
This is a repository copy of Constraint programming for type inference in flexible model-
driven engineering.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/110204/

Version: Published Version

Article:

Zolotas, Athanasios, Clarisó, Robert, Matragkas, Nikolaos orcid.org/0000-0002-8594-1912
et al. (2 more authors) (2017) Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems and Structures. pp. 216-230. ISSN 
1477-8424 

https://doi.org/10.1016/j.cl.2016.12.002

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Constraint programming for type inference in flexible
model-driven engineering

Athanasios Zolotas a,n, Robert Clarisó b, Nicholas Matragkas c,
Dimitrios S. Kolovos a, Richard F. Paige a

a Computer Science Department, University of York, YO10 5GH York, United Kingdom
b IT, Multimedia and Telecommunication Department, Universitat Oberta de Catalunya, Barcelona, Spain
c Computer Science Department, University of Hull, HU6 7RX Hull, United Kingdom

a r t i c l e i n f o

Article history:

Received 14 February 2016

Received in revised form

10 December 2016

Accepted 11 December 2016

Keywords:

Flexible modelling

Bottom-up modelling

Type inference

Constraint programming

Example-driven modelling

a b s t r a c t

Domain experts typically have detailed knowledge of the concepts that are used in their

domain; however they often lack the technical skills needed to translate that knowledge into

model-driven engineering (MDE) idioms and technologies. Flexible or bottom-up modelling

has been introduced to assist with the involvement of domain experts by promoting the use

of simple drawing tools. In traditional MDE the engineering process starts with the definition

of a metamodel which is used for the instantiation of models. In bottom-up MDE example

models are defined at the beginning, letting the domain experts and language engineers focus

on expressing the concepts rather than spending time on technical details of the metamo-

delling infrastructure. The metamodel is then created manually or inferred automatically.

The flexibility that bottom-up MDE offers comes with the cost of having nodes in the exam-

ple models left untyped. As a result, concepts that might be important for the definition of the

domain will be ignored while the example models cannot be adequately re-used in future

iterations of the language definition process. In this paper, we propose a novel approach that

assists in the inference of the types of untyped model elements using Constraint Program-

ming. We evaluate the proposed approach in a number of example models to identify the

performance of the prediction mechanism and the benefits it offers. The reduction in the

effort needed to complete the missing types reaches up to 91.45% compared to the scenario

where the language engineers had to identify and complete the types without guidance.

& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Conventional Domain-Specific Languages (DSL) definition processes start with the creation of a metamodel which is then

used to instantiate models and guide the development of editors and other artefacts such as model-to-model and model-to-

text transformations. Such a process implies expertise in metamodelling, and in relevant technologies. While this may be an

easy or at least understandable process for MDE experts, this is not always the case with domain experts [1] who are more

familiar with tools like simple drawing editors [2]. However, the involvement of domain experts is important in the defi-

nition of high quality and well-defined DSLs that cover all the needed aspects of a domain. To address the aforementioned

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

http://dx.doi.org/10.1016/j.cl.2016.12.002

1477-8424/& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

n Corresponding author.

E-mail addresses: amz502@york.ac.uk (A. Zolotas), rclariso@uoc.edu (R. Clarisó), n.matragkas@hull.ac.uk (N. Matragkas),

dimitris.kolovos@york.ac.uk (D.S. Kolovos), richard.paige@york.ac.uk (R.F. Paige).

Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i



issue, flexible modelling approaches have been proposed in the literature (e.g. [3–5,1]). Such approaches are based on

sketching tools and do not require the definition of a metamodel during the initial phases of language engineering.

More specifically, in flexible (or bottom-up) MDE, the process starts with the definition of example models [1,6,7]. These

example models help language engineers to better understand the concepts of the envisioned DSL and can be used to infer

draft metamodels manually or (semi-)automatically which eventually lead in the definition of the final metamodel. In this

fashion, a richer understanding of the domain can be developed incrementally, while concrete insights (e.g. type informa-

tion) pertaining to the envisioned metamodel are discovered. Fig. 1 depicts the stages taking place in a typical flexible MDE

process as this is interpreted by studying different flexible MDE approaches in the literature (e.g. [1,2,8]).

The sketching tools used in such processes allow the quick definition of exemplar models sacrificing the formality that

model editors, which are based on a rigorously-defined metamodels, offer. In addition, drawing tools do not require MDE-

specific expertise. The elements (nodes and edges) of these flexible example models can have type annotations assigned to

them to describe the domain concept they represent and can also be amenable to programmatic model management using

MDE suites like Epsilon [9].

On the other hand, since sketching tools cannot enforce syntactic and semantic correctness rules, flexible models are

prone to various types of errors [10]:

1. User input errors: Elements that should share the same type have different types assigned to them by mistake or as a

result of a typo (e.g. Animal vs. Anmal).

2. Changes due to evolution: Elements representing concepts that have evolved during the domain exploration process do

not have their types updated (e.g. Animal vs. Herbivores and Carnivores).

3. Inconsistencies due to collaboration: When multiple domain experts collaborate in the definition of the models, multiple

types representing the same concept can be used (e.g. Doctor vs. Veterinarian).

4. Omissions: Elements can be left untyped especially when models become large as it is easier to overlook some of the elements.

The trade-off between formality and flexibility can possibly result in a better domain understanding by language

engineers, and eventually to a higher quality language. Bottom-up metamodelling is an iterative process, since different

versions of metamodels and exemplar models are continuously evolved in an interleaved manner until the final version of

the metamodel is obtained [1].

