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EISENSTEIN CONGRUENCES FOR SPLIT REDUCTIVE

GROUPS

JONAS BERGSTRÖM AND NEIL DUMMIGAN

Abstract. We present a general conjecture on congruences between Hecke

eigenvalues of parabolically induced and cuspidal automorphic representa-
tions of split reductive groups, modulo divisors of critical values of certain
L-functions. We examine the consequences in several special cases, and use
the Bloch-Kato conjecture to further motivate a belief in the congruences.

1. Introduction

Ramanujan discovered the congruence τ(p) ≡ 1 + p11 (mod 691), for all primes
p, where ∆ =

∑∞
n=1 τ(n)q

n = q
∏∞

n=1(1− qn)24. We may view this as being a con-
gruence between Hecke eigenvalues, for T (p) acting on the cusp form ∆ of weight 12
for SL2(Z), and on the Eisenstein series E12 of weight 12. The modulus 691 comes
from a certain L-function evaluated at a critical point depending on the weight;

specifically it divides the numerator of the rational number ζ(12)
π12 . Conjecture 4.2

in this paper is a very wide generalisation of Ramanujan’s congruence, to congru-
ences between Hecke eigenvalues of automorphic representations of G(A), where A
is the adele ring and G/Q is any connected, reductive group. (Here we look only
at the case that G is split, but we shall return to the non-split case elsewhere.) On

one side of the congruence is a cuspidal automorphic representation Π̃ of G. On
the other is one induced from a cuspidal automorphic representation Π of the Levi
subgroup M of a maximal parabolic subgroup P . The modulus of the congruence
comes from a critical value of a certain L-function, associated to Π and to the ad-
joint representation of the L-group M̂ on the Lie algebra n̂ of the unipotent radical
of the maximal parabolic subgroup P̂ of Ĝ. Starting from Π, we conjecture the
existence of Π̃, satisfying the congruence. Ramanujan’s congruence is an instance
of the case G = GL2,M = GL1 ×GL1.

For an odd prime q, and even k such that 2 ≤ k ≤ q − 3 and with q dividing
ζ(k)/πk, Ribet exploited a congruence of this type (still G = GL2,M = GL1×GL1)
to construct an element of order q in the class group of the cyclotomic field Q(ξq),
more precisely in the χ1−k-eigenspace for the action of Gal(Q(ξq)/Q), where χ is
the cyclotomic character [Ri1]. The Hecke eigenvalues for a cusp form f are traces
of Frobenius for the 2-dimensional q-adic Galois representation. The congruence
can be interpreted as a reducibility of this Galois representation modulo q, with
1-dimensional composition factors id and χ1−k in a non-split extension which gives
the element of the class group. (For technical reasons, Ribet replaced modular
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2 JONAS BERGSTRÖM AND NEIL DUMMIGAN

forms of weight k and level 1 by modular forms of weight 2 and level q, with
non-trivial character.) This element may be thought of as belonging to a Bloch-
Kato Selmer group associated to ζ(k), confirming a prediction of the Bloch-Kato
conjecture on special values of L-functions, given that q divides ζ(k)/πk. In fact,
when Bloch and Kato [BK] proved most of their conjecture in the case of the
Riemann zeta function, the main ingredient was the Mazur-Wiles theorem [MW]
(Iwasawa’s main conjecture), whose proof was a further development of Ribet’s idea.
In §14, we try to motivate the conjectured congruence, and in particular to justify
the specific choice of L-value from which the modulus is extracted, by generalising
Ribet’s construction, to link the congruence to the Bloch-Kato conjecture. Though
we cannot actually prove much, the adjoint action of M̂ on n̂ appears in a plausible
manner.

Beyond the case G = GL2 (and closely related congruences of Hilbert modular
forms), maybe the next to be studied was that of G = GSp2, with P the Klingen
parabolic, i.e. congruences between genus-2 Klingen-Eisenstein series and cusp
forms. The first example, found by Kurokawa [Ku], was a congruence mod 712

between the Hecke eigenvalues of two scalar-valued Siegel modular forms of genus-
2 and weight 20, one a cusp form, the other the Klingen-Eisenstein series of the
unique normalised genus-1 cusp form ∆20 of level 1 and weight 20. The modulus
comes from the rightmost critical value L(Sym2∆20, 38). For the genus-2 Hecke
operator traditionally called T (p), the Hecke eigenvalue for the Klingen-Eisenstein
series, i.e. the right-hand-side of the congruence, is ap(∆20)(1+p

k−2), where k = 20
and ∆20 =

∑∞
n=1 ap(∆20)q

n.
Congruences of this type, but for Λ-adic forms, where Λ is a two-variable Iwasawa

algebra, and the modulus is a q-adic adjoint L-function, were proved by Urban [U2],
and used by him to prove that that q-adic L-function divides the characteristic ideal
to which the main conjecture says that it should be equal [U1]. Skinner and Urban
have similarly used the non-split case G = GU(2, 2), P a Klingen parabolic, in their
work on the main conjecture for GL2, see [SU]. Both these works use an adaptation
of Ribet’s construction.

The case G = GSp2, P the Siegel parabolic, arises out of work of Harder [H3,
3.1], and the first computational evidence was observed by him [H1], using com-
putations of Hecke eigenvalues by Faber and van der Geer [FvdG, vdG]. Their
method involves computing the zeta function of curves whose Jacobians make up
the mod p points of A2, the moduli space of principally polarized abelian surfaces,
which is a Siegel modular threefold. In their paper they computed Hecke eigen-
values for p ≤ 37, for weights j, k such that the space of genus-2 cusp forms is
1-dimensional, assuming a conjecture on the endoscopic contribution to the coho-
mology of local systems on A2. This conjecture has been proven by Petersen [P]
(see also Weissauer [We1]), building on research of many people on the automor-
phic representations of GSp2. Here, the right hand side of the congruence is, for
T (p), of the form ap(f) + pk−2 + pj+k−1, where f is a genus-1 cusp form of weight
j +2k− 2, and the modulus comes from the critical value L(f, j + k). The genus-2
cusp form whose Hecke eigenvalues appear on the left-hand-side is vector-valued of
weight Symj ⊗ detk.

Harder himself generalised his conjecture to the case G = GSp3, M ≃ GL2 ×
GL2 [H5]. Here the right-hand-side involves two genus-1 cusp forms, and there
are two cases depending on the relative sizes of their weights. Computations by
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the first named author, Faber and van der Geer, using the same techniques as
mentioned above but for the Siegel modular six-foldA3, gave (assuming a conjecture
on the endoscopic contribution to the cohomology of local systems on A3) Hecke
eigenvalues for genus-3 vector-valued Siegel modular forms for p ≤ 17, and aided
by L-value approximations by Mellit, they produced numerical evidence for these
conjectures [BFvdG1]. They also found some apparent congruences in the case
G = GSp3, M ≃ GL1 × GSp2, but did not put forward a guess for what L-value
the modulus comes from.

In §2 we introduce some notation and basic facts on reductive groups, characters
and cocharacters, automorphic representations, Satake parameters and infinites-
imal characters. In §3 we look at the L-functions mentioned above, connected
with the adjoint action of M̂ on n̂. The first contribution of this paper is the dis-
cussion, towards the end of §3, of the relation between criticality of values of these
L-functions and dominance of certain characters related to induced representations,
explaining what might otherwise seem like a strange coincidence. In §4, after intro-
ducing what we need on the Bloch-Kato conjecture, we state the main conjecture
on congruences.

In §§5,6 and 7, we examine the casesG = GL2,M ≃ GL1×GL1, G = GSp2, P the
Klingen parabolic, and G = GSp2, P the Siegel parabolic, respectively. Hopefully
it is evident already in these cases how efficiently our presentation leads, in a
unified way, to the explicit determination of the right-hand-sides of congruences,
which L-values the moduli come from, and the “weights” of the various objects
involved. Another special feature is that, via the Bloch-Kato conjecture in the
case of values of L-functions with missing Euler factors, we find a natural home for
Harder’s congruences “of local origin” [H2], and present examples in the new case
of G = GSp2, P the Klingen parabolic.

For G = GSp3 there are three maximal parabolics (up to conjugacy). In §8 we
consider the case M ≃ GL2 ×GL2, recovering the conjecture of Harder mentioned
above. In §10 we look at M ≃ GL1 × GL3, for which we have no computational
evidence. More interesting perhaps is the remaining caseM ≃ GL1×GSp2, covered
in §9. Here we recover the conjectural congruences of which the first-named author,
Faber and van der Geer found examples, and effortlessly arrive at critical values
of a genus-2 standard L-function as the source of the modulus for the congruence.
Showing, in special cases, that the primes, for which they found congruences, really
do occur in the standard L-values, calls on earlier work which the second-named
author never expected to lead anywhere further [Du3, DIK]. This is connected with
a quite different construction of elements in Bloch-Kato Selmer groups, related to
the “visibility” construction of Cremona and Mazur [CM].

The spinor L-function of a genus-2 cusp form is involved in the caseG = SO(4, 3),
M ≃ GL1 × SO(3, 2), which we do not mention again in this paper, but return to
in [BDM].

In §§11 and 12, we consider the two conjugacy classes of maximal parabolics
for G the Chevalley group of type G2, expecting that something interesting and
testable might happen, since in both cases M ≃ GL2. What we observe, using the
conjectural Gross-Savin functorial lift from G2 to GSp3, is a remarkable consistency
with the earlier cases involving GSp3 (and also GSp2). In the last part of §12, we
also find something new. Suppose that a ≥ b ≥ c > 0, with c even and a = b + c.
If f is a genus-1 cuspidal Hecke eigenform of weight a + b + 6 then we expect a
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congruence involving a genus-3 cuspidal Hecke eigenform of weight (a−b, b−c, c+4),
with right-hand-side (1+pc+1)(ap(f)+p

b+2+pa+3), and modulus coming from the
critical value L(f, a+c+5). Using Hecke eigenvalues calculated as in [BFvdG1], we
checked numerical evidence for such a congruence in the case (a, b, c) = (10, 8, 2).
The condition a = b + c is necessary for the congruence to come from G = G2

via the Gross-Savin lift, but we noticed that it appears to work even without that
condition, and found sixteen more examples, for which a 6= b+ c.

The induced representations we consider depend on a parameter s > 0 which
is typically confined to Z or to 1

2 + Z (and is often bounded above too). We

have to exclude s = 1
2 or 1 from the scope of Conjecture 4.2. But congruences of

Hecke eigenvalues between CAP (cuspidal associated to a parabolic) and non-CAP
cuspidal automorphic representations sometimes appear as a substitute in the case
s = 1

2 or 1. See the remarks on Saito-Kurokawa lifts in §7 and Ikeda-Miyawaki lifts

in §8. It seems possible that we can include s = 1
2 or 1 at the expense of enlarging

the set of ramified primes, see the remarks at the end of §5, and again in §7.
An important feature in the work of Harder is the cohomology of local systems

on arithmetic quotients of locally symmetric spaces, and in §13 we work out the
precise relationship between our way of arriving at conjectural congruences and
Harder’s. Another key aspect of his approach is the occurrence of the L-value in
the denominator of a constant term of a generalised Eisenstein series (by a theorem
of Langlands/Gindikin-Karpelevich [Ki, Theorems 5.3,6.7]). This too seems to be
important for a fuller understanding, and affects the precise formulation and scope
of the conjecture. As he has pointed out, the periods we divide by to normalise
L-values are motivic in nature, whereas the periods he divides by to normalise the
ratios of consecutive L-values appearing in constant terms are topological in nature.

In §14 we indicate how from a congruence of the type considered here, the exis-
tence of a non-zero element in a Bloch-Kato Selmer group ought to follow (though
our argument is far from a proof). Then, according to the Bloch-Kato conjecture,
we should find the modulus dividing the appropriate normalised L-value. Much of
the numerical evidence we give or refer to goes in this direction, in that we look for
congruences first, then having found them, confirm the divisibility of the L-value,
as “predicted” by the Bloch-Kato conjecture. However, our Conjecture 4.2 as pre-
sented goes in the other direction, predicting that given divisibility of an L-value,
a congruence should follow. In other words, when the Bloch-Kato conjecture (ap-
plied to the L-values we look at here) predicts the existence of a non-zero element
in a Selmer group, this element should be constructible from a congruence. One
might ask what justification we have for such a conjecture, with this direction of
implication.

First, in those few cases where anything is actually proved, e.g. for G = GL2,
M = GL1 × GL1, or in cases for G = GSp2 and P the Klingen parabolic, one
starts from divisibility of an L-value and proves a congruence. When G = GSp2
and P is the Siegel parabolic (Harder’s conjecture), van der Geer looked at all level
1 examples where the relevant spaces of cusp forms of genus 1 and genus 2 are
1-dimensional. In all cases where a large enough prime divided the normalised L-
value he then verified the expected congruence for p ≤ 37 [vdG, §27]. In §12, where
G = G2, in the example with a congruence for q = 179, one of us found this divisor
of the L-value first, predicting a congruence which was then verified for p ≤ 17 by
the other one. In the non-split case G = U(2, 2) with P the Siegel parabolic, the
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second-named author calculated an L-value first, finding divisors for q = 19 and
q = 37, then computed some Hecke eigenvalues which turned out to be consistent
with the expected congruences [Du4]. In another non-split case, G = U(2, 1), the
first-named author found apparent congruences for q = 53 and q = 271, using Hecke
eigenvalues computed by him and van der Geer, after Harder had predicted them
on the basis of L-value computations (see [Du4]).

The authors met at the Max Planck Institute in Bonn in February 2010, and are
grateful for the opportunity so provided. There they also attended a seminar by
G. Harder, and participated in valuable discussions with him, continued on later
occasions. They benefitted also from his comments on an earlier version of this
paper. We were directed to [Ki] and [BG] by G. Harder and T. Berger, respectively.

2. Induced representations

For basic notions on reductive groups and automorphic representations, see [Sp,
BJ], and associated articles in the same volume. Another useful reference is [Ki].

Let G/Q be a connected, reductive algebraic group. In this paper we shall
assume that G is split, so it has a maximal torus T ≃ (GL1)

r over Q. Let X∗(T ) =
Hom(T,GL1) and X∗(T ) = Hom(GL1, T ) be the character and cocharacter groups,
respectively, of T . There is a natural pairing 〈, 〉 : X∗(T ) × X∗(T ) → Z. Let
WG = W = NG(T )/T be the Weyl group. Let Φ ⊂ X∗(T ) be the set of roots,
Φ+ = Φ+

G the set of positive roots (with respect to a fixed ordering), and ∆G

the set of simple positive roots. Let ρG be half the sum of all the positive roots.
Given any root α, there is an associated coroot α̌ ∈ X∗(T ), with 〈α, α̌〉 = 2. If
〈, 〉′ is any W -invariant inner product on X∗(T/S) ⊗ R, where S = Z(G)0 is the
connected component of the identity in the centre of G, then for any root α, and
any χ ∈ X∗(T/S), we have 〈χ, α̌〉 = 〈χ, 2α

〈α,α〉′ 〉′. Identifying α̌ with 2α
〈α,α〉′ we get

an isomorphism X∗(T/S)⊗R ≃ X∗(T/S)⊗R, so from now on we write 〈, 〉′ as 〈, 〉.
Let B be the Borel subgroup (minimal parabolic) of G corresponding to Φ+

G.
If we choose any α ∈ ∆G then there is a maximal parabolic subgroup P =MN

of G, with unipotent radical N and (reductive) Levi subgroup M , characterised
by ∆M = ∆G − {α}. The roots in Φ are those non-trivial characters of T arising
from its adjoint action on the Lie algebra g of the algebraic group G. Let ΦN be
the subset occurring in the Lie algebra n of N , i.e. those elements of Φ+

G whose
decomposition as a sum of simple roots includes α, and let ρP be half the sum of
the elements of ΦN . Let α̃ := ρP

〈ρP ,α̌〉 . Then 〈α̃, α̌〉 = 1, while 〈α̃, β̌〉 = 0 for all other

simple positive roots β (as can be seen by considering the action of WM ), i.e. α̃ is
a fundamental dominant weight in X∗(T/S).

