3dx, x7uv7dx, x7yu6v2dx,

x9u2v6dx, x9yu7vdx, x11u3v5dx, x11yu8dx, x13u4v4dx〉

A5 =〈yu2v6dx, y2u7vdx, x2yu3v5dx, x2y2u8dx, x4dx, x4yu4v4dx, x6v8dx, x6yu5v3dx,

x8uv7dx, x8yu6v2dx, x10y2v6dx, x10yu7vdx, x12u3v5dx, x12yu8dx〉.

We have altogether 242 Ai’s, which give rise to 48 cycles of length 5 and 2 cycles of
length 1. We deal with these cycles one by one, just like in the case s = 1, finding each
ker(C|Ai) by solving a set of linear equations. However, the corresponding matrices will
now be either 14× 14 or 13× 13. We therefore found their null spaces with the help of
the computer package Maple. (For the details of these calculations see [F].)

In the case s = 1, we observed that for each cycle of length 3, containing Ai’s all
of dimension either 4 or 5, the total contribution of the cycle to dimH0(X,Ω1)C=0 is
precisely dim(Ai). However, in the case s = 2 we found that, for the cycles of length
5, dim(Ai) is only a lower bound for the contribution to dimH0(X,Ω1)C=0 of the cycle
containing Ai. The length-5 cycles making the smallest contribution (i.e. 13) to the

dimension are A40
C
−→ A94

C
−→ A112

C
−→ A118

C
−→ A120

C
−→ A40 and A122

C
−→ A202

C
−→

A148
C
−→ A130

C
−→ A124

C
−→ A122. Looking at the latter in more detail, the contributions

are as follows:

ker(C|A122
) is spanned by x3v3udx ∈ A4, x9u3udx ∈ A4, v3xvdx ∈ A5 and x6u3xvdx ∈

A5.

ker(C|A202
) is spanned by x3u6(x2u+ v)dx ∈ B1, v6(xq0x2y + xy2)dx ∈ C2,
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ker(C|A148
) is spanned by x3u3(x3xu2 − x2uv + v2)dx ∈ B5 and v3(x2q0−3x2yv +

xq0−3xy2v + xu2)dx ∈ D3.

ker(C|A130
) is spanned by x9v3(x2u+ v)dx ∈ B1 and u15u3(x2u+ v)dx ∈ B1.

ker(C|A124
) is spanned by x3v3(x2u+v)dx ∈ B1, x9u3(x2u+v)dx ∈ B1, and u3(x2q0xy2−

xq0x2u+ xyu)dx ∈ D1.

The length-5 cycles making the largest contribution (i.e. 26) to the dimension are

A1
C
−→ A81

C
−→ A27

C
−→ A9

C
−→ A3

C
−→ A1 and A161

C
−→ A215

C
−→ A233

C
−→ A239

C
−→

A241
C
−→ A161.

The cycles of length 1 (containing A121 and A242) make smaller contributions:

ker(C|A121
) is spanned by v3(x2yu + yv)dx ∈ B2 and x6u3(x2yu + yv)dx ∈ B2, while

ker(C|A242
) is spanned by x3v6(x2u2 + uv)dx ∈ B3, x9u3v3(x2u2 + uv)dx ∈ B3,

x15u6(x2u2 + uv)dx ∈ B3, v6(x3uv + xv2)dx ∈ B4, x6u3v3(x3uv + xv2)dx ∈ B4,
x12u6(x3uv + xv2)dx ∈ B4, and x3u6(x3xyu2 − x2yuv + yv2)dx ∈ B6.

All in all, we find that the dimension of the space of exact holomorphic differentials
for X, when s = 2, is 837 (compared with g = 3267), which exactly matches with
2q0
33

(14q20 + 9) + 1
12(11q

2
0 + 9), (by putting q0 = 9 and q = 243).

All the exact holomorphic differentials found by our calculations for s = 1 and s = 2 are
accounted for by the classes Ai, Bi, Ci and Di. We checked directly that the numbers
found in each class match those given by Table 3. Many of these turn out to be 0 in
the case s = 1, and generally speaking, there are many more differentials in the earlier
classes than in the later classes.

Now that we have proved Theorems 1.2 and 1.3, we address the question of why we
might believe Conjecture 1.1. Originally, we only found the classes Ai, Bi and Ci, and
thought that might be all, so why should we now believe that for every s ≥ 1 the space
of exact holomorphic differentials is spanned by those in these classes and the Di, aside
from the fact that we can’t find anything else? After finding the classes Ai, Bi and Ci,
we then calculated the kernel of C in the case s = 1 and found that, although almost
everything we found was in one of these classes, the differential (x3x2yv+xy2v+xu2)dx,

(obtained from A22
C
−→ A16) does not belong to any of them. This is what made us

look for more, and discover the classes Di. The above differential belongs to D3.
Our calculations for s = 1, the very first case we looked at, revealed what we had
missed. Were we still missing anything after discovering the Di, it seems likely that
our subsequent calculations for s = 2 would likewise have revealed it.
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