The contribution of this paper is a tool-supported approach for eliminating type omission errors (see error labelled “Omis-

sions” above) from flexible models. Currently such errors are eliminated manually by language engineers by selecting an

appropriate type from a set of possible types. That means, that if in the draft metamodel there are N different concrete types, the

language engineer has N options for each untyped element. However, this approach does not benefit from information that exists

in the draft metamodel and that could possibly help in reducing the number of possible types for a specific node. For example, if

in the metamodel it is defined that nodes of type “A” can only be connected with nodes of type “B” then if an untyped node is

connected with a node of type “B”, it can be inferred that the type of the missing node is type “A”. An advantage of that second

approach is that the search space for the possible types suggested to the language engineer can be reduced from N to M, where

M A [1, N], fromwhich the engineer has to select the correct one. In this work, the intended meaning of the “correct type” is the

type that the engineer envisioned when drawing the specific element in the example model.

Our proposed approach does not require a metamodel that is refined to follow the best practices or patterns proposed for

metamodel development. The only requirement is that the metamodel must include all the types and the relationships that are

present in the example models. The term “draft” which characterizes the metamodels needed as part of this approach implies

firstly the optional need of having metamodelling best practices applied to the metamodel. Secondly, it can be “draft” in terms of

not being a final one that covers all the concepts of the domain, but an intermediate one that covers a subset of the concepts, as

soon as these are the only concepts appearing in the example models. This draft metamodel, following the iterative flexible MDE

principles, should reach a final version that covers all the envisioned concepts and relationships. Related to that, it is necessary to

highlight that our proposed approach focuses only on the inference of the types of the untyped nodes in the example models

created (or evolved) as part of a flexible MDE approach (see “Example models definition” phase in Fig. 1). The way that the draft

Fig. 1. Stages of a typical flexible MDE approach.

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎2



metamodel is inferred (or evolves) is outside the scope of this work and it is an interesting area of future research; the draft

metamodel should fulfil the aforementioned requirement, though.

In previous work [10,11], an approach to tackle the error of type omissions was proposed. The algorithm, that is based on

Classification and Regression Trees (CART), is trained on the elements of the example models only, trying to identify similarities

based on different sets of criteria and predict the types of untyped nodes without requiring the existence of a metamodel. This

work contributes a novel approach in addressing the challenges associated with type omissions, but this time taking into account a

draft metamodel constructed by language engineers, using constraint programming principles for suggesting the possible types.

More specifically, the syntax and the constraints defined in the draft metamodel are automatically transformed to a set of facts and

rules that are then applied to the example models to reduce the number of possible types of untyped nodes. Beyond the

requirement for a metamodel, another important difference with the previous approach is the fact that in this work, the correct

type for each node is always included in the set of suggested types. In the previous work, the suggested type is not guaranteed to be

the correct one. A trade-off for that is the fact that there might be more than one possible types suggested for each node while in

the previous work there was always one type returned, not always the correct one though.

The rest of this paper is structured as follows. Section 2 includes a brief review of a specific flexible modelling approach,

Muddles [3], which is based on GraphML and is used as a proof of concept for the proposed approach and the experi-

mentation. In Section 3 the approach is presented. In Section 4, an empirical evaluation of the performance of the proposed

approach is conducted. The results of running the experiments are discussed in Section 5, along with threats to experi-

mental validity.1 In Section 6, related work in the field of flexible modelling, type inference and constraint programming in

MDE is presented. In Section 7 we conclude the paper and outline plans for future work.

2. Background

In our work we use the Muddles approach [3] for sketching model examples. The Muddles approach proposes the use of

GraphML compliant tools such as yEd2 for the definition of model sketches. More particularly, the domain engineer can use simple

drawing editors to express example models of an envisioned Domain-Specific Language (DSL). Using simple drawing editors to

express the domain concepts increases the participation of the domain experts as it requires no (or minimum) training while it

allows themworking with tools that they are already familiar with [1,2]. The drawing produced, called amuddle, can be consumed

by model management suites, like the Epsilon platform [9], to support MDE activities (e.g. queries, transformations) enabling the

language engineer to experiment with the models, gain better understanding and decide whether they are fit for purpose.

An example of such a muddle is shown in Fig. 2. In this example, the intention of the language engineer is the creation of

a simple DSL for defining Zoos. The process starts with the definition of example models of this envisioned DSL by the

domain experts. The language engineer can then annotate types and typing information (e.g. properties) for each node. This

drawing can be then consumed by model management programs that can be written in parallel to check if it fulfils the

needs of the engineer and expose more features of the language, if any. In contrast to related work [1], shapes and other

graphical characteristics of each node are not bound to types. For example, in the drawing of Fig. 2, elements of type “Lion”

are expressed using rounded rectangles, the same shape that is used to define elements of type “Tiger”. Moreover, elements

of the same type can be expressed using different shapes, for instance two different elements of type “Lion” can be

expressed using the rounded rectangle for one of them and a circle for the second. By doing so, the domain expert is not

constrained by a concrete syntax and can use any shape and arrow available from the tool's palette to express herself freely.

Types and type-related information for each element are defined using custom GraphML properties.3 This is an exten-

sibility mechanism provided by GraphML to support attaching arbitrary key-value information to graph elements. A short

description and examples for each custom property is given in Table 1. More details on these properties can be found in [3].

It is important to mention here that the proposed approach is not bounded with the Muddles approach, which is only

used as proof of concept and for experimentation purposes, but can be adapted to and used in principle with any other

flexible modelling approach which fulfils the following minimal set of requirements:

Fig. 2. An example Zoo diagram.