Let Ĝ be the Langlands dual group of G [Ki, Chapter 3], [Bo, I.2]. Then Ĝ

has a maximal torus T̂ with X∗(T̂ ) ≃ X∗(T ) and X∗(T̂ ) ≃ X∗(T ). Under these

isomorphisms, roots of Ĝ become coroots of G, and coroots of Ĝ become roots of
G, with ∆̌ := {β̌ : β ∈ ∆G} mapping to a set of simple positive roots for Ĝ. We

can define a maximal parabolic subgroup P̂ of Ĝ, with Levi subgroup characterised
by having set of simple positive roots ∆̌ − {α̌}, hence identifiable with M̂ . Let N̂

be the unipotent radical of P̂ , with Lie algebra n̂.
Letting A := Z(M)0, the restriction map from X∗(M) (i.e. Hom(M,GL1)) to

X∗(A) identifies X∗(M) with a finite-index subgroup of X∗(A), thus X∗(M)⊗R =
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X∗(A) ⊗ R. If χ ∈ X∗(M) then we can define, for any archimedean or non-
archimedean place v of Q, a homomorphism |χ|v : M(Qv) → R× by |χ|v(m) =
|χ(m)|v. We can extend this to X∗(M) ⊗ R, or even X∗(M) ⊗ C, by |sχ|v(m) =
|χ(m)|sv in C×. For a finite prime p, | · |p is normalised so that |p|p = p−1. Let
A be the adele ring of Q, and let G(A) be the group of points of the Q-algebraic
group G in the Q-algebra A. Taking a product over all places, we may define, for
any χ ∈ X∗(M)⊗R, a homomorphism |χ| :M(A) → R×. In particular, restricting
2ρP to A then viewing it in X∗(A)⊗R = X∗(M)⊗R, we have |sα̃| :M(A) → C×,
for any s ∈ C. Note that this character is trivial when restricted to S(A).

Let Π be an irreducible, cuspidal, automorphic representation ofM(A). We shall
assume in addition that Π is unitary, and that it is trivial on A(A). (This latter
assumption is purely for simplicity. Without it, we could, for instance, in the case
M = GL1×GL1 in §5 below, let Π = ψ1×ψ2 for two Dirichlet characters, and ζ(s)
would be replaced by the Dirichlet L-function L(ψ1ψ

−1
2 , s).) We have Π = ⊗vΠv,

where each Πv is an irreducible, admissible representation of M(Qv), unramified
for all but finitely many v. Then Π ⊗ |sα̃| is a representation of M(A), trivial on

S(A). We may parabolically induce it to a representation IndGP (Π⊗ |sα̃|) of G(A),
trivial on S(A). This induction is as described in [Ki, Chapter 4]. It involves the

addition of ρP to sα̃, with the consequence that IndGP (Π ⊗ |sα̃|) would be unitary
if s ∈ iR, though we shall always take s ∈ R>0.

The admissibility of Π∞ follows from it being unitary and irreducible, by a the-
orem of Harish-Chandra [Da, Theorem 2.3]. Then, by [Kn, Proposition 5.19] or
[Da, §3], the centre Z(mC) of the universal enveloping algebra U(mC) (where mC

is the complexification of the Lie algebra of M(R)) acts by a character (the “in-
finitesimal character”), on the dense subspace of K∞-finite vectors, where K∞ is
a maximal compact subgroup of M(R). Given any Cartan subalgebra hC of mC,
the Harish-Chandra isomorphism from Z(mC) to U(hC)

W (hC) (invariants under the
Weyl group) allows us to write the infinitesimal character in the form χλ for some
λ ∈ h∗C, determined only up to the Weyl group action. See [Kn, Theorem 5.62] or
[Da, §3]. In discussions of discrete series representations, “compact” Cartan subal-
gebras are most directly relevant, but all Cartan subalgebras of mC are conjugate
by M(C) [Kn, Theorem 2.15], and it is convenient to take h to be the Lie algebra
of T (R) (and hC = h ⊗R C), so we may identify λ (and by abuse of notation χλ)
with an element of X∗(T )⊗ C (which for us will always be in X∗(T )⊗ R). If Π∞

has infinitesimal character λ (up to the action of WM ), then IndGP (Π∞ ⊗ |sα̃|∞)

(i.e. the R-component of IndGP (Π ⊗ |sα̃|)), though not in general unitary, has an
infinitesimal character λ + sα̃, now only determined up to the action of WG. Ap-
plying an element of WM if necessary, we may arrange for λ to be dominant with
respect to ∆M , i.e. 〈λ, β̌〉 ≥ 0 for all β ∈ ∆M . This follows from [Kn, Theorem
2.63, Proposition 2.67]. However, λ might not be dominant for ∆G: it might not be
the case that 〈λ, α̌〉 ≥ 0, but similarly there exists some w ∈WG such that w(λ) is
dominant for ∆G. Note that the finite-dimensional representation of G with highest
weight λ has infinitesimal character λ+ ρG.

Lemma 2.1. Let λ ∈ X∗(T ) ⊗ R be the infinitesimal character of a unitary irre-
ducible representation of M(R), and suppose that λ is chosen in its WM -orbit to
be dominant. Then λ = −wM

0 λ, where wM
0 ∈ WM is the long element, exchanging

positive and negative roots.
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Proof. Since the representation is unitary, its conjugate (i.e. V ⊗σ C, where σ is
complex conjugation, so all matrix coefficients are conjugated) and its dual are
isomorphic. Since M is split, the infinitesimal character of the conjugate is also
λ. The infinitesimal character of the dual (chosen dominant in its WM -orbit) is
−wM

0 λ. �

Let p be a finite prime such that Πp is unramified (or “spherical”), i.e. has
a non-zero M(Zp)-fixed (“spherical”) vector. Note that M(Zp) is defined using
the Chevalley group scheme for the split group M , and likewise for G(Zp). Then
for some χp ∈ X∗(T ) ⊗ iR, Πp is isomorphic to a unique irreducible quotient of

the (unitarily) parabolically induced representation Ind
M(Qp)

BM (Qp)
(|χp|p) [Ki, Theorem

4.17], [Ca, 4.4(d)], where BM := B ∩M . Note that χp can be replaced by anything
in the same WM -orbit, and that the character |χp|p of T (Qp) is unramified, i.e.

trivial on T (Zp). Also, Ind
M(Qp)

BM (Qp)
(|χp|p) is irreducible if χp is regular (i.e. if

〈χp, β̌〉 6= 0, for every β ∈ ΦM ). The local component at p of IndGP (Π ⊗ |sα̃|)
is easily seen, from the definition of induction [Ki, Ch.4,§2], to have a G(Zp)-
fixed vector, and by transitivity of induction [Ki, Lemma 6.1],[Ca, I(36)] it is a

subquotient of Ind
G(Qp)

B(Qp)
(|χp + sα̃|p). Hence it has the spherical subquotient of

Ind
G(Qp)

B(Qp)
(|χp + sα̃|p) as an irreducible constituent. Note that |χp + sα̃|p is still

an unramified character of T (Qp), though it is not unitary for s /∈ iR. In our
application, χp will always be regular for M , and s chosen so that χp + sα̃ is

regular for G, hence Ind
G(Qp)

P (Qp)
(Πp ⊗ |sα̃|p) will be irreducible.

We refer to χp and χp + sα̃ as the Satake parameters at p of Π and IndGP (Π ⊗
|sα̃|), respectively. Let H = H(G(Qp), G(Zp)) be the Hecke algebra of C-valued,
compactly supported, G(Zp)-bi-invariant functions on G(Qp). If f ∈ H then

f acts on Ind
G(Qp)

P (Qp)
(Πp ⊗ |sα̃|p) (or any other representation of G(Qp)) by v 7→

∫

G(Qp)
g(v)f(g) dg, where dg is a left- and right-invariant Haar measure, normalised

so that G(Zp) has volume 1. Then H is a commutative ring under convolution
of functions (which corresponds to composition of operators), and is generated by
the characteristic functions T ′

µ of double cosets G(Zp)µ(p)G(Zp), where µ ∈ X∗(T )
is any cocharacter. If v0 is a spherical vector then necessarily so is T ′

µ(v0), but
since v0 is unique up to scalar multiples, H acts on v0 by a character. The value
of this character on any particular element of H is a “Hecke eigenvalue”. (When
a classical cuspidal Hecke eigenform is identified with a vector in an automorphic
representation of GL2(A), this vector is spherical locally at primes not dividing the
level.)

Given χ ∈ X∗(T ) ⊗ C, there is t(χ) ∈ T̂ (C) such that, for any µ ∈ X∗(T ) =

X∗(T̂ ), µ(t(χ)) = |χ(µ(p))|p. In the case χ = sλ, with λ ∈ X∗(T ) = X∗(T̂ ) and

s ∈ C, we have t(χ) = λ(p−s), and µ(t(χ)) = |χ(µ(p))|p = p−s〈λ,µ〉. The Hecke
eigenvalue for T ′

µ, on the spherical representation of G(Qp) with Satake parameter

χ (or t(χ), thought of as a conjugacy class in Ĝ(C)) may be calculated using the
Satake isomorphism. In particular, if µ is minuscule, meaning that the orbit of µ
underWG is the set of weights for the irreducible representation θµ of Ĝ with highest

weight µ, then the eigenvalue is p〈ρG,µ〉Tr(θµ(t(χ))) = p〈ρG,µ〉
∑

w∈WG
|χ(w(µ)(p))|p

[Gro, 3.13,6.2]. Similarly for spherical representations of M(Qp).
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3. Motives and L-functions

Recall that the representation Π ofM(A), at an unramified prime p, has a Satake

parameter χp ∈ X∗(T ) ⊗ iR, or t(χp) ∈ T̂ (C) ⊂ M̂(C). Given a representation

r : M̂ → GLd, we may define a local L-factor

Lp(s,Πp, r) := det(I − r(t(χp))p
−s)−1,

and an L-function (in general incomplete)

LΣ(s,Π, r) :=
∏

p/∈Σ

Lp(s,Πp, r),

where Σ is a finite set of primes containing all those such that Πp is ramified (i.e.
not spherical).

In particular, we take for r the adjoint representation of M̂ on the Lie algebra
n̂ of the unipotent radical of the maximal parabolic P̂ . Now n̂ is a direct sum of
subspaces on which T̂ acts by those positive roots of Ĝ that are not roots of M̂ .
These are identified with the coroots γ̌ of G, as γ runs through ΦN . It follows that

Lp(s,Πp, r)
−1 =

∏

γ∈ΦN

(1− γ̌(t(χp))p
−s) =

∏

γ∈ΦN

(1− |χp(γ̌(p))|pp−s).

Actually, r is a direct sum of irreducible representations ri for some 1 ≤ i ≤ m,
where ri acts on the direct sum n̂i of root spaces for {γ̌ : γ ∈ Φi

N} with

Φi
N := {γ ∈ ΦN : 〈α̃, γ̌〉 = i},

see [Ki, Theorem 6.6], and so

LΣ(s,Π, r) =

m
∏

i=1

LΣ(s,Π, ri).

Note that LΣ(0,Π⊗ |sα̃|, ri) = LΣ(is,Π, ri), and beware that here i is not
√
−1.

Let s ∈ R be chosen so that λ+sα̃ ∈ X∗(T ). Then according to [BG, Conjecture

3.2.1], there should exist a continuous representation ρΠ⊗|sα̃| : Gal(Q/Q) → M̂(Eq),

such that if p /∈ Σ∪ {q} then ρΠ⊗|sα̃| is unramified at p, with ρΠ⊗|sα̃|(Frob
−1
p ) con-

jugate in M̂(Eq) to t(χp + sα̃). Here, E is a certain field of definition of the Satake
parameters [BG, Definitions 2.2.1, 3.1.3], and q is any prime divisor. Moreover, by
[Cl, Conjecture 4.5] (applied to the conjectural functorial lift of Π⊗|sα̃| to GLd(A)),
r ◦ ρΠ⊗|sα̃| should be the q-adic realisation of a motive M(r,Π⊗ |sα̃|). In fact, this
should be a direct sum ⊕m

i=1M(ri,Π ⊗ |sα̃|). We shall assume the existence of
these motives, or at least of the associated premotivic structures (realisations and
comparison isomorphisms).

In fact, we need to make a weaker assumption than that λ + sα̃ ∈ X∗(T ). We
assume only that λ + sα̃ is algebraically integral, i.e. that 〈λ + sα̃, γ̌〉 ∈ Z for all
γ ∈ Φ. It will no longer necessarily be the case that the Satake parameters of
Π⊗ |sα̃| are defined over a number field, but those of the lift to GLd(A) should be,
and we take E to be their field of definition.

If r∞ :WR → M̂(C) is the Langlands parameter at ∞ (of Π⊗|sα̃|) then, restrict-
ing to the subgroup C×, of index two in the Weil group WR, r∞(z) is conjugate in

M̂(C) to (λ+sα̃)(z)(λ′+sα̃)(z), where λ′ is in the same WM -orbit as λ [BG, §2.3].
(Note that α̃ is fixed by WM .) Actually, because Π∞ is unitary, we must have λ′ =
−λ (which is in theWM -orbit of λ also by Lemma 2.1). Then ri◦r∞(z) is conjugate
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in GLdi
(C) to diag(z〈λ+sα̃,γ̌〉z〈−λ+sα̃,γ̌〉)γ∈Φi

N
= diag(z〈λ,γ̌〉+is z−〈λ,γ̌〉+is)γ∈Φi

N
. It

follows that the Hodge type of M(ri,Π⊗|sα̃|) should be {(−〈λ, γ̌〉−is, 〈λ, γ̌〉−is) :
γ ∈ Φi

N}. (For the minus sign, see [De2, 1.1.1.1]. This accords with the fact that
making a positive Tate twist reduces the weight.) The complex conjugation F∞ on
the Betti realisation HB(M(ri,Π⊗ |sα̃|))⊗C should exchange (p, q) and (q, p), so
the next lemma is no surprise.

Lemma 3.1. If γ ∈ ΦN then γ′ := wM
0 γ is also in ΦN , and 〈λ, γ̌′〉 = −〈λ, γ̌〉.

Proof. We have that wM
0 is represented by the conjugation action of some element

of M , which preserves N , so γ′ ∈ ΦN . By Lemma 2.1, λ = −wM
0 λ and hence

〈λ, γ′〉 = −〈wM
0 λ,wM

0 γ〉 = −〈λ, γ〉. Now multiply by 2
〈γ′,γ′〉 = 2

〈γ,γ〉 . �

In fact, it is easy to see that if γ ∈ Φi
N then γ′ ∈ Φi

N .
We shall be especially concerned with the Tate twist M(ri,Π ⊗ |sα̃|)(1). Let

HB(M(ri,Π ⊗ |sα̃|)(1)) and HdR(M(ri,Π ⊗ |sα̃|)(1)) be the Betti and de Rham
realisations, and let HB(M(ri,Π ⊗ |sα̃|)(1))± be the eigenspaces for the complex
conjugation F∞. As in [De1, 1.7], M(ri,Π⊗|sα̃|)(1) is critical if dim(HB(M(ri,Π⊗
|sα̃|)(1))+) = dim(HdR(M(ri,Π⊗|sα̃|)(1))/Fil0). Let wt = −2is−2 be the weight
of M(ri,Π ⊗ |sα̃|)(1) (so p + q = wt for all (p, q) in the Hodge type), and let hp,q

be the dimension of the (p, q)-part Hp,q of HB(M(ri,Π⊗ |sα̃|)(1))⊗C. Note that
F∞ exchanges Hp,q and Hq,p, so hp,q = hq,p.

Proposition 3.2. Let bi be the smallest non-zero positive value of 〈λ, γ̌〉, for γ ∈
Φi

N .

(1) If wt is odd, or if wt is even but hwt/2,wt/2 = 0, then M(ri,Π⊗ |sα̃|)(1) is
critical for 0 < s ≤ bi−1

i (subject also to λ+sα̃ being algebraically integral).

(2) If wt is even and hwt/2,wt/2 6= 0, suppose that F∞ acts on Hwt/2,wt/2 by
a scalar (necessarily (−1)t with t = 0 or 1). Then M(ri,Π ⊗ |sα̃|)(1)
is critical for 0 < s ≤ bi−1

i , subject also to λ + sα̃ being algebraically
integral, and the extra condition t = 0. (Note that whenever s goes up by
1, M(ri,Π⊗ |sα̃|)(1) gets Tate twisted by i, so t changes by i (mod 2). So
the condition t = 0 amounts to a kind of parity condition on is.)

Proof. (1) In this case,

dim(HB(M(ri,Π⊗ |sα̃|)(1))+) = 1

2
dim(HB(M(ri,Π⊗ |sα̃|)(1))).

We have also

dim(HdR(M(ri,Π⊗ |sα̃|)(1))/Fil0) = 1

2
dim(HdR(M(ri,Π⊗ |sα̃|)(1)))

if and only if, when the (p, q), with multiplicities, are listed in order of
increasing p, the p immediately to the right of the centre is non-negative.
This is to say that bi − is− 1 ≥ 0, i.e. that s ≤ bi−1

i .
(2) This follows similarly from

dim(HdR(M(ri,Π⊗|sα̃|)(1))/Fil0) = 1

2
[dim(HdR(M(ri,Π⊗|sα̃|)(1)))+hwt/2,wt/2].

�
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Note that in case (2), if F∞ did not act on Hwt/2,wt/2 by a scalar then there
would be no critical values. The proposition describes all the positive s for which
M(ri,Π⊗|sα̃|)(1) is critical. We ignore negative s. In terms of L-functions, we are
ignoring critical values that are central or left-of-centre. (In fact, if wt is even we
are also ignoring any critical value immediately to the right of centre, by excluding
s = 0.) If there is no non-zero value of 〈λ, γ̌〉 for γ ∈ Φi

N then there is no upper
bound on s–we might say that bi = ∞.

We have that M(r,Π⊗ |sα̃|)(1) is critical for 0 < s ≤ mini
bi−1

i , subject also to
λ+ sα̃ being algebraically integral, and the simultaneous parity conditions. Recall
that we chose w ∈ WG such that w(λ) is dominant. If λ is on the wall of a Weyl
chamber then there is more than one possible choice of w. Assuming we have
chosen λ to be strictly dominant for M , i.e. 〈λ, β̌〉 > 0 for all β ∈ ∆M (hence for
all β ∈ Φ+

M ), λ can only be on the wall of a Weyl chamber if 〈λ, γ̌〉 = 0 for some
γ ∈ ΦN . Since 〈α̃, γ̌〉 = i 6= 0 for γ ∈ Φi

N , for s > 0 sufficiently small λ + sα̃ is
not on the wall of a Weyl chamber. Hence we may (and shall) choose w so that
w(λ+ sα̃) is strictly dominant, for s > 0 sufficiently small, i.e. 〈w(λ+ sα̃), β̌〉 > 0
for all β ∈ ∆G. In other words, w(λ+ sα̃) is dominant and regular. Once s reaches
mini

bi
i , which is when M(r,Π⊗ |sα̃|)(1) stops being critical, also some 〈λ+ sα̃, γ̌〉

reaches 0 (with γ ∈ Φi
N such that 〈λ, γ̌〉 = −bi), and is about to change sign. Thus

λ+sα̃ has reached the wall of a Weyl chamber, as has w(λ+sα̃), so w(λ+sα̃) ceases
to be strictly dominant at this point. We have then a remarkable correspondence
between critical arguments and strictly dominant weights, which will be illustrated
in the examples later.

4. The main conjecture

Recall the field of definition E from the previous section. Suppose that s > 0
and that M(r,Π⊗ |sα̃|)(1) is critical. Let q be a prime divisor, dividing a rational
prime q such that Πq is unramified and such that q > Bi, where

Bi :=

{

2maxγ∈Φi
N
〈λ, γ̌〉+ 1 if maxγ∈Φi

N
〈λ, γ̌〉 6= 0;

2 + is if maxγ∈Φi
N
〈λ, γ̌〉 = 0.

Let Oq be the ring of integers of the completion Eq, and O(q) the localisation at
q of the ring of integers OE of E. For 1 ≤ i ≤ m, choose an O(q)-lattice Ti,B
in HB(M(ri,Π ⊗ |sα̃|)) in such a way that Ti,q := Ti,B ⊗ Oq is a Gal(Q/Q)-
invariant lattice in the q-adic realisation. Then choose an O(q)-lattice Ti,dR in
HdR(M(ri,Π⊗ |sα̃|)) in such a way that

V(Ti,dR ⊗Oq) = Ti,q

as Gal(Qq/Qq)-representations, where V is the version of the Fontaine-Lafaille func-
tor used in [DFG]. Since V only applies to filtered φ-modules, where φ is the crys-
talline Frobenius, Ti,dR must be φ-stable. Anyway, this choice ensures that the
q-part of the Tamagawa factor at q is trivial (by [BK, Theorem 4.1(iii)]), thus sim-
plifying the Bloch-Kato conjecture below. The condition q > Bi ensures that the
condition (*) in [BK, Theorem 4.1(iii)] holds.

Let Ω be a Deligne period scaled according to the above choice, i.e. the deter-
minant of the isomorphism

HB(M(ri,Π⊗ |sα̃|)(1))+ ⊗ C ≃ (HdR(M(ri,Π⊗ |sα̃|)(1))/Fil0)⊗ C,
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calculated with respect to bases of T+
i,B and Ti,dR/Fil

1, so well-defined up to O×
(q).

As before, let Σ be a finite set of finite primes, containing all p such that Πp is
ramified, but it should now not contain q.

In Case (1) below, the formulation of the Bloch-Kato conjecture is based on
[DFG, (59)], using the exact sequence in their Lemma 2.1.

Conjecture 4.1 (Bloch-Kato).

(1) If Σ 6= ∅ then

ordq

(

LΣ(1 + is,Π, ri)

Ω

)

= ordq

(

#H1
Σ(Q, T

∗
i,q ⊗ (Eq/Oq))

#H0(Q, T ∗
i,q ⊗ (Eq/Oq))

)

.

(2) If Σ = ∅ then

ordq

(

L(1 + is,Π, ri)

Ω

)

= ordq

(

#H1
∅ (Q, T

∗
i,q ⊗ (Eq/Oq))

#H0(Q, T ∗
i,q ⊗ (Eq/Oq))#H0(Q, Ti,q(1)⊗ (Eq/Oq))

)

.

Here, T ∗
i,q = HomOq

(Ti,q, Oq), with the dual action of Gal(Q/Q), and # denotes
a Fitting ideal. On the right hand side, in the numerator is a Bloch-Kato Selmer
group with local conditions (unramified at p 6= q, crystalline at p = q) only at
p /∈ Σ. The ratio of the two sides is independent of the choice of Σ as above.

Let Π̃ denote any irreducible, cuspidal, tempered, automorphic representation
of G(A) such that Π̃∞ has infinitesimal character λ+ sα̃ (up to WG), such as that
appearing in Conjecture 4.2 below.

Recall T ′
µ ∈ H = H(G(Qp), G(Zp)), the characteristic function of the double

coset G(Zp)µ(p)G(Zp), where µ ∈ X∗(T ) is any cocharacter. Let a(µ) := 〈w(λ +

sα̃) − ρG, µ〉, and let Tµ := pa(µ)T ′
µ. In the case that µ is minuscule, the Hecke

eigenvalue for Tµ on the spherical representation IndGP (Πp ⊗ |sα̃|p), or on Π̃p, is

p〈w(λ+sα̃),µ〉Tr(θµ(t(χ))), where χ, or t(χ), is the Satake parameter. Recall the end

of §2, and that θµ is the irreducible representation of Ĝ with highest weight µ.

This Tr(θµ(t(χ))) is the trace of Frob−1
p for the motive conjecturally associated to

Π ⊗ |sα̃| (or Π̃) and the representation θµ of Ĝ (which is restricted to M̂ in the
former case). Multiplying by the power of p corresponds to taking a big enough
Tate twist to make all the Hodge numbers non-negative, as they would be for the
cohomology of a nonsingular projective variety. Therefore we expect the Hecke
eigenvalues for the Tµ to be algebraic integers. For a different way of arriving at
the same power of p, see [H6, 2.3.1(25)].

In what follows, we enlarge the field E to be a common field of definition for the
Hecke eigenvalues of Tµ (for all µ ∈ X∗(T )) on the IndGP (Πp ⊗ |sα̃|p) and the Π̃p

(for all unramified p), and replace q by any divisor in this possibly larger field. Let

Tµ(Ind
G
P (Πp ⊗ |sα̃|p)) and Tµ(Π̃p) denote the Hecke eigenvalues.

Conjecture 4.2. Choose s > 1 such that M(r,Π ⊗ |sα̃|)(1) is critical. Suppose
that λ+ sα̃ is self-dual, i.e. WG-equivalent to its negative. Now fixing i, with q and
Σ as above (in particular, q > Bi), suppose that

ordq

(

LΣ(1 + is,Π, ri)

Ω

)

> 0.
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Suppose also that the irreducible components of the q-adic representation ri◦ρΠ⊗|sα̃|

remain irreducible mod q. Then there exists an irreducible, cuspidal, tempered,
automorphic representation Π̃ of G(A) such that

(1) Π̃∞ has infinitesimal character λ + sα̃ (up to WG), i.e. the same as

IndGP (Π⊗ |sα̃|).
(2) At any finite p /∈ Σ, Π̃p is unramified, and for all µ ∈ X∗(T ),

Tµ(Π̃p) ≡ Tµ(Ind
G
P (Πp ⊗ |sα̃|p)) (mod q).

The self-duality condition is necessary so that there is a possibility of λ + sα̃
being the infinitesimal character of a unitary representation. In all the examples
below, the long element wG

0 of WG sends any dominant element of X∗(T/S) to its
negative, so the condition is automatically satisfied. But there could be problems
in other cases, for example when G = GL3 and M ≃ GL1 ×GL2.

Whether or not

ordq

(

LΣ(1 + is,Π, ri)

Ω

)

> 0,

could depend on the choice of Ti,q (up to scaling), whereas there either is or is

not a Π̃ satisfying the congruence. Imposing the condition that the irreducible
components of ri ◦ ρΠ⊗|sα̃| remain irreducible mod q makes the intersection of Ti,q
with each irreducible component unique up to scaling, thus resolving the ambiguity.
(Note that the irreducible components of the q-adic realisation should correspond
to irreducible components of the motive M(ri,Π ⊗ |sα̃|), and we should perhaps
look at each one separately.) This is a condition we shall not keep repeating in each
case of the conjecture for the remainder of the paper. In one or two examples in
this paper, such as the q = 41 example near the end of §9, and the second q = 691
example following it, the condition is not satisfied but the congruence seems to
work anyway. However, there is an example (examined in detail elsewhere) with
G = SO(4, 3), M ≃ GL2×SO(2, 1), q = 691, in which the condition is not satisfied,

and the congruence cannot hold because there is no Π̃ with the required infinitesimal
character. Thus the condition does seem to be necessary in general.

5. Example: G = GL2.

Let T = {diag(t1, t2) : t1, t2 ∈ GL1} be the standard maximal torus, with
character group X∗(T ) = 〈e1, e2〉Z, where ei : diag(t1, t2) 7→ ti, and cocharacter
group X∗(T ) = 〈f1, f2〉Z, where f1 : t 7→ diag(t, 1) and f2 : t 7→ diag(1, t). With the
standard ordering, Φ+ = ∆G = {e1 − e2}, and ρG = 1

2 (e1 − e2). The only possible
choice is α = e1 − e2, leading to P being the Borel subgroup of upper triangular
matrices, with Levi subgroup M = T ≃ GL1 × GL1. Then ρP = ρG, 〈ρP , α̌〉 = 1
and α̃ = 1

2 (e1 − e2). The Weyl group W has a non-identity element swapping e1
and e2, and we take the Weyl-invariant inner product on X∗(T ) ⊗ R such that
〈ei, ej〉 = δij , restricted to X∗(T/S)⊗ R, with S = {diag(t, t) : t ∈ GL1}.

Since A = M , the only choice for Π is the trivial representation of M(A), with
λ = 0 and χp = 0 for all p. We can take Σ = ∅. We have ΦN = Φ1

N = {e1 − e2},
r is a 1-dimensional representation of M̂ ≃ GL1 × GL1, M(r,Π ⊗ |sα̃|) = Q(s)
and L(s,Π, r) = ζ(s) is the Riemann zeta function. We must have s ∈ Z for
λ + sα̃ = s

2 (e1 − e2) to be algebraically integral, then the weight wt = −2s − 2

of M(r,Π ⊗ |sα̃|)(1) = Q(s + 1) is even, and F∞ acts on Hwt/2,wt/2 by the scalar
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(−1)1+s. Hence the condition t = 0 in Proposition 3.2 becomes s odd. If s > 1
then s+ 1 = k with k ≥ 4 even.

Now λ+ sα̃ = k−1
2 (e1− e2), which is already dominant, without having to apply

any element of WG. We recognise it as the infinitesimal character of the discrete
series representation Dk of GL2(R), which is Π̃f,∞ for the cuspidal automorphic

representation Π̃f generated by a cuspidal Hecke eigenform f of weight k. We

have a(f1) = 〈k−1
2 (e1 − e2) − 1

2 (e1 − e2), f1〉 = k
2 − 1, and Tf1 = p(k/2)−1T ′

f1
is

the standard Hecke operator at p. Viewing f1 ∈ X∗(T̂ ), it is the highest weight

of the standard representation of Ĝ = GL2, with weights f1, f2. We see that
f1 is a minuscule weight. We have Satake parameter χp + sα̃ = k−1

2 (e1 − e2) for

Πp⊗|sα̃|p. Then |k−1
2 (e1−e2)(f1(p))|p = p−

k−1

2
〈e1−e2,f1〉 = p−(k−1)/2, and similarly

|k−1
2 (e1 − e2)(f2(p))|p = p(k−1)/2. So Tr(θf1(t(χp + sα̃))) = p(k−1)/2 + p−(k−1)/2.

Multiplying by p〈
k−1

2
(e1−e2),f1〉 = p(k−1)/2, we find that

Tf1(Ind
G
P (Πp ⊗ |sα̃|p)) = 1 + pk−1,

which we recognise as the Hecke eigenvalue for the holomorphic Eisenstein series of
weight k, a vector in the space of Π ⊗ |sα̃|. Note that since k ≥ 4, the Eisenstein
series does converge. In this case, B2 = 2 + 2s = k + 1, so the bound on q is
q > k + 1.

The Deligne period for Q(k) is (2πi)k. If the prime q > k is such that

ordq

(

ζ(k)

(2πi)k

)

= ordq

(

Bk

2k!

)

> 0,

where Bk is the Bernoulli number, then Conjecture 4.2 says that there should be
a normalised, cuspidal Hecke eigenform f =

∑∞
n=1 an(f)e

2πinτ of level 1, with
E = Q({an}) and q | q in OE , and it should satisfy ap(f) ≡ 1 + pk−1 (mod q) for

all primes p. (Level 1 corresponds to Π̃f being unramified at all finite p.) This is
the familiar congruence of Ramanujan type (his case being k = 12, q = 691) and
here Conjecture 4.2 is a theorem, see for instance [DF, Theorem 1.1].

We can artificially increase the size of Σ beyond its minimum, e.g. letting Σ =
{p0} for some prime p0. This introduces a factor of (pk0 − 1)/pk0 into ζΣ(k), so if we

allow Π̃f to be ramified at p0, we should expect to find congruences of the same
shape, for all p 6= p0, when q | (pk0 − 1). Such congruences, which can be said to
be of local origin, specifically for f ∈ Sk(Γ0(p0)), were predicted by G. Harder (for
a different reason [H2, §2.9]), who also gave a numerical example. For a general
proof, and further examples, see [DF].