1 The algorithms, the experimentation data and the results along with instructions can be found in http://www.zolotas.net/type-inference-cp/.
2 The yEd editor can be downloaded from http://www.yworks.com/en/products_yed_about.html.
3 YEd's manual on custom properties can be found in http://yed.yworks.com/support/manual/properties.html/.

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3



� allows users to assign types to nodes and provides a mechanism to extract these types;
� provides a mechanism to allow the extraction of the source and target nodes of the edges in the example models.

3. Proposed type inference approach

3.1. Overview of the approach

In this section the proposed approach for type inference in flexible MDE is presented. An overview is given in Fig. 3.

The process starts with the language engineers having example models drawn using a flexible modelling approach (i.e.

muddles in this scenario) to facilitate the process of defining the DSL they are interested in (step ①). This may involve continuous

changes to the example models, after which enough knowledge is acquired for the production of a first draft version of the DSL's

metamodel (step ②). The example models due to the lack of editors that are based on pre-defined metamodels (see Section 1)

may have nodes that are left untyped. At this stage, the metamodel might be a partial one that only describes the concepts that are

defined in the example models. Thus, this approach works under the Closed World Assumption (CWA) [12]. This means that at each

iteration the inference algorithm can only suggest types that already exist in the metamodel and not introduce new types that

might be more relevant but do not exist in the metamodel. The language engineer may want to continue working on the example

models by introducing new or evolved concepts. This is an iterative process: new concepts can be introduced in the example

models, and the metamodel could be updated until a final version is ready. During each iteration, when a stable but incomplete

metamodel is defined, the proposed approach can be used to automatically assess the example models and the metamodel. As a

result, it can provide suggestions for the nodes that were left untyped to facilitate the engineers having complete models so they

can easier proceed to the next iteration. This is done in step③ as shown in Fig. 3. More specifically, a custom-made script analyzes

the example models and the draft metamodel and produces a set of constraints. This auto-generated file (an example is shown in

Listing 1) can be consumed by a constraint solver (e.g. ECLiPSe [13]) which suggests the possible types for each node (step ④).

More details about the Constraint Satisfaction Problem (CSP) algorithm are given in Section 3.2.

Having the type suggestions generated, the language engineer can pick the correct type from the suggested (if there is

more than one) and assign it to the node. The best-case scenario is to suggest a single type to the language engineer.

However, this is not always possible, as several candidate types may be applicable. In that case, having the least number of

alternative type suggestions is desirable.

Fig. 3. An overview of the proposed approach.

Table 1

Element properties (based on Table taken from [3]).

Extension For Description Example

Type Node, Edge The type of the element Lion, Doctor o Person (o denotes the extend

relationship)

Properties Node, Edge Descriptors and values for primitive attributes of

nodes/edges

String name¼ Jenny, Integer age¼25

Default Node, Edge The label of the node/edge name, label

Source role Edge Descriptor of the role of the source end of the edge source, sourceNode

Target role Edge Descriptor of the role of the target end of the edge target, targetNode

Role in source Edge The role of the edge in its source node patient 0..5, tamer 1

Role in target Edge The role of the edge in its target node carer n, employee n

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎4



A number of factors can affect the number of proposed types of an untyped node. Some of them depend on the metamodel,

such as the number of types (less is better), the multiplicity constraints of association ends (tighter is better) or the relationship

between inheritance hierarchies and associations (it works best when the classes participating in associations have few sub-

classes). Other factors depend on the specific model, such as the degree of untyped nodes and their adjacent nodes (more edges

is better) or the location of untyped nodes within the model (it works best when untyped nodes are not adjacent).

As described above, the approach relies on the assumption that the language engineers have acquired enough knowledge from

the example models to come up with a draft metamodel that describes the envisioned DSL. Thus, it is important to highlight that in

contrast with our approaches presented in [10,11], this work requires the existence of a tentative version of a metamodel.

3.2. Formalization of the CSP

In this section we describe how the type assignment problem is formalized as a Constraint Satisfaction Problem (CSP). A

CSP is characterized by three elements:

1. The set of variables involved in the problem.

2. The domain of each variable, i.e. the set of potential values it can take.

3. The constraints over the variables that define which value assignments are valid.

A solution to a CSP is an assignment of values to variables such that (a) each variable is given a value within its domain

and (b) all constraints are satisfied by the assigned values. Depending on the CSP, there may be no solution (unfeasible

problem), a single solution or more than one.

A CSP describes a problem declaratively, without considering how the solution will be computed. Constraint solvers that

compute solutions to CSPs typically operate using backtracking-based search: at each step, one variable is considered and a

legal value from its domain is selected, backtracking to previous variables if there are no feasible values available. This

generic search procedure can be fine-tuned by defining two heuristics: (a) how the next variable to be assigned should be

assigned next and (b) which value from its domain is selected next.

Furthermore, search can be made more efficient by using optimizations such as propagation (i.e. use partial assignments

to remove unproductive values from domains of unassigned variables) or backjumping (i.e. reconsider several decisions in

each backtrack). These features are provided in most state-of-the-art constraint solvers and, hence, these optimizations do

not need to be implemented manually in the definition of each CSP.

Considering these preliminaries, type assignment in the flexible modelling approaches described in previous sections can

be formalized as the following CSP, as described in Step 1 of Algorithm 1:

1. Variables: There is one variable per untyped node in the model, representing the type of that node (line 4).

2. Domain: Untyped objects may be assigned any non-abstract type in the metamodel. Thus, the domain of each variable is

the set of non-abstract types (line 6).