The case k = 2 (excluded by s 6= 1) is a bit different. Of course, there is no
q such that ordq(ζ(2)/π

2) > 0, but even if we enlarge Σ, say to {p0}, then by a
theorem of Mazur [Ma, Prop. 5.12(ii)], the condition for the congruence (at least
with f ∈ S2(Γ0(p0))) is ordq((p0 − 1)/12) > 0, which does not necessarily hold
when q | (p20 − 1). We can include s = 1 in this case of Conjecture 4.2 by dropping

our insistence that Π̃p be unramified for all p /∈ Σ, and using f ∈ S2(Γ0(p1)) where
p1 is another prime chosen so that ordq((p1 − 1)/12) > 0. But in the case q > 3 it
is even better to use a theorem of Ribet [Y, Theorem 2.3(2)] telling us that there
exists a newform for Γ0(p0p2) satisfying the congruence, given that q | (p0 + 1).
Here p2 is any prime different from p0 and q, and by choosing it so that q ∤ (p22−1),
we can still consider the q dividing (p20 − 1) to be the origin of the congruence.
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6. Example: G = GSp2, Klingen parabolic.

Let

G = GSp2 = {g ∈M4 : gtJg = µJ, µ ∈ GL1}, where J =

(

02 −I2
I2 02

)

.

It has a maximal torus T = {diag(t1, t2, µt−1
1 , µt−1

2 ) : t1, t2, µ ∈ GL1}, with X∗(T )
spanned by e1, e2 and e0, sending diag(t1, t2, µt

−1
1 , µt−1

2 ) to t1, t2 and µ, respectively.
The Weyl group WG is generated by permutations of the ei for 1 ≤ i ≤ 2 (with
e0 fixed), and inversions ei 7→ e0 − ei, again for 1 ≤ i ≤ 2, with all other ej fixed.
For WG-invariant inner product on X∗(T/S) ⊗ R (those elements of X∗(T ) ⊗ R
such that the coefficient of e0 is −(1/2) times the sum of the other coefficients) we
take the restriction of the bilinear form on X∗(T ) ⊗ R such that e0 is orthogonal
to everything and 〈ei, ej〉 = δij for 1 ≤ i, j ≤ n. With a standard ordering, the
positive roots are Φ+ = {e1−e2, 2e1−e0, e1+e2−e0, 2e2−e0}, with simple positive
roots ∆G = {e1 − e2, 2e2 − e0}, and ρG = 2e1 + e2 − (3/2)e0. In this section we
choose α = e1 − e2, so ∆M = {2e2 − e0}, ΦN = {e1 − e2, e1 + e2 − e0, 2e1 − e0},
ρP = 2e1 − e0, 〈ρP , α̌〉 = 2 and α̃ = e1 − 1

2e0. Then we also find that ΦN = Φ1
N ,

i.e. m = 1 and r = r1. We have a Levi subgroup M ≃ GL2 ×GL1, with

(

A =

(

a b
c d

)

, t

)

7→









t 0 0 0
0 a 0 b
0 0 (detA)t−1 0
0 c 0 d









,

and P =MN the Klingen parabolic, with unipotent radical

N =























1 γ δ ǫ
0 1 ǫ 0
0 0 1 0
0 0 −γ 1























,

and (γ, ǫ, δ) · (γ′, δ′, ǫ′) = (γ + γ′, ǫ+ ǫ′, δ + δ′ + γǫ′ − γ′ǫ).
Let f be a newform of weight k′ ≥ 2, trivial character, and Π′ the associated

unitary, cuspidal, automorphic representation of GL2(A). Let Π = Π′×1, a unitary,
cuspidal, automorphic representation of M(A). Since diag(T1, T2) ∈ GL2 ends up
as diag(1, T1, T1T2, (T1T2)T

−1
1 ) in G, the character of GL2 called ‘e1 − e2’ in the

previous section becomes 2e2 − e0 ∈ X∗(T ), so λ =
(

k′−1
2

)

(2e2 − e0). Similarly, at

an unramified p with ap(f) = p(k
′−1)/2(αp+α

−1
p ) (recall that we have assumed the

character to be trivial, for simplicity), we have χp = − logp(αp)(2e2 − e0). (This is
a logarithm to base p, not a p-adic logarithm.)

γ ∈ ΦN 〈λ+ sα̃, γ̌〉 〈2e2 − e0, γ̌〉 |χp(γ̌(p))|p
e1 − e2 s− (k′ − 1) −2 α−2

p

e1 + e2 − e0 s+ (k′ − 1) 2 α2
p

2e1 − e0 s 0 1

Using the table, Lp(s,Πp, r) = (1−α2
pp

−s)(1−α−2
p p−s)(1−p−s), and LΣ(s,Π, r) =

LΣ(Sym
2f, s + (k′ − 1)). We need s ∈ Z for λ + sα̃ to be algebraically integral.

(Look at the second column of the table.) If M(f) is the motive of weight k′ − 1

attached to f , with Hodge type {(0, k′ − 1), (k′ − 1, 0)}, then F∞ swaps H(0,k′−1)
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and H(k′−1,0), so acts as +1 on H(k′−1,k′−1) in the motive M(Sym2f) of weight
2k′ − 2. It follows that if we want t = 0 for M(r,Π ⊗ |sα̃|)(1) (c.f. Proposition
3.2(2)) then we need 1+s+(k′−1) to be even, so s is even. The minimum non-zero
value of 〈λ, γ̌〉 is b = k′ − 1, so we are looking at even s with 0 < s ≤ k′ − 2.

We have that λ+ sα̃ = se1 + (k′ − 1)e2 − 1
2 (k

′ − 1+ s)e0. Let w ∈WG switch e1
and e2, while leaving e0 fixed, then w(λ+ sα̃) = (k′ − 1)e1 + se2 − 1

2 (k
′ − 1 + s)e0,

which is (strictly) dominant, since k′ − 1 > s > 0. We recognise this as the
infinitesimal character of ΠF,∞, where ΠF is a cuspidal automorphic representation

of G(A) attached to a Siegel cusp form F of genus 2 and weight Symj ⊗ detk, if
k′ − 1 = j + k − 1 and s = k − 2 [Mo, Theorem 3.1]. Put another way, j + k = k′

and 1 + s+ (k′ − 1) = 2k′ − 2− j. Notice that j = k′ − s− 2 is even, and k ≥ 4.
Dual to the basis {e1, e2, e0} of X∗(T ) is a basis {f1, f2, f0} of X∗(T ), with

f1 : t 7→ diag(t, 1, t−1, 1), f2 : t 7→ diag(1, t, 1, t−1) and f0 : t 7→ diag(1, 1, t, t).

If we view f1 + f2 + f0 as a character of T̂ , it is the highest weight of the 4-
dimensional spinor representation of Ĝ ≃ GSp2. The complete set of weights is
{f1 + f2 + f0, f1 + f0, f2 + f0, f0}. The element of WG switching e1 and e2 also
switches f1 and f2, while fixing f0. The element exchanging e1 with e0 − e1,
while leaving e0 and e2 fixed, operates by switching the first and third elements
of diag(t1, t2, µt

−1
1 , µt−1

2 ). So, while leaving f2 fixed, it actually exchanges f0 with
f1+ f0. Similarly we see that the element exchanging e2 with e0− e2 fixes f1 while
exchanging f0 with f2 + f0. So {f1 + f2 + f0, f1 + f0, f2 + f0, f0} is a single WG-
orbit, and f1 + f2 + f0 is minuscule. Note that (f1 + f2 + f0)(p) = diag(p, p, 1, 1),
so Tf1+f2+f0 is the usual genus-2 Hecke operator sometimes called “T (p)”. Using
χp + sα̃ = − logp(αp)(2e2 − e0) + (k − 2)(e1 − 1

2e0), we find

µ |(χp + sα̃)(µ(p))|p
f1 + f2 + f0 αpp

−(k−2)/2

f1 + f0 α−1
p p−(k−2)/2

f2 + f0 αpp
(k−2)/2

f0 α−1
p p(k−2)/2

The trace is p−(k−2)/2(αp + α−1
p )(1 + pk−2). Multiplying by

p〈
k′−1

2
(2e2−e0)+(k−2)(e1−

1
2
e0),f1+f2+f0〉 = p(k

′−1)/2p(k−2)/2,

we find that
Tf1+f2+f0(Ind

G
P (Πp ⊗ |sα̃|p)) = ap(f)(1 + pk−2).

We recognise this as the eigenvalue of T (p) on the vector-valued holomorphic

Klingen-Eisenstein series [f ] of weight Symj ⊗ detk, though strictly speaking we
would need k > 4 to guarantee convergence, by [Kl, Satz 1], [A, Proposition 1.2].
We are supposing, for simplicity, that f has level 1.

Suppose that q > 2max〈λ, γ̌〉+ 1 = 2(k′ − 1) + 1 = 2k′ − 1, and that

ordq

(

L(Sym2f, 2k′ − 2− j)

Ω

)

> 0,

where q is a divisor of q in a sufficiently large number field. (Here, Ω is a carefully
scaled Deligne period, differing from the Petersson norm of f by a congruence ideal
and a power of 2πi, see [Du1, Lemma 5.1,(4)], where it is called (2πi)2(2k

′−2−j)Ω.
It satisfies the requirement of §4, locally at q.) Then Conjecture 4.2 suggests a
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mod q congruence of Hecke eigenvalues between [f ] and a cuspidal eigenform of the
same weight, and of level 1 when f is of level 1. Instances of such congruences were
proved by Kurokawa and Mizumoto in the case j = 0 (scalar weight) [Ku, Miz],
by Satoh when j = 2 [Sa], and in [Du1, Proposition 4.4] for other j as well. Using
instead the pullback formula in [Du1, §9] (from [BSY, Proposition 4.4]), a more
general result could be proved, along the lines of what Katsurada and Mizumoto
did for scalar weight [KM], as long as k > 5. Possibly one can extend to k = 4
using Hecke summation and analytic continuation.

We should also expect congruences of local origin, when we enlarge Σ beyond
the set of ramified primes for Π. For example, when f has level 1 but we make

Σ = {p0}, then (Lp0
(Sym2f, 2k′−2−j))−1 = p

−(6k′−6−3j)
0 (p2k

′−2−j
0 +2pk

′−1
0 +pj0−

ap0
(f)2)(pk−1

0 − 1). Using data calculated as in [BFvdG2], we found experimental
evidence for congruences between Hecke eigenvalues of [f ] (with f of level 1) and
cuspidal Hecke eigenforms for the principal genus-2 congruence subgroup of level 2.
(In each case the congruence was checked for odd p ≤ 37.) In all those cases
for which the coefficient field is Q, and in which the modulus q of the apparent

congruence satisfies q > 2k′−1, we checked that q is indeed a divisor of (p2k
′−2−j

0 +

2pk
′−1

0 + pj0 − ap0
(f)2)(pk−1

0 − 1), with p0 = 2. These cases are as follows.

j k q
6 6 31
4 8 41
2 10 167
0 12 89
10 6 53
0 16 733
0 18 967
4 16 113

We also found a congruence for (j, k, q) = (16, 4, 23), and in this case q is not

a divisor of (p2k
′−2−j

0 + 2pk
′−1

0 + pj0 − ap0
(f)2)(pk−1

0 − 1) with p0 = 2 (nor of
L(Sym2f,2k′−2−j)

Ω ), but neither does it satisfy the condition q > 2k′ − 1.

7. Example: G = GSp2, Siegel parabolic.

This time we choose α = 2e2 − e0, so ∆M = {e1 − e2}, ΦN = {2e2 − e0, e1 +
e2 − e0, 2e1 − e0}, ρP = 3

2 (e1 + e2 − e0), 〈ρP , α̌〉 = 3/2 and α̃ = e1 + e2 − e0. Then

we find that m = 2, with Φ1
N = {2e1 − e0, 2e2 − e0} and Φ2

N = {e1 + e2 − e0}. We
have a Levi subgroup M ≃ GL2 ×GL1, with

(A, µ) 7→
(

A 02
02 µ(At)−1

)

,

and P =MN the Siegel parabolic, with unipotent radical

N =

{(

I2 B
02 I2

)

: Bt = B

}

.

Let f be a newform of weight k′ ≥ 2, trivial character, and Π′ the associated
unitary, cuspidal, automorphic representation of GL2(A). Let Π = Π′ × 1, which is
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a unitary, cuspidal, automorphic representation of M(A). Then λ = k′−1
2 (e1 − e2)

and χp = − logp(αp)(e1 − e2).

γ ∈ ΦN 〈λ+ sα̃, γ̌〉 〈e1 − e2, γ̌〉 |χp(γ̌(p))|p
2e1 − e0 s+ k′−1

2 1 αp

2e2 − e0 s− k′−1
2 −1 α−1

p

e1 + e2 − e0 2s 0 1

Using the table, Lp(s,Πp, r1) = (1 − αpp
−s)(1 − α−1

p p−s), and LΣ(s,Π, r1) =

LΣ(f, s+
k′−1
2 ), while Lp(s,Πp, r2) = (1− p−s), and LΣ(s,Π, r2) = ζΣ(s). We need

s ∈ 1
2 +Z for λ+ sα̃ to be algebraically integral. As long as s > 0, this also ensures

that LΣ(1 + 2s,Π, r2) is critical. For LΣ(1 + s,Π, r1) to be critical, we also need

s < k′−1
2 , and we exclude s = 1/2.

We then have λ+sα̃ = (k
′−1
2 +s)e1+(s− k′−1

2 )e2−se0. Let w ∈WG switch e2 and

e0−e2, while leaving e1 and e0 fixed, then w(λ+sα̃) = (k
′−1
2 +s)e1+(k

′−1
2 −s)e2−

k′−1
2 e0, which is (strictly) dominant, since 0 < s < k′−1

2 . We recognise this as the
infinitesimal character of ΠF,∞, where ΠF is a cuspidal automorphic representation

of G(A) attached to a Siegel cusp form F of genus 2 and weight Symj ⊗ detk, if

j + k − 1 = k′−1
2 + s and k − 2 = k′−1

2 − s. So s = j+1
2 with j ≥ 0 even, excluding

j = 0, and k′ = j + 2k − 2. We find then that LΣ(1 + 2s,Π, r2) = ζΣ(j + 2) and
LΣ(1 + s,Π, r1) = LΣ(f, j + k).

Using χp + sα̃ = − logp(αp)(e1 − e2) +
j+1
2 (e1 + e2 − e0), we find

µ |(χp + sα̃)(µ(p))|p
f1 + f2 + f0 p−(j+1)/2

f1 + f0 αp

f2 + f0 α−1
p

f0 p(j+1)/2

The trace is (αp + α−1
p ) + p(j+1)/2 + p−(j+1)/2. Multiplying by

p〈(j+k−1)e1+(k−2)e2−
j+2k−3

2
e0,f1+f2+f0〉 = p(j+2k−3)/2 = p(k

′−1)/2,

we find that

Tf1+f2+f0(Ind
G
P (Πp ⊗ |sα̃|p)) = ap(f) + pk−2 + pj+k−1.

We begin with the case i = 1. Suppose that q > 2max〈λ, γ̌〉+1 = 2
(

k′−1
2

)

+1 =

k′, and that

ordq

(

L(f, j + k)

Ω

)

> 0,

where q is a divisor of q in a sufficiently large number field, and Ω = (2πi)j+kΩ(−1)j+k

a Deligne period as in [DIK, §2]. Looking at Conjecture 4.2, with f of level 1 and

Σ = ∅, then if Π̃ is the automorphic representation attached to a cuspidal Hecke
eigenform F (necessarily of level 1) of weight Symj ⊗ detk, this becomes a conjec-
ture of Harder [H1]. There is ample experimental evidence for this conjecture, due
to Faber and van der Geer, using [FvdG], as described in [vdG]. The first example,
also relayed in [H1], is with (k′, j, k, q) = (22, 4, 10, 41).
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One might object that Conjecture 4.2 does not say that Π̃ should be attached
to a cuspidal Hecke eigenform, i.e. that Π̃ should be holomorphic discrete series
at ∞. But if it is not then it can be replaced by another Π̃′ that is, and which
is the same as Π̃ at all finite places, as long as Π̃ is not CAP (which follows from
j > 0) or weakly endoscopic (which would follow from ordq(Bj+2) = 0). This is
a consequence of a combination of two theorems of Weissauer [We2, Theorem 1],
[We3, Proposition 1.5].

If we keep f of level 1, but enlarge Σ to {p0}, the conjecture demands congruences
“of local origin”, also first predicted by Harder [H2]. We found experimentally (us-
ing data calculated as in [BFvdG2]) several examples of such congruences (checked
for odd p ≤ 37), for p0 = 2, with F a Hecke eigenform for the principal congruence
subgroup of level 2. They are as follows. Note that if the Hecke eigenvalues of
our eigenform f are not defined over Q then the congruence is only checked using
norms. Note also that the example for k′ = 30 seems to work, though q 6> k′.

k′ j k q
16 8 5 19
18 10 5 37
26 2 13 47
30 2 15 23
20 14 4 61

If we now let f be a newform for Γ0(p0), and keep Σ = {p0} at its minimum,
then five apparent congruences are listed in [BFvdG2, §10], for p0 = 2, and we
have found others since then, including for Γ0(4). D. Fretwell, a student of the
second-named author, has used instead the method of [Du2], applied to algebraic
modular forms on a compact form of GSp2, to find evidence for congruences with
p0 = 2, 3, 5, 7, with F a Hecke eigenform for the paramodular group at p0.

Let us consider the excluded case s = 1/2, i.e. j = 0 (so k′ = 2k − 2, and
F would be scalar-valued), and assume Σ = ∅ for simplicity. When k is even,
ap(f)+p

k−1+pk−2 is actually equal to the Hecke eigenvalue for the Saito-Kurokawa
lift SK(f), a genus 2, cuspidal Hecke eigenform of level 1, weight k. Under weak
conditions, Katsurada and Brown have independently proved a congruence modulo
q of Hecke eigenvalues, between SK(f) and a non-lift eigenform F [Br, Ka]. Though

ΠSK(f) is non-tempered, ΠF should be tempered, so Π̃ = ΠF should satisfy the
conjecture as stated (but without the exclusion of s = 1/2). However, this will
not work when k is odd, when there is no Saito-Kurokawa lift. For example, when
k′ = 48 (so k = 25),

ordq

(

L(f, k)

Ω

)

> 0,

with q = 7025111, yet Sk(Sp2(Z)) = {0} for odd k < 35.
It seems likely that we can include s = 1/2 within the scope of Conjecture 4.2 if,

as in §5, we drop our insistence that Π̃p should be unramified for p /∈ Σ. Suppose
that there exists a prime p0 such that there exists a newform g ∈ Sk′(Γ0(p0)) with

(1) ap(g) ≡ ap(f) (mod q) for all primes p ∤ p0q;
(2) wp0

(g) = −1 (when k is odd, wp0
being the eigenvalue of an Atkin-Lehner

involution).
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Fixing such a p0 and such a g, in place of SK(f) we can put Gk(g), the Gritsenko
lift [Gri] of a Jacobi form corresponding to g [SZ]. This is a Hecke eigenform for the
paramodular group at p0, with Hecke eigenvalues ap(g)+p

k−1+pk−2 for p 6= p0, and
we would hope that there is a congruence modulo q of Hecke eigenvalues, between
Gk(g) and a non-lift eigenform F . By [DT, Theorem A] there is a g satisfying at

least condition (1) if a2p0
≡ pk

′−2
0 (1 + p0)

2 (mod q). As in [Ri2, Lemma 7.1], the
infinitely many primes such that ap0

≡ p0 + 1 ≡ 0 (mod q) satisfy this condition.
However, these are not really desirable for our purposes, since one easily checks
that when p20 ≡ 1 (mod q) the congruence could be viewed as having local origin

at p0, i.e. ordq(1 − ap0
p−k
0 + pk

′−1−2k
0 ) > 0, whereas we would like to view it as

originating from the q in the complete L-value, with p0 merely an auxiliary prime.
We must not forget the case i = 2. Let’s say Σ = ∅, so f is of level 1. Suppose

ordq

(

ζ(j + 2)

πj+2

)

> 0,

with q > 2 + 2s = j + 3. Then, as noted in §5, there is a level 1 cuspidal Hecke
eigenform g of weight j + 2, such that ap(g) ≡ 1 + pj+1 (mod q), for all primes
p. If there were a genus 2 Yoshida lift Y (f, g), it would have the right weight

Symj ⊗ detk (in general j = wt(g)− 2, k = wt(f)−wt(g)
2 + 2), and the eigenvalue of

Tf1+f2+f0 would be ap(f) + pk−2ap(g), which is congruent modulo q to the right
thing to satisfy the conjecture, namely ap(f) + pk−2 + pj+k−1. There may seem to
be a problem with this, since the Yoshida lift does not exist at level 1. But the
endoscopic lift of Πf and Πg still exists as an automorphic representation, with the
same Hecke eigenvalues, and this is all we need to satisfy the conjecture. Indeed,
the conjecture does not state that Π̃ should have holomorphic vectors. (Here Π̃∞

is non-holomorphic discrete series, with a Whittaker model, and Harish-Chandra
parameter (j + k − 1)e1 − (k − 2)e2 − j+1

2 e0, see [Mo, top of p.8].)

8. Example: G = GSp3, M ≃ GL2 ×GL2.

Let

G = GSp3 = {g ∈M6 : gtJg = µJ}, where J =

(

03 −I3
I3 03

)

.

It has maximal torus T = {diag(t1, t2, t3, µt−1
1 , µt−1

2 , µt−1
3 ) : t1, t2, t3, µ ∈ GL1},

with X∗(T ) spanned by e1, e2, e3 and e0, sending diag(t1, t2, t3, µt
−1
1 , µt−1

2 , µt−1
3 ) to

t1, t2, t3 and µ, respectively. The Weyl group WG is generated by permutations of
the ei for 1 ≤ i ≤ 3 (with e0 fixed), and inversions ei 7→ e0−ei, again for 1 ≤ i ≤ 3,
with all other ej fixed. For WG-invariant inner product on X∗(T/S) ⊗ R (those
elements of X∗(T ) ⊗ R such that the coefficient of e0 is −(1/2) times the sum of
the other coefficients) we take the restriction of the bilinear form on X∗(T ) ⊗ R
such that e0 is orthogonal to everything and 〈ei, ej〉 = δij for 1 ≤ i, j ≤ 3. With
a standard ordering, the positive roots are Φ+ = {e1 − e2, e1 − e3, e2 − e3, 2e1 −
e0, 2e2 − e0, 2e3 − e0, e1 + e2 − e0, e1 + e3 − e0, e2 + e3 − e0}, with simple positive
roots ∆G = {e1−e2, e2−e3, 2e3−e0}, and ρG = 3e1+2e2+e3−3e0. In this section
we choose α = e2 − e3, so ∆M = {e1 − e2, 2e3 − e0}, ΦN = {e1 − e3, e2 − e3, 2e1 −
e0, 2e2−e0, e2+e3−e0, e3+e1−e0, e1+e2−e0}, ρP = 5

2 (e1+e2−e0), 〈ρP , α̌〉 = 5/2

and α̃ = e1 + e2 − e0, then we find also m = 2, with Φ2
N = {e1 + e2 − e0}.
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We have a Levi subgroup M ≃ GL2 ×GSp1 ≃ GL2 ×GL2, with

(

A,

(

a b
c d

))

7→













A
a b

(At)−1µ

(

a b
c d

)

c d













.

Let f and g be newforms of weights k and ℓ, respectively. Let Πf and Πg be
the associated unitary, cuspidal, automorphic representations of GL2(A). Say, for
unramified p, that ap(f) = p(k−1)/2(αp + α−1

p ) and ap(g) = p(ℓ−1)/2(βp + β−1
p )

(so we are assuming trivial character, for simplicity). For M ≃ GL2 × GL2, let
Π = Πf × Πg, then λ = k−1

2 (e1 − e2) +
ℓ−1
2 (2e3 − e0) and χp = − logp(αp)(e1 −

e2)− logp(βp)(2e3 − e0).

γ ∈ ΦN 〈e1 − e2, γ̌〉 〈2e3 − e0, γ̌〉 〈λ+ sα̃, γ̌〉 |χp(γ̌(p))|p
e1 − e3 1 −2 k−1

2 − (ℓ− 1) + s αpβ
−2
p

e2 − e3 −1 −2 −k−1
2 − (ℓ− 1) + s α−1

p β−2
p

2e1 − e0 1 0 k−1
2 + s αp

2e2 − e0 −1 0 −k−1
2 + s α−1

p

e1 + e3 − e0 1 2 k−1
2 + (ℓ− 1) + s αpβ

2
p

e2 + e3 − e0 −1 2 −k−1
2 + (ℓ− 1) + s α−1

p β2
p

e1 + e2 − e0 0 0 2s 1

Using the table, LΣ(s,Π, r1) = LΣ(s+(ℓ−1)+k−1
2 , Sym2(g)⊗f) and LΣ(s,Π, r2) =

ζΣ(s). For λ+ sα̃ to be algebraically integral, we need s ∈ 1
2 + Z. We have

λ+ sα̃ =
k − 1

2
(e1 − e2) +

ℓ− 1

2
(2e3 − e0) + s(e1 + e2 − e0)

=

(

k − 1

2
+ s

)

e1 +

(

s− k − 1

2

)

e2 + (ℓ− 1)e3 −
(

s+
ℓ− 1

2

)

e0.

Note that ν1e1 + ν2e2 + ν3e3 −
(

ν1+ν2+ν3

2

)

e0 is strictly dominant (with respect to
∆G) if and only if ν1 > ν2 > ν3 > 0. We must apply elements of WG to make this
happen.

Case 1: k−1
2 > ℓ− 1. It is easy to find the right w, exchanging e2 and e0 − e2

while fixing e0, e1 and e3. Then

w(λ+ sα̃) =

(

k − 1

2
+ s

)

e1 +

(

k − 1

2
− s

)

e2 + (ℓ− 1)e3 −
(

k − 1

2
+
ℓ− 1

2

)

e0.

As expected, this is strictly dominant for 0 < s < b1 = k−1
2 −(ℓ−1). A genus 3 Siegel

cuspidal Hecke eigenform gives a unitary, cuspidal, automorphic representation of
GSp3(A) whose component at ∞ has infinitesimal character (a+3)e1 +(b+2)e2 +
(c+ 1)e3 −

(

a+b+c+6
2

)

e0, where a ≥ b ≥ c, and (a− b, b− c, c+ 4) is the “weight”

of the form [BFvdG1, §§3,4]. So we put a + 3 = k−1
2 + s, b + 2 = k−1

2 − s and

c+1 = ℓ− 1, i.e. k = a+ b+6, ℓ = c+2, s = a−b+1
2 (necessitating a ≡ b (mod 2)).

Excluding s = 1
2 excludes a = b. We find then that LΣ(1+2s,Π, r2) = ζΣ(a−b+2)

and LΣ(1 + s,Π, r1) = LΣ(Sym
2(g)⊗ f, a+ c+ 5).

Dual to the basis {e1, e2, e3, e0} of X∗(T ) is a basis {f1, f2, f3, f0} of X∗(T ),
with f1 : t 7→ diag(t, 1, 1, t−1, 1, 1), f2 : t 7→ diag(1, t, 1, 1, t−1, 1), f3 : t 7→
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diag(1, 1, t, 1, 1, t−1) and f0 : t 7→ diag(1, 1, 1, t, t, t). If we view f1+f2+f3+f0 as a

character of T̂ , one easily checks, as in §6, that it is minuscule, with WG-orbit as in
the table below. It is the highest weight of the 8-dimensional spinor representation
of Ĝ. Using χp+sα̃ = − logp(αp)(e1−e2)− logp(βp)(2e3−e0)+ a−b+1

2 (e1+e2−e0),
we find

µ |(χp + sα̃)(µ(p))|p
f1 + f2 + f3 + f0 βpp

− a−b+1

2

f1 + f2 + f0 β−1
p p−

a−b+1

2

f1 + f3 + f0 αpβp
f1 + f0 αpβ

−1
p

f2 + f3 + f0 α−1
p βp

f2 + f0 α−1
p β−1

p

f3 + f0 βpp
a−b+1

2

f0 β−1
p p

a−b+1

2

The trace is (βp + β−1
p )(αp + α−1

p ) + p(a−b+1)/2 + p−(a−b+1)/2. Multiplying by

p〈(a+3)e1+(b+2)e2+(c+1)e3−
a+b+c+6

2
e0,f1+f2+f3+f0〉 = p(a+b+c+6)/2 = p(k−1)/2p(ℓ−1)/2,

we find that

Tf1+f2+f3+f0(Ind
G
P (Πp ⊗ |sα̃|p)) = ap(g)(ap(f) + pa+3 + pb+2).

Note that (f1 + f2 + f3 + f0)(p) = diag(p, p, p, 1, 1, 1).
Suppose that q > 2max〈λ, γ̌〉 + 1 = 2

(

k−1
2 + (ℓ− 1)

)

+ 1 = k + 2ℓ − 2 =
a+ b+ 2c+ 8, and that

ordq

(

L(Sym2(g)⊗ f, a+ c+ 5)

Ω

)

> 0,

where q is a divisor of q in a sufficiently large number field. Looking at Conjec-
ture 4.2, in the case i = 1, if f and g are of level 1 and Σ = ∅, if Π̃ is the automorphic
representation attached to a cuspidal Hecke eigenform F (necessarily of level 1) of
weight (a− b, b− c, c+4), this becomes Conjecture 10.10 in [BFvdG1], which they
worked out in collaboration with Harder. See [H5] for a route to the conjecture (and
that in Case 2) somewhat different from the above. They showed that a congruence
of the right shape holds for p ≤ 17, with (a, b, c) = (13, 11, 10) and q = 199. The
norm of the ratio of the L-value to another (making the problematic periods cancel)
was approximated numerically by A. Mellit, who found 199 in the numerator.

Case 2: ℓ− 1 > k−1
2 . Recall that

λ+ sα̃ =

(

k − 1

2
+ s

)

e1 +

(

s− k − 1

2

)

e2 + (ℓ− 1)e3 −
(

s+
ℓ− 1

2

)

e0.

This time we choose w : e1 7→ e2, e2 7→ e0 − e3, e3 7→ e1 and e0 7→ e0, to get

w(λ+ sα̃) = (ℓ− 1)e1 +

(

k − 1

2
+ s

)

e2 +

(

k − 1

2
− s

)

e3 −
(

ℓ− 1

2
+
k − 1

2

)

e0.

Now a+3 = ℓ−1, b+2 = k−1
2 +s, c+1 = k−1

2 −s, i.e. ℓ = a+4, k = b+ c+4, s =
b−c+1

2 . We need 0 < s < ℓ−1− k−1
2 , with s ∈ 1

2+Z (so b ≡ c (mod 2)). We find then

that LΣ(1+2s,Π, r2) = ζΣ(b−c+2) and LΣ(1+s,Π, r1) = LΣ(Sym
2(g)⊗f, a+b+6).
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By the same method as in Case 1, one finds that

Tf1+f2+f3+f0(Ind
G
P (Πp ⊗ |sα̃|p)) = ap(g)(ap(f) + pb+2 + pc+1).

This time Conjecture 4.2 (for i = 1, f and g of level 1 and Σ = ∅) becomes
Conjecture 10.8 in [BFvdG1]. They confirmed (for p ≤ 17) seventeen congruences
of this shape, including for instance (a, b, c) = (12, 6, 2) and q = 101. Again, the
right primes were found numerically in ratios of L-values by Mellit, and this was
supported also by algebraic calculations of the L-values, using triple product L-
functions, see [IKPY, Table 3].

To exclude s = 1
2 we need to exclude b = c. In the case b = c, according to

[BFvdG1, Conjecture 7.7(ii)] there should exist a “lift”, a genus 3 Siegel cuspidal
eigenform of weight (a − b, 0, b + 4) (and level 1), with eigenvalue of Tf1+f2+f3+f0

actually equal to ap(g)(ap(f)+p
b+2+pc+1). Then q as above should be the modulus

of a congruence of Hecke eigenvalues between this lift and some non-lift cuspidal
eigenform in the same space. In the scalar-valued case a = b = c (and all even),
such a lift was conjectured by Miyawaki [Miy], and its existence proved by Ikeda [Ik]
(with f , g of level 1). Ibukiyama, Katsurada, Poor and Yuen proved two instances
of such congruences in [IKPY, §5], with (ℓ, k, q) = (16, 28, 107) and (20, 36, 157),
using pullback formulas. They also found q of norm q in the “algebraic part”
of LΣ(Sym

2(g) ⊗ f, 2a + 6), [IKPY, Table 2]. One can check that the period they
divided by is, locally at q, of the type required in Conjecture 4.2. Similarly in Case 1
with a = b, there should be a lift, according to [BFvdG1, Conjecture 7.7(iii)], again
generalising a conjecture of Miyawaki in the scalar valued case, and it would be
natural to conjecture congruences between lifts and non-lifts.