3. Constraints: The edges that connect nodes define some restrictions on the valid type assignments (lines 8–12):

(a) All edges must belong to an association defined in the metamodel (line 9), i.e. the types of source and target nodes must

be compatible with some association:

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5



(b) Edges must respect the multiplicity constraints of associations defined in the metamodel (line 12), i.e. the number of

edges corresponding to a given association must be between the lower and upper bound:

Algorithm 1. Computing feasible types.

3.3. Solving the CSP

A solution to this CSP is a type assignment that conforms to the metamodel. However, we are not interested in a single

type assignment, but rather the set of potential types for each object for which there is a valid type assignment. Therefore,

we will need to solve this CSP several times, once per each pair 〈variable; type〉. The existence of a solution to this CSP means

that the type is eligible for that variable. The step 2 of Algorithm 1 describes this procedure.

To avoid redundant computations, if a pair 〈variable; type〉 has already appeared in the solution to any of the previous

CSPs (line 23), then it can be skipped (line 19) as we already know that this type is eligible for that variable. Thus, con-

sidering a model with n untyped objects and a metamodel with m non-abstract types, the number of CSPs that need to be

solved in the worst-case can be calculated as follows. The total number of 〈variable; type〉 pairs is n �m. The solution to the

first CSP will yield one potential type assignment per variable, i.e. n pairs. Hence, Algorithm 1 will require solving at most

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎6



ðn �mÞ�nþ1 CSPs. The search space of each CSP has nm potential solutions, even though in practice the majority of CSPs can

be solved without exploring the entire search space.

This algorithm has been implemented in the ECLiPSe [13] Constraint Logic Programming System, which uses a prolog-

based syntax to define and solve CSPs. The finite domain (fd) library has been used as the underlying constraint solver.

Listing 1. An example file containing the prolog-based syntax automatically generated from the metamodel and example

model shown in Fig. 2.

Listing 1 shows a (partial) example of the generated file for the metamodel and the muddles presented in Fig. 2 con-

taining the prolog-based constraints. In lines 3–5 the relationships (both references and aggregations are treated the same

way) that appear in the metamodel are listed with the cardinalities. For technical reasons, the many (n) upper limit is set to

the value 500 but this could change to anything that it is thought to be a large number for each example. In lines 8–10 all the

classes (both abstract and concrete) are instantiated as objects in the problem, while in lines 13–15 concrete classes are

defined. In lines 17–19 the inheritance relationships between the classes are defined. This is all the information needed from

the metamodel. In lines 24–26, each node is assigned with a type using its distinctive identifier. If the type is unknown,

meaning that the node has been left untyped, then an “_” underscore is used, prompting the algorithm to assign any valid

type to this node. Finally, the links between the nodes in the muddle are defined in lines 29–31. The links are defined using

the unique ids of the nodes.

4. Experimental evaluation

This section presents the experiment run to evaluate the proposed approach. The following are the research questions

considered through the experiment:

� RQ1: Is there a reduction in the size of the set of candidate types when using the proposed approach? How large is that reduction?
� RQ2: Is there a reduction in the size of the set of candidate types when using the proposed approach if isolated nodes are

not taken into account? How large is that reduction?

As described in Section 1, when the proposed approach is not deployed the set that includes the candidate types for each untyped

node is the number of total concrete types available in themetamodel. The types included in this set will be interchangeably called as

“possible” or “candidate” types in this work as they represent the types that a node can take. For instance, in the Zoo example of Fig. 3

the number of candidate types for each untyped node is 5, which is the number of concrete types that appear in the metamodel. The

purpose of the proposed approach is to prune the size of this set of types by applying the constraints that the draft metamodel

includes. This way the approach helps language engineers to select the correct type from smaller sets. All the candidate types are

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7



“correct” in terms of not violating the metamodel but we remind the reader here that in our work the term “correct type” is defined

as the one that the drawn element actually represents (i.e. the type that the engineer had in mind when drawing the specific node).

Taking all the above into account, the control value for our experiment (i.e. the value that the results of our approach

compare with) is the total number of concrete types in the metamodel. In order to assess the performance of the proposed

approach and compare it with the control value we introduce the following metric:

AverageSavingsPercentagePerMuddle¼

Pn
i ¼ 1 1�

TST i

TCT

� �

n
� 100 ð1Þ

where n is the number of nodes that are left untyped in the example model, TST stands for the Total Suggested Types

returned by the CSP algorithm for the i-th node and TCT stands for the Total Concrete Types in the metamodel. In the Zoo

example of Fig. 3, this value is 73.3% as the individual savings values for nodes 4 and 7 are 0.8 (1 – (1/5)) and for node 6 is 0.6

(1– (2/5)). The greater the value, the better the performance of the approach as this is interpreted as the reduction in effort

required by the engineer to pick the correct type of each node. A value of 0 means that the algorithm offered no savings at

all, as the suggested types are equal to all the concrete types in the metamodel (i.e. the size of the set containing the

candidate types remained the same after applying the proposed approach).

The experiment, an overview of which is shown in Fig. 4, aims in answering the above research questions. The results of

running the experiment are presented in Section 5.

For the purpose of evaluationwe applied the proposed approach to a number of randomly generated models, each of which is

instance of one of the ten metamodels that were selected in this experiment. The metamodels are those used in the previous

work [10,11]. These metamodels represent the draft/intermediate metamodel that the language engineers came up with from

sets of muddle drawings. For each of the metamodels, 10 models were randomly generated using the Crepe approach proposed in

[14] (step ① in Fig. 4). These 100 randomly generated models are of varying size. The values of the attributes of the different

classes of each model were randomly picked from a pool of characters/integers, as they do not affect the performance of the

proposed approach. The fact that there is no muddles corpus available led us to the decision of using synthetic muddles based on

random generated models. Any threats to validity of that decision are discussed in Section 7.