When i = 2, let’s say with Σ = ∅, we are looking, in Case 1, at large q | ζ(a−b+2)
πa−b+2 ,

and we know there will be a level 1 cuspidal Hecke eigenform h of weight a−b+2 such
that ap(h) ≡ 1+pa−b+1 (mod q), for all primes p. Then ap(g)(ap(f)+p

a+3+pb+2) ≡
ap(g)(ap(f) + pb+2ap(h)), which would be the Hecke eigenvalue of a conjectural

endoscopic lift with standard L-function L(Sym2(g), s+c+1)L(f⊗h, s+a+3). This

endoscopic lift would supply the Π̃ required by Conjecture 4.2. It should exist as an
automorphic representation, but without holomorphic vectors. Its contribution to
cohomology appears in [BFvdG1, Conjecture 7.12], as the second of the two terms.

In Case 2 we are looking at large q | ζ(b−c+2)
πb−c+2 , and we know there will be a level 1

cuspidal Hecke eigenform h of weight b−c+2 such that ap(h) ≡ 1+pb−c+1 (mod q),
for all primes p. Then ap(g)(ap(f)+p

b+2+pc+1) ≡ ap(g)(ap(f)+p
c+1ap(h)), which

should be the Hecke eigenvalue of an endoscopic lift corresponding to the other term
in [BFvdG1, Conjecture 7.12], this time with standard L-function L(Sym2(g), s +
a+ 3)L(f ⊗ h, s+ b+ 2) (and appearing also in [BFvdG1, Conjecture 10.12]).

9. Example: G = GSp3, M ≃ GL1 ×GSp2.

Now choose α = e1− e2, so ∆M = {e2− e3, 2e3− e0}, ΦN = Φ1
N = {e1− e2, e1−

e3, e1+e2−e0, e1+e3−e0, 2e1−e0}, ρP = 3e1− 3
2e0, 〈ρP , α̌〉 = 3 and α̃ = e1− 1

2e0.
We have a Levi subgroup M ≃ GL1 ×GSp2, with

(

a,

(

A B
C D

))

7→













a 0 0 0
0 A 0 B

0 0 a−1µ

((

A B
C D

))

0

0 C 0 D













.
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Let Π = 1×ΠF , where ΠF is a unitary, cuspidal, automorphic representation of
GSp2(A) associated with a genus 2 cuspidal Hecke eigenform F , of weight Symj ⊗
detk. At an unramified p, let α0, α2, α3 be the Satake parameters for ΠF , then λ =
(j+k−1)e2+(k−2)e3− j+2k−3

2 e0 and χp = −[logp(α2)e2+logp(α3)e3+logp(α0)e0].

Note that α2
0α2α3 = 1.

γ ∈ ΦN 〈λ+ sα̃, γ̌〉 |χp(γ̌(p))|p
e1 − e2 −(j + k − 1) + s α−1

2

e1 − e3 −(k − 2) + s α−1
3

e1 + e2 − e0 (j + k − 1) + s α2

e1 + e3 − e0 (k − 2) + s α3

2e1 − e0 s 1

Using the table, LΣ(s,Π, r) = LΣ(s, F, st), which is the standard L-function.
For λ + sα̃ to be algebraically integral, we need s ∈ Z. Since there is a γ such
that 〈λ, γ̌〉 = 0, there must also be a parity condition. Consideration of the re-
lation between the standard representation and the exterior square of the spinor
representation of Ĝ shows that it should be s ∈ 1 + 2Z.

λ+ sα̃ = (j + k − 1)e2 + (k − 2)e3 −
j + 2k − 3

2
e0 + s(e1 −

1

2
e0)

= se1 + (j + k − 1)e2 + (k − 2)e3 −
j + 2k + s− 3

2
e0.

Choose w : e1 7→ e3 7→ e2 7→ e1 and e0 7→ e0, then

w(λ+ sα̃) = (j + k − 1)e1 + (k − 2)e2 + se3 −
j + 2k + s− 3

2
e0,

so (a, b, c) = (j + k − 4, k − 4, s − 1). We have s ∈ 1 + 2Z and 0 < s < k − 2,
excluding s = 1, and LΣ(1 + s,Π, r) = LΣ(c+ 2, F, st).

Using χp = −[logp(α2)e2 + logp(α3)e3 + logp(α0)e0], we find

µ |(χp + sα̃)(µ(p))|p
f1 + f2 + f3 + f0 α0α2α3p

−s/2

f1 + f2 + f0 α0α2p
−s/2

f1 + f3 + f0 α0α3p
−s/2

f1 + f0 α0p
−s/2

f2 + f3 + f0 α0α2α3p
s/2

f2 + f0 α0α2p
s/2

f3 + f0 α0α3p
s/2

f0 α0p
s/2

The trace is (α0 + α0α2 + α0α3 + α0α2α3)p
−s/2(1 + ps). Multiplying by

p(a+b+c+6)/2 = p
j+2k−3+s

2 ,

we find that

Tf1+f2+f3+f0(Ind
G
P (Πp ⊗ |sα̃|p)) = T (p)(ΠF )(1 + pc+1),

which is the Hecke eigenvalue for a holomorphic genus 3 Klingen-Eisenstein series
attached to F , so as in §6, we are looking at congruences between Klingen-Eisenstein



24 JONAS BERGSTRÖM AND NEIL DUMMIGAN

series and cusp forms. Suppose that q > 2max〈λ, γ̌〉 + 1 = 2(j + k − 1) + 1,
equivalently q > 2(j + k), and that

ordq

(

L(c+ 2, F, st)

Ω

)

> 0,

where q is a divisor of q in a sufficiently large number field. Looking at Conjecture
4.2, if F is level 1 and Σ = ∅, if Π̃ is the automorphic representation attached to
a cuspidal Hecke eigenform G (necessarily of level 1) of weight (a− b, b− c, c+ 4),
[BFvdG1, Table 5] gives 12 experimental congruences of this shape, for various q,
but without the link to L(c+ 2, F, st) (or any conjecture about where the modulus
comes from). We can make this link in three cases, namely (a, b, c) = (15, 5, 4) with
q = 29, (a, b, c) = (10, 6, 4) with q = 41, and (a, b, c) = (16, 16, 16) with q = 691.

In the first two cases, q features in Harder’s conjecture (see §7), for (j, k) =
(a− b, b+ 4), and

ordq

(

L(f, j + k)

Ω′

)

> 0,

for f of weight k′ = j + 2k − 2. In [DIK] it is explained, using the Bloch-Kato

conjecture, how this should lead to divisibility by q of L(j/2+1,F,st)
Ω (Conjecture 5.4,

when k′/2 and j/2 are odd and (j/2) + 1 ≤ k − 2) and of L(j+2,F,st)
Ω (Conjecture

5.3, when j ≤ k− 4). The numbers (j/2)+ 1 and j +2 coincide with c+2 in these
first two examples, for q = 29 and q = 41 respectively. (Strictly speaking, though

29 > k′, 29 6> 2(j + k).) For the q = 41 case, the divisibility by q, of π6L(6,F,st)
L(8,F,st) , is

actually proved [DIK, Corollary 7.12]. In the case (a, b, c) = (16, 16, 16), q = 691,
the divisibility is proved in Example 3 at the end of [KM].

A further example, which appears however in [BFvdG1, Table 4], is (a, b, c) =
(15, 5, 4) with q = 691. Here the congruence is of the form

Tf1+f2+f3+f0(ΠG) ≡ (ap(f) + pb+2ap(g))(1 + pc+1) (mod q),

with f and g cuspidal Hecke eigenforms of level 1 and with weights a + b + 6 and
a − b + 2 respectively (26 and 12 in this example, and the congruence is checked
using norms). If we let Π′ be the endoscopic lift of Πf and Πg (which does not
have a holomorphic vector F ) then this congruence is of the same type as above,
since T (p)(Π′) = ap(f) + pb+2ap(g). Now L(s,Π′, st) = ζ(s)L(f ⊗ g, s + a + 3),
so with a = 15 and s + 1 = c + 2 = 6, it suffices to show that 691 divides a
suitably normalised L(f ⊗ g, 24), but this is a consequence of [Du3, Theorem 14.2].
This example is actually analogous to the first one above. How the Bloch-Kato
conjecture leads one to expect the divisibility is explained in [Du3, §§8,11].

10. Example: G = GSp3, M ≃ GL1 ×GL3.

Now choose α = 2e3 − e0, so ∆M = {e1 − e2, e2 − e3}, Φ1
N = {2e1 − e0, 2e2 −

e0, 2e3 − e0}, Φ2
N = {e1 + e2 − e0, e1 + e3 − e0, e2 + e3 − e0}, α̃ = e1 + e2 + e3 − 3

2e0.
We have a Levi subgroup M ≃ GL1 ×GL3, with

(a,A) 7→
(

A 03
03 a(At)−1

)

.

Let Π = 1 × Π′, where Π′ is a unitary, cuspidal, automorphic representation of
GL3(A). From now on we look only at the case that Π′ is the symmetric square
lifting of Πf , where f is a cuspidal Hecke eigenform of genus 1 and weight k, trivial
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character, with ap(f) = p(k−1)/2(αp + α−1
p ). (Actually, when the level is 1, this is

the only possibility, according to [AP, Conjecture 1.1].) Then λ = (k − 1)(e1 − e3)
and χp = − logp(αp)(2e1 − 2e3).

γ ∈ ΦN 〈λ+ sα̃, γ̌〉 |χp(γ̌(p))|p
2e1 − e0 s+ (k − 1) α2

p

2e2 − e0 s 1
2e3 − e0 s− (k − 1) α−2

p

e1 + e2 − e0 2s+ (k − 1) α2
p

e1 + e3 − e0 2s 1
e2 + e3 − e0 2s− (k − 1) α−2

p

Using the table, LΣ(s,Π, r1) = LΣ(s,Π, r2) = LΣ(Sym
2f, s+(k− 1)) For λ+ sα̃

to be algebraically integral, we need s ∈ Z. We have L(1 + s,Π, r1) critical for
0 < s < k − 1 with s ∈ 2Z, L(1 + 2s,Π, r2) critical for 0 < s < k−1

2 with s ∈ Z,

both critical for 0 < s < k−1
2 with s ∈ 2Z

λ+ sα̃ = (k − 1 + s)e1 + se2 + (s− (k − 1))e3 −
3

2
se0.

Choosing w appropriately,

w(λ+ sα̃) = (k − 1 + s)e1 + (k − 1− s)e2 + se3 − (k − 1 + (s/2))e0,

which is strictly dominant for 0 < s < k−1
2 . We recognise it as the infinitesimal

character of ΠG with (a, b, c) = (k− 1+ s− 3, k− 1− s− 2, s− 1). The requirement
that s ∈ 2Z has the desirable effect that a + b + c is even, which is necessary to
avoid the space of genus 3 cuspforms being trivial [BFvdG1, Remark 4.2].

Using χp = − logp(αp)(2e1 − 2e3), we find

µ |(χp + sα̃)(µ(p))|p
f1 + f2 + f3 + f0 p−3s/2

f1 + f2 + f0 α2
pp

−s/2

f1 + f3 + f0 p−s/2

f1 + f0 α2
pp

s/2

f2 + f3 + f0 α−2
p p−s/2

f2 + f0 ps/2

f3 + f0 α−2
p ps/2

f0 p3s/2

The trace is p−3s/2 + p3s/2 + (α2
p + 1 + α−2

p )(p−s/2 + ps/2). Multiplying by

p(a+b+c+6)/2 = pk−1+(s/2),

we find that

Tf1+f2+f3+f0(Ind
G
P (Πp ⊗ |sα̃|p)) = pk−1−s + pk−1+2s + (ap(f)

2 − pk−1)(1 + ps)

= pb+2 + pa+c+4 + (ap(f)
2 − p(a+b+5)/2)(1 + pc+1).

The smallest example (with level 1 and Σ = ∅) where we might hope to test the
congruence is k = 16, s = 4, q = 2243, so (a, b, c) = (16, 9, 3). Unfortunately, the
dimension of the space of genus 3 cuspforms of this type has dimension 4, which is
prohibitively large.
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11. Example: G = G2, omitting the short root.

Let G be the Chevalley group of type G2. Then ∆G = {α, β}, and Φ+
G =

{α, β, β + α, β + 2α, β + 3α, 2β + 3α}. Of these, α, β + α and β + 2α are short,
while β, β + 3α and 2β + 3α are long. We have 〈α, β̌〉 = −1 and 〈β, α̌〉 = −3 (and
of course 〈α, α̌〉 = 〈β, β̌〉 = 2), also, ρG = 5α+ 3β.

In this section we omit α, so ∆M = {β} and it is known thatM ≃ GL2. We have
ΦN = Φ+

G−{β}, ρP = 5α+ 5
2β, 〈ρP , α̌〉 = 5/2 and α̃ = 2α+β. Let f be a cuspidal

Hecke eigenform of weight k and trivial character, with ap(f) = p(k−1)/2(αp+α
−1
p ),

and let Π be the corresponding unitary, cuspidal, automorphic representation of
GL2 ≃ M . Then we have λ =

(

k−1
2

)

β and χp = − logp(αp)β (at any unramified
prime p).

γ ∈ ΦN γ̌ 〈λ+ sα̃, γ̌〉 |χp(γ̌(p))|p
α α̌ − 3

2 (k − 1) + s α−3
p

β + α α̌+ 3β̌ 3
2 (k − 1) + s α3

p

β + 3α α̌+ β̌ − 1
2 (k − 1) + s α−1

p

2β + 3α α̌+ 2β̌ 1
2 (k − 1) + s αp

β + 2α 2α̌+ 3β̌ 2s 1

Using the table, LΣ(s,Π, r1) = LΣ(Sym
3f, s+ 3

2 (k−1)) and LΣ(s,Π, r2) = ζΣ(s).

For λ+ sα̃ to be algebraically integral, we need s ∈ 1
2 + Z and

λ+ sα̃ =

(

k − 1

2

)

β + s(β + 2α).

We have L(1 + s,Π, r1) critical for 0 < s < k−1
2 with s ∈ 1

2 + Z, in which case
L(1 + 2s,Π, r2) is also critical. Choose w : β 7→ 2β + 3α and 2α + β 7→ α. This is
a rotation clockwise through π/3. Then

w(λ+ sα̃) =

(

k − 1

2

)

(2β + 3α) + sα = (k − 1)β + ((3/2)(k − 1) + s)α,

which is strictly dominant, since 〈w(λ + sα̃), α̌〉 = 2s > 0 and 〈w(λ + sα̃), β̌〉 =
1
2 (k− 1)− s > 0. In fact w(λ+ sα̃) = k1ω1 + k2ω2 with k1 = 2s, k2 = 1

2 (k− 1)− s,
ω1 = 2α+ β and ω2 = 3α+ 2β the fundamental dominant weights.

Now Ĝ2 = G2, and its irreducible 7-dimensional representation has weights µ as
in the table below. Recall that χp = − logp(αp)β.