Step ② consists of the process of transforming these models into muddles using a custom build model-to-text trans-

formation. At this point, the constructed muddles contain nodes that have their types assigned.

In order to simulate the scenario of having muddles with untyped nodes, a script parses the GraphML files and randomly

deletes types of nodes (steps and ). It is of interest to identify whether the proportion of untyped nodes affects the

performance (in terms of the ability to reduce the number of proposed types) of the approach. Thus, 7 different sampling

rates, from 30% to 90%, were selected. A 30% sampling rate means that 30% of the nodes had a type assigned to them, leaving

the rest 70% being the set of the nodes that are left untyped. The selected rates are the same as the ones used in [10,11]. In

order to control for sampling bias which can affect the results positively or negatively (e.g. the type of the nodes picked for a

simulated type deletion is those whose type can be easily predicted), the type deletion was performed 10 times for each

sampling rate for each muddle. At the end of this step 7000 different muddles were created (10 metamodels � 10 mod-

els¼100 � 7 sampling rates¼700 � 10 sampling repetitions¼7000). In addition, we considered the scenario where some

nodes are not only left untyped but are also left isolated (i.e. are not connected with any other node). Our approach cannot

currently infer the type of such orphan nodes: there is no type assigned to them and they have no relationship with any

other node on the diagram. In the future we plan to use other structural features for the inference of orphan nodes such as

number and type of attributes. For the second experiment (step ), these nodes were removed from the muddle before

commencing the prediction mechanism.

As discussed in Section 3, a file that contains the constraints associated with a model-metamodel pair is used by the

ECLiPSe [13] solver to identify the possible types for each untyped node. In step ④ the ECLiPSe file for each of the 7000

muddles (and the 7000 muddles with no orphan nodes) is automatically generated. These files are consumed by the ECLiPSe

Fig. 4. An overview of the experimentation process.

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎8



solver (step ⑤) and the results are stored in a text file. A single text file is generated for each muddle. The text file contains

the mapping between the id of each node and the set of all the suggested types (e.g. 1: A, B, C where 1 is the unique id of the

node and A, B, C are the possible types returned).

The performance of the approach is calculated by comparing the correct type of each node and the types that are

contained in the set of suggested nodes (step ). The correct type of each node is kept in the text file before commencing

the type deletion (step ) to facilitate the comparison. The measures that are used in this work to assess the performance of

the approach are discussed in the next section (Section 5) along with the results.

5. Results

Table 2 summarizes the corpus of metamodels and the generated models used for the experiment. More specifically, the

number of concrete types for each metamodel is given (column “#Types”). The minimum and maximum number of

instantiated classes for the 10 generated models of each metamodel are provided in columns “Min” and “Max” respectively,

followed by the average number of elements in these 10 models (column “Average #Elements in instances”), for both the

experiments with and without including the orphan nodes. As shown in the data, the smallest metamodel is the one used to

describe a university professor, consisting of 4 concrete types. The largest metamodel is that of describing Wordpress CMS

websites with 19 different metaclasses.

5.1. Quantitative findings

Table 3 presents the results of the average total savings for each of the 10 metamodels, for the 7 different sampling rates.

The results are averaged as for each metamodel there were 10 random models generated and for each sampling rate the

type deletion was performed 10 times to avoid the case of a lucky or an unlucky sampling. The first row for each metamodel

(entries that are not in italics) includes the results for the scenario where the orphan nodes were taken into account and

thus their results give answer to research question RQ1. For example, the highlighted value of 67.38 means that the average

savings percentage for 100 example models (10 models � 10 type deletion sessions for each) which have 60% of their types

known for the Use Case metamodel is 67.38%, if the orphan nodes are taken into account. As an answer to the research

question RQ2 the results for the “no orphans” scenario are also given in Table 3 typed in italics. Thus, for the “no orphans”

scenario the effort saving for the above example is 77.57% (highlighted in Table 3). Three metamodels are marked with

asterisks. These are the metamodels for which not all the 700 runs were finished due to large statespace. The reasons behind

that and more details are explained in Section 5.2.

Two conclusions can be extracted from the results shown in Table 3. Firstly, the savings percentage is not correlated to

the size of the metamodel (Orphans: ρPearson¼0.34, P¼0.33, No Orphans: ρPearson¼0.12, P¼0.71). There are large meta-

models (e.g. Wordpress, Cobol) where the scores are high while in others (e.g. BibTeX) the score is significantly lower. In the

same manner, there are small metamodels (e.g. Professor, Zoo) where the savings are high while in other small metamodels

(e.g. Chess) the results are lower. The same applies to the mid-sized metamodels (e.g. Ant Scripts, Use Case and Conference

vs. Bugzilla). Secondly, the savings are not affected by the sampling rate. That means that no matter the number of nodes

that were left untyped, the performance remains the same. This is an expected result as the CSP algorithm used is not based

on machine learning techniques, thus the amount of knowledge that is available (i.e. the numbed of known nodes) does not

affect its performance. This behaviour was identified in our previous work [10,11] where there was a significant

improvement in the prediction scores in bigger sampling rates.

As described in Section 3, one of the differences of this work with the previous is that the algorithm returns a set of

suggested types for each node rather than a prediction for the most probable one. The trade-off is that the correct type is

guaranteed to be in the list of the suggested types. In the “with orphans” experiment, there were about 155,000 nodes left

Table 2

Data summary table.