µ |(χp + sα̃)(µ(p))|p
α̌+ 2β̌ αpp

−s

−(α̌+ 2β̌) α−1
p ps

α̌+ β̌ α−1
p p−s

−(α̌+ β̌) αpp
s

β̌ α2
p

−β̌ α−2
p

0 1

The trace is

t := (αp + α−1
p )(p−s + ps) + (αp + α−1

p )2 − 1.
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Given q such that q > 3k − 2 and

ordq

(

LΣ(Sym
3f, 1 + s+ (3/2)(k − 1))

Ω

)

> 0,

or q > 2 + 2s and

ordq

(

ζΣ(1 + 2s)

π1+2s

)

> 0,

let Π̃ be the automorphic representation of G(A) conjectured to exist by Conjecture

4.2. According to Gross and Savin, there should be a functorial lift Π̃′ to GSp3(A),
with (a + 3, b + 2, c + 1) = (k1 + 2k2, k1 + k2, k2) ([GS, Introduction]), which in
our case is (k − 1, k−1

2 + s, k−1
2 − s). (Notice that a = b + c for such a lift.) If

we take the Satake parameter for Π̃′ at an unramified prime p, plug it into the 8-
dimensional spinor representation and take the trace, then it follows from the first
equation in [GS, §2,(1.8)] that we get (at least when q 6= p) something congruent
to 1+ t = (αp+α

−1
p )(p−s+ps)+(αp+α

−1
p )2. Multiplying by p(a+b+c+6)/2 = pk−1,

we find that, in the notation of §8, Tf1+f2+f3+f0(Π̃
′) should be congruent modulo

q to ap(f)(ap(f) + pb+2 + pc+1). We see that Π̃′ would satisfy the conjecture in
Case 2 of §8, in the special case f = g. Four of the examples in [BFvdG1, Table
3] are like this. Note that L(Sym2(f) ⊗ f, s) = L(Sym3f, s)L(f, s − (k − 1)),
1 + s+ (3/2)(k − 1) = a+ b+ 6 and 1 + 2s = b− c+ 2.

12. Example: G = G2, omitting the long root.

In this section, in a departure from the usual notation, we omit β, so ∆M = {α}
and again it is known that M ≃ GL2. Then ΦN = Φ+

G − {α}, ρP = (9/2)α + 3β,

〈ρP , β̌〉 = 3/2 and β̃ = 2β+3α. Let f be a cuspidal Hecke eigenform of weight k′ and

trivial character, with ap(f) = p(k
′−1)/2(αp+α

−1
p ), and let Π be the corresponding

unitary, cuspidal, automorphic representation of GL2 ≃ M . Then we have λ =
((k′ − 1)/2)α and χp = − logp(αp)α (at any unramified prime p).

γ ∈ ΦN γ̌ 〈λ+ sβ̃, γ̌〉 |χp(γ̌(p))|p
β β̌ −k′−1

2 + s α−1
p

β + 3α α̌+ β̌ k′−1
2 + s αp

2β + 3α α̌+ 2β̌ 2s 1

β + α α̌+ 3β̌ −k′−1
2 + 3s α−1

p

β + 2α 2α̌+ 3β̌ k′−1
2 + 3s αp

Using the table, LΣ(s,Π, r1) = LΣ(s,Π, r3) = LΣ(f, s+
k′−1
2 ) and LΣ(s,Π, r2) =

ζΣ(s). For λ+ sα̃ to be algebraically integral, we need s ∈ 1
2 + Z and

λ+ sβ̃ =

(

k′ − 1

2

)

α+ s(2β + 3α).

We have L(1 + s,Π, r1) critical for 0 < s < k′−1
2 (with s ∈ 1

2 + Z), in which case
L(1 + 2s,Π, r2) is also critical, but to get L(1 + 3s,Π, r3) critical too, we need

0 < s < k′−1
6 . Choose w : α 7→ β + 2α and 3α + 2β 7→ β. This is a rotation
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anticlockwise through π/3. Then

w(λ+ sβ̃) =

(

k′ − 1

2

)

(β + 2α) + sβ = (k − 1)α+ ((1/2)(k′ − 1) + s)β,

which is strictly dominant, since 〈w(λ + sβ̃), α̌〉 = 1
2 (k

′ − 1) − 3s > 0 and 〈w(λ +

sβ̃), β̌〉 = 2s > 0. In fact w(λ+sα̃) = k1ω1+k2ω2 with k1 = 1
2 (k

′−1)−3s, k2 = 2s.
This time, with χp = − logp(αp)α, we get the following table.

µ |(χp + sβ̃)(µ(p))|p
α̌+ 2β̌ p−2s

−(α̌+ 2β̌) p2s

α̌+ β̌ αpp
−s

−(α̌+ β̌) α−1
p ps

β̌ α−1
p p−s

−β̌ αpp
s

0 1

The trace is

t := (p−s + ps)(αp + α−1
p + p−s + ps)− 1.

This time (a+3, b+2, c+1) = (k1+2k2, k1+k2, k2) = ( 12 (k
′−1)+s, 12 (k

′−1)−s, 2s)
(so c must be even). In the same manner as the previous section, if (case i = 1),

ordq

(

L(f, a+ 4)

Ω±

)

> 0

with q > k′, or (case i = 2)

ordq

(

ζΣ(c+ 2)

πc+2

)

> 0

with q > c+ 3, or (case i = 3),

ordq

(

L(f, a+ c+ 5)

Ω±

)

> 0

with q > k′, then we expect Π̃′ for GSp3(A), with

Tf1+f2+f3+f0(Π̃
′) ≡ p

k−1

2
+s(1 + t) = (1 + pc+1)(ap(f) + pb+2 + pa+3) (mod q).

Note that k′ = a+ b+ 6.
First we look at i = 1. If we choose j, k such that b + 2 = k − 2 and a + 3 =

j + k − 1, then ap(f) + pb+2 + pa+3 = ap(f) + pk−2 + pj+k−1, and moreover, since
a = b + c we have a + 4 = j + k. So according to §7 (i.e. Harder’s conjecture)

there should be a cuspidal Hecke eigenform F of genus 2, weight Symj ⊗detk, with
T (p)(F ) ≡ ap(f)+p

b+2+pa+3 (mod q). Then the congruence with right-hand-side
(1+pc+1)(ap(f)+p

b+2+pa+3) becomes an instance of that in §9, and the argument

for why q should divide L(j+2,F,st)
Ω is the same, connected with [DIK, Conjecture

5.3]. (Note that the condition j ≤ k − 4 follows from c ≤ b.)
Next consider the case i = 2. Recalling the case G = GL2, there should be a

Hecke eigenform g, of weight ℓ = c+2, satisfying ap(g) ≡ 1+pc+1 (mod q) for p /∈ Σ.

Then Π̃′ would satisfy the i = 2 case of the congruence in Case 1 of §8, with right
hand side ap(g)(ap(f)+p

b+2+pa+3). (Note that c+2 = a−b+2, because a = b+c.)
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Looking at it yet another way (as might be suggested by the previous paragraph and
the case i = 2 in §7), (1+pc+1)(ap(f)+p

b+2+pa+3) ≡ (1+pc+1)(ap(f)+p
b+2ap(g))

(mod q), so we have the type of congruence discussed at the end of §9, but this time
the first factor in the product L(s,Π′, st) = ζ(s)L(f ⊗ g, s + a + 3) is the relevant
one.

An i = 3 example where we expect a congruence is (a, b, c) = (10, 8, 2), k′ = 24,
q = 179 (with level 1, Σ = ∅). The space of genus 3 cusp forms for level 1 and
(a, b, c) = (10, 8, 2) is 1-dimensional, and we checked the congruence for p ≤ 17,
using Hecke eigenvalues calculated as in [BFvdG1]. Moreover, it appears that we
can relax the condition a = b+c and expect the same kind of congruence to hold. We
found congruences in the following examples (checked for p ≤ 17). Again, in each

case the space of genus 3 cusp forms is 1-dimensional. The divisibility of L(f,a+c+5)
Ω±

may be checked in almost all cases using the final table of [vdG]. (Strictly speaking,
in those cases where the field of coefficients is not rational, we did not check that
the congruence and the divisibility involve the same divisor of q, except in the case
q = 179.) For the q = 43 example we used the computer package Magma instead,
and for those cases where q 6> k′ (i.e. q = 19 and q = 37) the divisibility is not
really well-defined, so we did not check, though it may be significant that in the
normalisation in [vdG], the 19 does occur as a factor.

(a, b, c) k′ = a+ b+ 6 a+ c+ 5 q
(12, 6, 2) 24 19 73
(10, 8, 2) 24 17 179
(16, 4, 2) 26 23 43
(14, 6, 2) 26 21 97
(12, 8, 2) 26 19 29
(10, 8, 4) 24 19 73
(13, 9, 2) 28 20 157
(13, 7, 4) 26 22 19
(10, 10, 4) 26 19 29
(21, 3, 2) 30 28 97
(12, 8, 6) 26 23 43
(10, 10, 6) 26 21 97
(10, 10, 8) 26 23 43
(13, 11, 8) 30 26 593
(13, 11, 10) 30 28 97
(15, 13, 12) 34 32 103
(16, 16, 16) 38 37 37

Notice that there are three triples of (k′, a + c + 5, q) that appear twice in the
table, namely (24, 19, 73), (26, 21, 97) and (30, 28, 97), and (26, 23, 43) even appears
three times.

How are we to account for these congruences when a 6= b + c? One way is
to use the non-maximal parabolic subgroup P of GSp3 with Levi subgroup M ≃
GL2×GL1×GL1 and ∆M = {e1−e2}. One uses now two parameters, s and t, but
replaces N by the intersection of the unipotent radicals of the maximal parabolics
containing P . Playing this game with non-maximal parabolics is sometimes fruitful,
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but seems in many cases to produce congruences that do not hold. Further details
are omitted here.

In [BFvdG1], the various congruences involving Siegel cusp forms of level 1 are
viewed as being between Hecke eigenspaces of, on the one hand, parts of the inner
cohomology of a Siegel modular variety (with coefficients in a local system) coming
from cusp forms, and on the other, “Eisenstein” or “endoscopic” contributions to
the Euler characteristic. They do not actually calculate the Hecke actions on the
latter, but for each congruence there is a contribution to the Euler characteris-
tic whose form suggests that it accounts for the congruence. The above congru-
ences should be accounted for by an “Eisenstein contribution” “sa+b+6L

b+2” (see
[BFvdG1, Conjecture 7.12]), where sa+b+6 is the dimension of the space of cusp
forms of weight a+ b+6 and L is the Lefschetz motive. This term was accidentally
overlooked in [BFvdG1].

Formally, the simplest way to arrive at the congruences is to substitute an Eisen-
stein series of weight c+ 2 for the cusp form g in the congruence in Case 1 of §8.

13. Cohomology of local systems.

Useful references are [H3, 2.3],[H4, 1.2], [H6, 2.2,2.3]. LetM, a finite-dimensional
vector space over Q, be the space of an irreducible rational representation of G, with
highest weight ΛG. Let K∞ be the product inside G(R) of the identity components
of its maximal compact subgroup and of Z(G)(R). Let Kf be an open compact
subgroup of G(Af ) (where Af is the finite adeles). Let SKf

= G(Q)\G(A)/K∞Kf .

This is a finite union of quotients Γ(gf )\X∞ of the symmetric domain X∞ =
G(R)/K∞ by the discrete groups Γ(gf ) := G(Q) ∩ gfKfg

−1
f , where gf is a set of

representatives for the finite set of double cosets G(Q)\G(Af )/Kf . On SKf
there

is a locally constant sheaf M associated to the representation of the same name.
The direct limit over smaller and smaller Kf , H

•(S,M) := lim−→Kf

H•(SKf
,M), is

naturally a G(Af )-module.

At each level there is a Borel-Serre compactification SKf
, a manifold with cor-

ners. The sheaf M can naturally be extended to SKf
(on which it has the same

cohomology) and restricted to the boundary ∂SKf
:= SKf

− SKf
. This induces

maps H•(SKf
,M) → H•(∂SKf

,M) and H•(S,M) → H•(∂S,M). The kernel is
the “inner” cohomology H•

! (S,M).
At each level the boundary ∂SKf

is stratified by submanifolds labelled by conju-
gacy classes of parabolic subgroups defined over Q. By considering the restriction of
the sheaf M to such a boundary stratum, and taking a limit over Kf , one obtains,
in particular for a maximal parabolic subgroup P , a map

I
G(Af )

P (Af )
H•(SM , H•(n,M)) → H•(∂S,M)

of G(Af )-modules. (This is ordinary, not unitary, parabolic induction.) Here n is
the Lie algebra of the unipotent radical of P , and the Lie algebra cohomology is
viewed as a representation of the Levi quotient M . The cohomology H•(SM , )
is defined to be a direct limit, over open compact subgroups Cf of M(Af ), of
H•(SM

Cf
, ), where SM

Cf
=M(Q)\M(A)/KM

∞Cf , and K
M
∞ is the intersection of K∞

with M(R).
In fact there is an injection (see just before 2.3.2 of [H3])

I
G(Af )

P (Af )
H•

cusp

(

SM , H•(n,M)
)

→֒ H•(∂S,M)
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of G(Af )-modules, where the cuspidal subspace is analytically defined. Using a
theorem of Kostant, we get a decomposition

Hq(n,M) ≃
⊕

w′∈WP , ℓ(w′)=q

Fµw′

of representations of M . Here, if W is the Weyl group of G, and WM the Weyl
group of M , then WP is the set of Kostant representatives of WM\W , i.e. {w′ ∈
W : w′−1

(∆M ) ⊂ Φ+
G}, and ℓ(w′) is the length of w′. We define µw′ = w′.ΛG =

w′(ΛG + ρ) − ρ, which happens to be a highest weight for M , and Fµw′ is the
irreducible rational representation of M with that highest weight, so

⊕

w′∈WP

Ind
G(Af )

P (Af )
Hq−ℓ(w)

cusp (SM , Fµw
) →֒ Hq(∂S,M).

Now consider cuspidal automorphic representations Π of M(A) and Π̃ of G(A),
as in Conjecture 4.2, with restrictions Πf (note that this notation means something

different than above) to M(Af ) and Π̃f to G(Af ), respectively. In Harder’s set-up,

one starts not with Π but with Π̃, and where Π̃f occurs inHq
! (S,M), for some q and

some ΛG, while Ind
G
P (Π⊗|sα̃|)f occurs in I

G(Af )

P (Af )
H

q−ℓ(w′)
cusp (SM , Fµw′ ), for some w′.

(Knowing the possible degrees of cohomology that are relevant, one experiments
with w′ of the correct length, then works back from µw′ to deduce the type of
Π∞.) Harder’s congruence is then between G(Af )-modules occurring in Hq

! (S,M)
and in Hq(∂S,M), in fact it ought to arise from fusion between Hecke modules
with integral coefficients, if one uses an integral model for M. Fixing the Kostant
representative w′, let ΛM := µw′ . Next we try to work out how Harder’s approach
relates to ours.

First, by Wigner’s Lemma [Wa, 9.4.1], the dual of M has the same infinitesimal

character as Π̃∞, so

−wG
0 ΛG + ρG = w(λ+ sα̃).

Similarly, the infinitesimal character of the component at ∞ of a representation of

M(A) whose finite part occurs inH
q−ℓ(w′)
cusp (SM , Fµw′ ) is−wM

0 ΛM+ρM . Subtracting
ρP to take into account the difference between ordinary and unitary induction, we
must have

−wM
0 ΛM + ρM − ρP = λ+ sα̃ = w−1(−wG

0 ΛG + ρG) = −w−1wG
0 (ΛG + ρG).

It is then (Π⊗|sα̃−ρP |)f = (Π⊗|(s−〈ρP , α̌〉)α̃|)f that occurs inH
q−ℓ(w′)
cusp (SM , Fµw′ ).

Applying −wM
0 to both sides,

ΛM + ρM + ρP = wM
0 w−1wG

0 (ΛG + ρG).

Since ρM + ρP = ρG, this becomes

ΛM = wM
0 w−1wG

0 (ΛG + ρG)− ρG.

Comparing with ΛM = w′(ΛG + ρG)− ρG, we must have the relation

w′ = wM
0 w−1wG

0 , i.e. w = wG
0 (w

′)−1wM
0 ,

between Harder’s Kostant representative w′ and our w, which was chosen so that
w(λ+ sα̃) is strictly dominant for small s > 0.

The requirement that ℓ(w′) = qG−qM , where qG and qM are such thatHqG
cusp(S,M)

and HqM
cusp(SM , Fµw′ ) can be non-zero, must tell us something about our w.
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Lemma 13.1. If w′ = wM
0 w−1wG

0 then ℓ(w′) is the number of positive roots in
w(ΦN ).

Proof. The length of an element of WG is the number of elements of Φ+
G that it

sends to −Φ+
G.

w′ = (−wM
0 )w−1(−wG

0 ).