Model name #Types With orphans No orphans

Min Max Average Min Max Average

Professor 4 46 71 56.3 37 54 45.2

Chess 5 41 74 57.8 18 40 28.9

Zoo 5 24 76 35.8 22 63 31.4

Ant Scripts 6 40 79 62.2 38 69 53.9

Use Case 7 41 80 52.7 35 68 45.6

Conference 7 43 80 64.5 36 61 50.7

Bugzilla 7 41 80 59.6 22 55 36.4

Cobol 12 23 30 25.9 22 30 25.2

BibTeX 14 40 79 64.4 31 58 47.2

Wordpress 19 22 45 35.7 19 42 31.9

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9



untyped (about 109,000 for the “no orphans” scenario). In all these cases, the set of the candidate types included the correct

type verifying the previous argument. Related to that, it is of interest to assess how many types are returned as suggestions

for each of the untyped nodes. Fig. 5 presents a histogram to help explore this. For 38% of the untyped nodes in the “with

orphans” scenario (RQ1) there is exactly one type returned (for the “no orphans” scenario – RQ2 – this is 47%). This is very

important because for more than the one-third of the nodes this approach automatically predicted correctly the type of the

Table 3

Average saving results table.

Model Types Average total savings percentage for different sampling rates

30% 40% 50% 60% 70% 80% 90%

Professor 4 63.18 63.08 62.92 63.11 63.35 63.32 63.12

66.28 66.39 66.49 66.31 66.31 65.88 67.46

Chess 5 39.95 39.78 40.33 40.03 40.10 41.60 38.48

80.00 80.00 80.00 80.00 80.00 80.00 80.00

Zoo 5 69.05 68.38 68.90 68.54 69.25 68.75 69.59

73.06 73.18 73.14 72.99 73.67 73.52 73.88

Antn 6 60.57 62.29 61.90 63.08 62.54 62.61 61.97

70.91 71.32 71.77 71.95 72.35 72.95 72.00

Use Case 7 67.34 67.35 67.89 67.38 67.35 67.32 67.64

77.67 77.57 77.73 77.57 77.48 77.35 77.96

Conference 7 67.11 67.78 67.27 67.76 67.80 66.87 67.23

74.03 73.98 73.54 73.69 73.92 74.11 74.26

Bugzilla 7 19.67 18.98 19.89 20.19 19.67 19.21 18.93

31.82 32.46 32.67 31.22 31.74 30.19 31.10

Coboln 12 75.28 75.69 75.72 76.19 76.04 75.80 78.34

75.67 76.21 76.80 76.71 77.36 77.38 76.75

BibTeX 14 49.28 49.01 49.47 48.85 49.74 48.76 48.70

44.34 44.23 44.75 43.88 44.54 43.35 44.56

Wordpressn 19 79.12 80.18 80.76 82.07 81.90 80.23 81.83

88.05 89.93 90.36 90.85 91.17 91.18 91.45

Fig. 5. Histograms for the number of suggesting types for each node in the experiment that is left untyped.

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎10



node without the need of verification or extra help by the language engineer. Although in previous work 80% of the node

types were predicted correctly, there was no guarantee about the correctness of the prediction meaning that the language

engineer had to verify the prediction manually for each single node.

In addition, in the same histogram one can see that for 24% of the untyped nodes the language engineer has to select

between 2 types reducing the amount of effort needed to a minimum (for the “no orphans” scenario this value is also 24%).

5.2. Qualitative findings

The time needed for the algorithm to predict the possible types for all the missing nodes in an example model takes from

a few milliseconds up to a few seconds. A few experiments for three of the metamodels were not completed in reasonable

time. Table 4 presents the number of experiments that were not finished and thus not included in the results. In all the

6 cases, the unfinished experiments are mostly part of the 30% or 40% sampling rate simulations. Any threats to validity are

discussed in Section 5.3.

In the following, we discuss the causes of these timeouts. The execution time of Algorithm 1 depends on the size of the

model and the associations and multiplicity constraints. Regarding model size, considering a model with n untyped nodes

and a metamodel with m concrete types, the number of potential type assignments grows exponentially, in the order of nm.

Thus, the number of untyped nodes and types has an impact on the efficiency of the solver. This is why the majority of

experiments with a timeout are those with the highest rate of untyped objects (e.g. scenarios like the 30% or 40%). Fur-

thermore, the fact that the number of CSPs that needs to be solved in Algorithm 1 grows with the size of the (untyped

elements in the) model and (concrete types in the) metamodel makes the impact of the problem size even more significant.

Nevertheless, there is another factor which plays a larger role in the efficiency of the solver: the number and restric-

tiveness of the constraints. This happens because the solver takes into account the constraints when searching for a solution,

using them to prune the search space. Hence, in CSPs where constraints are very tight (e.g. tight bounds for multiplicities),

the solver will be able to discard large sections of the search space without needing to explore them. Conversely, in CSPs

with few constraints or where constraints are loose, most solutions will satisfy the CSP and the solver will again complete

the search quickly.

However, there is a certain threshold between those two extremes where solving the CSP becomes more complex and

requires exponential runtimes. Within this threshold, constraints discard many solutions, forcing the solver to evaluate

many candidates but at the same time pruning is not effective enough to avoid exploring most of the state space. This

phenomenon is well known and has been observed empirically in random CSPs, i.e. CSPs with random constraints. For

restricted forms of random CSPs [15–17], it is possible to characterize this threshold in order to detect “hard” CSPs a priori.