Now −wG
0 maps Φ+

G to Φ+
G, while −wM

0 maps Φ+
M to Φ+

M , while sending ΦN (the

remainder of Φ+
G) to −Φ+

G. So ℓ(w′) is the number of elements of Φ+
G mapped to

ΦN by w−1, hence the lemma. �

So it should be the case that the number of positive roots in w(ΦN ) is qG − qM .
It is easy to check this directly in many cases, including some examples below.
According to a theorem of Li and Schwermer [LS, 3.5], as long as ΛG is regular,
Hq

cusp(S,M) can be non-zero at most for q ∈ [q0(G), q0(G)+ ℓ0(G)], where ℓ0(G) =
rank(G)−rank(KG) (KG being a maximal compact subgroup of G(R)) and q0(G)+
(1/2)ℓ0(G) = (1/2) dimXG, with XG = G(R)/KG. In other words, qG must lie
inside this interval, and is uniquely determined in cases where ℓ0(G) = 0.

In §§6–9 we could have used the semi-simple group G = PGSpg, for which
KG ≃ U(g), with rank(G) = rank(KG) = g, so ℓ0(G) = 0. By counting generators
of Lie algebras, dimG(R) = g + g(g − 1) + g(g + 1) = 2g2 + g, while dimKG = g2,

so dimXG = g(g + 1) and qG = g(g+1)
2 . Looking instead at G = GLn, with

KG ≃ O(n), we have ℓ0(G) = n − [n/2] and dimXG = n2 − n(n−1)
2 = n(n+1)

2 , so

q0(G) =

{

n2

4 if n is even;
n2−1

4 if n is odd.
.

Example 1. Let G = PGSpg, α = e1 − e2. Then M ≃ GL1 × PGSpg−1. If
λ = a2e2+ · · · ageg with a2 > · · · > ag > 0 (so regular and dominant forM) then to
make w(λ) dominant for G we choose w ∈WG such that eg 7→ eg−1 7→ · · · 7→ e2 7→
e1 7→ eg. Then w(λ) = a2e1 + · · · + ageg−1. (We omit terms in e0, as if we were
dealing with Spg.) Now ΦN = {e1 − ej : 1 < j ≤ g} ∪ {e1 + ej : 1 ≤ j ≤ g}. All

of the w(e1 + ej) are in Φ+
G, but none of the w(e1 − ej), so ℓ(w

′) = g. Subtracting

this from qG = g(g+1)
2 gives (g−1)g

2 , which is q0(M).

Example 2. Let G = Spg, α = 2eg. Then M ≃ GLg, Φ
+
M = {ei − ej : 1 ≤ i <

j ≤ g} and ΦN = {ei + ej : 1 ≤ i ≤ j ≤ g}. Purely for notational convenience,
suppose that g is even. If λ = a1(e1 − eg) + a2(e2 − eg−1) + . . . + ag/2(eg/2 −
e(g/2)+1), with a1 > a2 > . . . > ag/2 > 0, (this is regular, self-dual and dominant for
M), then we choose w ∈ WG such that (e1,−eg, e2,−eg−1, . . . , eg/2,−e(g/2)+1) 7→
(e1, e2, . . . , eg). One checks that w(ei + ej), with i ≤ j, is in Φ+

G precisely for
1 ≤ i ≤ j ≤ g

2 and for 1 ≤ i ≤ g
2 with g

2 + 1 ≤ j ≤ g + 1 − i. Hence ℓ(w′) =
g(g+2)

8 + g(g+2)
8 = g(g+2)

4 . Subtracting this from qG = g(g+1)
2 gives g2

4 , which is
q0(M).

14. The Bloch-Kato Conjecture.

Given a congruence mod q as in Conjecture 4.2, our goal in this section is to
explain how the existence of a non-zero element in H1

Σ(Q, T
∗
i,q ⊗ (Eq/Oq)) (cf.

Conjecture 4.1) might follow. Thus the Bloch-Kato conjecture motivates a belief
in Conjecture 4.2, via the support the former would receive from the latter.
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Let θµ : Ĝ → GLn, for some n (and some µ), be the rational representation of
highest weight µ. This is a morphism of algebraic groups defined over Q. If λ+sα̃ ∈
X∗(T ) then, according to [BG, Conjecture 3.2.1], there should exist a representation

ρΠ̃ : Gal(Q/Q) → Ĝ(Eq), such that if p /∈ Σ ∪ {q} then ρΠ̃(Frob
−1
p ) is conjugate in

Ĝ(Eq) to the Satake parameter t(χ(π̃p)). Letting ω : Gal(Q/Q) → Z×
q be the cyclo-

tomic character, and c(µ) := 〈w(λ+sα̃), µ〉, let ρµ,Π̃ := ω−c(µ)θµ◦ρΠ̃ : Gal(Q/Q) →
GLn(Eq). Then for p /∈ Σ ∪ {q}, Tr(ρµ,Π̃(Frob−1

p )) = pc(µ)Tr(θµ(t(χ(π̃p)))), and

ρµ,Π̃(Gal(Q/Q)) ⊆ θµ(Ĝ(Eq)). Even if λ + sα̃ /∈ X∗(T ), µ should induce a func-

torial lift of Π̃ to Π′ say, on GLn(A), and there should be a Galois representation
associated to Π′ ⊗ | det |c(µ), which we also call ρµ,Π̃ : Gal(Q/Q) → GLn(Eq), with

again Tr(ρµ,Π̃(Frob
−1
p )) = pc(µ)Tr(θµ(t(χ(π̃p)))). It seems reasonable to suppose

that again we will have ρµ,Π̃(Gal(Q/Q)) ⊆ θµ(Ĝ(Eq)).

Since Gal(Q/Q) is compact, there must be an invariant Oq-lattice in E
n
q , so con-

jugating by some element of GLn(Eq), we may suppose that ρµ,Π̃(Gal(Q/Q)) ⊆
GLn(Oq). We may adjust θµ (now defined over Eq) to preserve the property

ρµ,Π̃(Gal(Q/Q)) ⊆ θµ(Ĝ(Eq)). In fact there is an integral structure on Ĝ such

that Ĝ(Oq) = θ−1
µ (GLn(Oq)), so now ρµ,Π̃(Gal(Q/Q)) ⊆ θµ(Ĝ(Oq)). (For sim-

plicity, let’s imagine that this integral structure is the Chevalley group scheme.)

Identifying Ĝ with θµ(Ĝ), we have ρµ,Π̃ : Gal(Q/Q) → Ĝ(Oq), and its reduction

ρµ,Π̃ : Gal(Q/Q) → Ĝ(Fq).

Similarly, identifying M̂ with θµ(M̂) (same θµ as above, though its restric-

tion to M̂ might not be irreducible), we get ρµ,Π⊗|sα̃| : Gal(Q/Q) → M̂(Oq),

and its reduction ρµ,Π⊗|sα̃| : Gal(Q/Q) → M̂(Fq), with Tr(ρµ,Π⊗|sα̃|(Frob
−1
p )) =

pc(µ)Tr(θµ(t(χp + sα̃))) (χp as in §2). We shall impose a condition that the image

ρµ,Π⊗|sα̃|(Gal(Q/Q)) is not contained in any proper parabolic subgroup of M̂(Fq).
Applying Conjecture 4.2 to Tµ if µ is minuscule, or more generally to the sum of

Tµ and a suitable integral linear combination of Tµ′ for µ′ < µ (see [Gro, (3.12)]),
it predicts that, for all p /∈ Σ ∪ {q},

Tr(ρµ,Π⊗|sα̃|(Frob
−1
p )) = Tr(ρµ,Π̃(Frob

−1
p )) in Fq.

It seems reasonable to suppose that a consequence of this is that (for q sufficiently

large), after conjugating ρµ,Π̃ by something in Ĝ(Oq) before we reduce, we can

get ρµ,Π̃(Gal(Q/Q)) ⊆ P̂op(Fq), with the projection of ρµ,Π̃, from P̂op(Fq) to its

Levi subgroup M̂(Fq), equal to ρµ,Π⊗|sα̃|. (Here, P̂op is the parabolic subgroup

opposite to P̂ , with unipotent radical N̂op such that ΦN̂op
= −ΦN̂ .) This is easy

to prove in the case G = GLn,M = GLn/2 × GLn/2, with n even, θµ the identity
and q > 2n, using the Brauer-Nesbitt theorem. In this case our condition on
ρµ,Π⊗|sα̃|(Gal(Q/Q)) amounts to the irreducibility of the two representations to

GLn/2(Fq), which are therefore the composition factors of ρµ,Π̃.

From now on, we abbreviate ρµ,Π̃, ρµ,Π̃, ρµ,Π⊗|sα̃| and ρµ,Π⊗|sα̃| to ρ̃, ρ̃, ρ

and ρ, respectively. For j ≥ 1, let N̂op(Fq)
(j) be the jth derived subgroup, so

N̂op(Fq)/N̂op(Fq)
(1) is the abelianisation. Define

C : Gal(Q/Q) → N̂op(Fq)/N̂op(Fq)
(1) by C(g) = [ρ̃(g)ρ(g)−1],
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where [·] denotes the class in the quotient group. (That ρ̃(g)ρ(g)−1 ∈ N̂op(Fq)
follows from the supposition in the previous paragraph.) We have that

C(gh) = ρ̃(gh)ρ(gh)−1 = ρ̃(g)ρ(g)−1ρ(g)ρ̃(h)ρ(h)−1ρ(g)−1 = C(g)ad(ρ(g))(C(h)).

Therefore C is a cocycle, representing a Galois cohomology class denoted C(0) in
H1(Q, N̂op(Fq)/N̂op(Fq)

(1)), where the action of Gal(Q/Q) on N̂op(Fq)/N̂op(Fq)
(1)

is via ad(ρ).
We would like this class to be non-zero. It might not be, but in the case G =

GLn,M = GLn/2 × GLn/2, a trivial modification of an argument of Ribet (the
case n = 2, [Ri1, Proposition 2.1]) produces a class that is non-zero, assuming the
irreducibility of ρ̃. Henceforth, in place of this irreducibility condition, we assume
that ρ̃(Gal(Q/Q)) is not contained in any proper parabolic subgroup of Ĝ(Eq).

This ought to be true except in cases where Π̃ is some kind of endoscopic lift. In
general to get a non-zero class, especially when m > 1 (in r = ⊕m

i=1ri), it seems to
be necessary to use a somewhat different argument, such as the following.

Suppose that C(0) = 0 (since if C(0) 6= 0 then we already have what we want).

Then C is a coboundary, so for some n ∈ N̂op(Fq), and every g ∈ Gal(Q/Q),

ρ̃(g)ρ(g)−1 = [ρ(g)nρ(g)−1n−1], so

nρ̃(g)n−1ρ(g)−1 = [n(ρ(g)nρ(g)−1)n−1(ρ(g)nρ(g)−1)−1] = [1].

Now nρ̃(g)n−1 ∈ P̂op(Fq) and has the same projection to M̂(Fq) as ρ̃(g). The condi-

tion that this projection is ρ(g) only determines ρ̃(g) up to conjugation by N̂op(Fq),

and nρ̃(g)n−1 is an equally good choice. Making this the new ρ̃(g), ρ̃(g)ρ(g)−1 now

takes values in N̂op(Fq)
(1), so we may start again and use it to define a cocycle

representing a cohomology class C(1) ∈ H1(Q, N̂op(Fq)
(1)/N̂op(Fq)

(2)). If this is 0,

similarly we get C(2) ∈ H1(Q, N̂op(Fq)
(2)/N̂op(Fq)

(3)), etc.
Considering root subgroups, it is easy to see that

⊕j≥0(N̂op(Fq)
(j)/N̂op(Fq)

(j+1)) ≃ ⊕i≥1n̂op,i,

where n̂op,i is defined in the same manner as n̂i in §3. If some C(j) 6= 0, we have
therefore, for some i, a non-zero element of H1(Q, n̂op,i) (with the adjoint action of
ρ), which is our interim goal.

If all the C(j) = 0, for all j ≥ 0, then (after conjugation in N̂op(Fq)) ρ̃ takes

values in M̂(Fq). (Of course, N̂op(Fq)
(j) = {1} eventually.) Equivalently, after

conjugation in N̂op(Oq), ρ̃ takes values in M̂1, where for k ≥ 1 we define

M̂k := {h ∈ Ĝ(Oq) : h ∈ P̂op (mod q) and h ∈ P̂ (mod qk)}.

Let also N̂op,k := {h ∈ M̂k : h (mod q) = 1}, so, (after conjugation in N̂op(Fq)),

ρ̃(g)ρ(g)−1 ∈ N̂op,1, for all g ∈ Gal(Q/Q).

Now we may play the same game, substituting N̂op,1/N̂op,2 for N̂op(Fq). When

N is not abelian, it might not be the case that N̂op,k/N̂op,k+1 ≃ N̂op(Fq). But

using the fact that N̂op,k/N̂op,k+1 is generated by the images of elements of the
form exp(qkn′ + qm + qn), with n′,m and n integral elements of n̂op, m̂ and n̂

respectively, with respect to a Chevalley basis, one sees that it shares with N̂op(Fq)
the property

⊕j≥0(N̂op,k/N̂op,k+1)
(j)/(N̂op,k/N̂op,k+1)

(j+1) ≃ ⊕i≥1n̂op,i.
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Starting with k = 1 if we are unable to produce a non-zero class using N̂op,k/N̂op,k+1

in place of N̂op(Fq) then, after conjugation in N̂op(Oq), ρ̃ takes values in M̂k+1.

If this fails for all k ≥ 1 then, after conjugation in N̂op(Oq), ρ̃ takes values in

∩k≥1M̂k = P̂ (Oq), contrary to our “irreducibility” hypothesis.
Thus we must get, for some i, a non-zero element of H1(Q, n̂op,i). The Killing

form (n′, n) 7→ tr(ad(n′)ad(n)) puts n̂op,i and n̂i in perfect duality (with Φi
N and

−Φi
N as dual bases). It respects the adjoint action of M̂ , showing that n̂op,i and n̂i

are dual as representations of M̂ . It follows that n̂op,i injects into T
∗
i,q⊗(Eq/Oq) (as

its q-torsion subgroup), at least for some choice of lattice Ti,q, but see the remark
at the end of §4. Thus we get a non-zero class in H1(Q, T ∗

i,q ⊗ (Eq/Oq)), as long

as H0(Q, n̂op,i) is trivial. This class satisfies the Bloch-Kato local condition at any
prime p /∈ Σ ∪ {q}, since ρ̃ is unramified at such a prime. We should expect it

also to satisfy the local condition at q, given that Π̃q is unramified and all the
θµ ◦ ρ̃ ought to be crystalline at q. Thus we expect to have a non-zero element of
H1

Σ(Q, T
∗
i,q ⊗ (Eq/Oq)), which would fit with

ordq

(

LΣ(1 + is,Π, ri)

Ω

)

> 0

and the Bloch-Kato conjecture, if it were the same i, but we might have no way of
knowing that when m > 1.

Note that in the above “construction”, we could switch the roles of P and Pop,
thus producing a non-zero class in H1

Σ(Q, Ti′,q ⊗ (Eq/Oq)) instead (for some i′).
This seems like a problem, since in general it will not be the case that also

ordq

(

LΣ(1− i′s,Π, ri′)

Ω′

)

> 0

which is what the Bloch-Kato conjecture would suggest if this is a critical value.
Now 1 − i′s is paired with i′s, which differs in parity from the original 1 + i′s,
so a way out would be if it is always the case that for some i′ there is a parity
condition stopping LΣ(1− i′s,Π, ri′) from being a critical value. For a non-critical
value, L(1− i′s,Π, ri′) should be 0, and (if not near-central) its order of vanishing
should be the rank of a q-adic Selmer group. This is an analogue of the rank part
of the Birch and Swinnerton-Dyer conjecture, see the “conjectures” Cr(M) and
Ci

λ(M) in [Fo, §1,§6.5]. Reducing (mod q), one would expect something non-zero
in H1

Σ(Q, Ti′,q ⊗ (Eq/Oq)), making it no problem to have constructed such a thing.

There will be a parity condition if 〈λ, γ̌〉 = 0 for some γ ∈ Φi′

N , and in the examples
we looked at in the earlier sections, this always happens for some i′, as one can see
by examining the tables. Recalling Lemma 3.1, it would suffice to show that there
is some γ ∈ ΦN such that wM

0 γ = γ.
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