Still, these results have no generalization to arbitrary CSPs so there is no available method to predict the execution time of

the solver for a specific CSP.

5.3. Threats to validity

As discussed in Section 5.1, the effort saving results are not affected by the number of missing types. In addition, the

number of the missing experiments is not of a significant amount for 5 out of 6 of cases where the experiments did not

finish within reasonable time (with the exception of the “with orphans” scenario for the Ant Scripts metamodel). Thus, we

do not have reasons to believe that the experiments that did not completely affect the validity of our experimental

evaluation.

In the cases where a class is extended by one or more other classes we need to accumulate the existence of this class’

children in the drawing to check if its upper and lower cardinalities are fulfilled. For instance, in the example of Fig. 3, each

element of type “Doctor” must treat no more than 5 elements of type “Animal”. The constraint programming algorithm

aggregates the instances of “Lion” and “Tiger” that each “Doctor” is connected with to validate if the constraint for the

“Animal” class is fulfilled. However, the way the example models are represented in our algorithm does not make it feasible

to include a corner case where a class/type is connected with the parent class and in parallel it is also connected with one of

its children with a reference that has fixed cardinalities.

An example is shown in Fig. 6. This corner case is found in two types in total in our experiments (one type in the Cobol

metamodel and one type in the Wordpress metamodel). For this corner case, the Muddle-to-Text generator that produces

the prolog constraints and commands raises the fixed multiplicity constraint for the class-to-parent reference to many (n).

This works against the effectiveness of the proposed approach as suggested types that normally would be rejected due to

Table 4

Number of unfinished experiments.

Metamodel With orphans No orphans

Ant scripts 86 13

Cobol 3 2

Wordpress 44 3

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 11



this multiplicity constraint are included in the list of suggested types decreasing the savings effort figures presented in the

results of the experiment.

6. Related work

Various researchers advocate the need for bottom-up or example-driven metamodelling. In [18], the authors argue over

the usefulness of bottom-up metamodelling and they identify a set of challenges in using such an approach. Their

hypothesis is that bottom-up metamodelling can potentially bridge the symmetry of ignorance gap [19] in DSL development,

i.e. the fact that domain experts do not usually possess language development expertise, and language engineers do not

have domain knowledge. Similarly, in [6] the authors advocate the use of explicit model examples for improving the

communication between language engineers and domain experts during the DSL development process.

One of the cornerstones of bottom-up metamodelling is metamodel inference. A number of tool-supported approaches,

which provide this functionality, have been proposed in the MDE literature. In [7,1], an interactive approach for defining

metamodels is proposed. Its main goal is to enable the collaboration of domain experts with language engineers during the

DSML development process. This approach is supported by a collaborative software tool, which performs metamodel

induction from model fragments. A domain expert can specify such fragments either in a sketching tool such as Dia4 or in a

compact textual notation. Model fragments are untyped and they consist of nodes and relations. Once a fragment is defined,

the language engineer can annotate it with additional information in order to enhance its semantics. Finally, the enhanced

fragments can be consumed by the tool in order to infer the metamodel.

Similarly, in [20] the tool-supported process MLCBD is proposed. This process consists of three phases. In the first phase

domain experts capture domain knowledge by defining concrete model examples. To do so they use simple shapes and

connectors, which are then annotated with domain-specific information. This information will then guide the metamodel

inference, which takes place in phase three of the process.

While in the previous works predefined shapes are used for expressing model fragments, in [8] the author proposes a

tool-supported process for the definition of DSLs, which supports the inference of metamodels from examples expressed in

free-form shapes. Aligned with this work is FlexiSketch [21], which is a tool mimicking a white board. It allows users to draw

free-form shapes and connections between them. Type annotations can be assigned to the various shapes and then the tool

can infer the metamodel. A sketch recognition algorithm matches new free-form shapes without typing annotations to

existing shapes, and assigns typing information accordingly.

Clafer [22] is a modelling language with first class support for feature modelling. In [23], the authors use Clafer for

example-driven modelling. They argue that model examples can improve domain comprehension among various stake-

holders. In their approach incomplete models are expressed in Clafer and then an inference engine uses a metamodel and

the initial set of examples in order to derive a set of complete model. To achieve this, the approach takes advantage of

Clafer's support for variability modelling. Compared to this work, our approach is more generic, since it does not depend on

a dedicated modelling environment.

MARS [24] is another system, which supports metamodel inference. However, the objective of MARS is not to support

example-driven metamodelling, but to enable metamodel inference from a set of models after migrating or losing their

metamodel. The system relies on a transformation tool, which converts the models from XML to a domain specific language,

and on an inference engine, which uses grammar inference techniques on the new representation.

The approaches presented so far support metamodel inference for graphical DSLs. On the other hand, [25] proposes an

approach for bottom-up development of textual DSLs. More particularly, their tool can infer a grammar from a set of textual

Fig. 6. Example of a corner case scenario.

4 http://projects.gnome.org/dia/.

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎12



examples. These examples are snippets of free text entered in a dedicated text editor. The grammar inference is based on

regular expressions and lexical analysis.

Although the overall goal of the aforementioned works is similar to ours (i.e. to support collaboration between domain

experts and language engineers during the early stages of language engineering), their focus is quite different. In these

approaches it is assumed that model examples are correct and complete before the metamodel inference phase. However, in

our work we assume that such model examples can be incomplete, since their completeness is not enforced by a modelling

tool. Moreover, we assume that the definition of concrete examples and the metamodel inference is interleaved and one

action informs the other. Therefore, in our work we use a version of a derived metamodel in order to improve the quality of

a set of model examples.

The approach presented in this work tries to address the same issue (i.e. the problem of type inference in flexible

modelling) as the approaches proposed in some of our previous work [10,11]. What differentiates our current approach is

that it returns a set of possible types for an untyped node, and this set always contains the correct type. The approaches

proposed in the past always returns a single type, and the correctness of this type is not guaranteed. This guarantee does not

come for free though. For the proposed approach to be effective, the existence of a draft metamodel is required. Finally, the

approach proposed in [11] is based on the concrete syntax of the elements appearing in the example models: following

drawing conventions improves the inference results. However, domain experts and language engineers may not be inter-

ested or ready to express the concrete syntax of the envisioned DSL, especially at the early stages of the language devel-

opment. The approach proposed here does not take into account the concrete syntax of the language, thus allowing

engineers to focus on the abstract syntax.

Bottom-up metamodelling is only one aspect of the collaboration between domain-experts and language engineers

during the development of DSLs. In [26] the Collaboro approach is proposed. Collaboro is supported by a dedicated DSL,

which can model collaborations among stakeholders. More particularly, it can model language change proposals, solution

proposals, comments, and rational. Therefore, this approach provides the necessary infrastructure for managing the

incremental development process of a DSL.

Examples are used in MDE not only for inferring metamodels but also for other MDE-related activities. In [27], meta-

model well-formedness rules are automatically inferred from sets of valid and invalid models. The rule inference is based on

genetic programming and the derived rules are in the form of OCL invariants. Moreover, several Model Transformation By-

Example (MTBE) approaches (e.g. [28–31]) have been proposed for automatically deriving model transformation rules.

These approaches rely on user defined examples of input and output models and the inference is based on various tech-

niques such as metaheuristics, model comparison, and induction. A literature survey, which summarizes the research in this

area, is [32].

Another line of related work concerns partial modelling. In the literature there are different definitions of model par-

tiality. In [33], a partial model is a systemmodel, in which uncertainty about an aspect of the system is captured explicitly. In

this context, “uncertainty” means “multiple possibilities”; for example a model element may be present. In contrast to [33],

in our work model partiality means that a model fragment does not need to fully conform to a metamodel. Certain

information such as element types can be missing, and constraints imposed by the metamodel such as multiplicities can be

ignored. Our notion of model partiality is close to the one of [34,35].

More particularly, in [34] the authors propose a diagrammatic, declarative approach to partial model completion based

on category theory. In this approach rewriting of partial models is used to support both addition and deletion of models

elements. Similarly, in [35] the authors use Constraint Logic Programming (CLP) to assign appropriate values for every

missing property in the partial model so that it satisfies the structural requirements imposed by the meta-model. The goal of

these two approaches is to enable model completion of partial models in the same way that source code is completed

automatically in the editor of an integrated development environment (IDE). On the other hand, in our work we focus on

providing support for the early stages of language engineering in a bottom-up metamodelling context.

Apart from model completion, CLP is applied in other MDE scenarios. In [36], the EMFtoCSP tool is proposed, which is

used for the verification of EMF [37] models annotated with OCL constraints. This tool checks for the following constraints:

strong satisfiability, weak satisfiability, lack of constraint subsumptions and lack of constraint redundancies. Verification is

performed by translating the EMF model and its accompanying constraints into a constraint satisfaction problem, which is

then solved by a constraint solver. In a similar manner the UMLtoCSP [38] tool uses CLP for the formal verification of UML

class diagrams.

7. Conclusions and future work

In this paper a novel approach to tackle the problem of type omissions in the emerging domain of flexible MDE is

proposed. More specifically, in our approach partial model examples and their accompanying metamodel are translated into

a set of constraints, and then the missing typing information are derived by solving the constraint satisfaction problem. The

proposed approach was evaluated by running an experiment on a corpus of 14,000 randomly generated example models.

We defined a metric that measures the space of possible types for each node, showing significant improvement in the effort

needed to fill the types of the missing nodes.

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 13



At this point our approach returns a set of equally probable type suggestions. In the future we would like to reduce even

further the size of this set, by proposing the most probable types. This can be done in a number of ways. Firstly, by taking

into account the names of different elements, such as the name of the attributes of the nodes in the example model and the

metamodel. In the future, we plan to include this information to help in the direction of sorting the suggested types by using

string distance/similarity metrics to identify possible matches or synonyms. Secondly, the work carried out in [10,11] could

also be combined with this work to improve the type suggestion as the type returned from those approaches can be placed

at the top of the list of the suggested types. In addition, the Flexisketch's type inference approach proposed in [5] and is

based on the graphical similarity between the nodes can be also used to further reduce or sort the set of candidate types

produced as a result of our proposed approach. Moreover, the metaBUP tool presented in [1] could be combined with our

proposed approach for the semi-automatic inference of the draft metamodel.

Finally, a long term goal is the application of the proposed approach on real example models which are a result of a

flexible MDE approach applied on a complete project. This way we will be able to evaluate the proposed approach not only

on a single increment, but also in more than one iterations that normally take place in flexible MDE approaches.

Acknowledgements

This work was carried out in cooperation with Digital Lightspeed Solutions Ltd, and was supported by the EPSRC through

the LSCITS initiative and part supported by the EU, through the MONDO FP7 STREP project (#611125). Special thanks to Mr.

Carlo Capelli and Mr. Sotirios Banatas for the help provided during the initial phase of the Prolog implementation.

References

[1] López-Fernández JJ, Cuadrado JS, Guerra E, de Lara J. Example-driven meta-model development. Softw Syst Model 2013:1–25.
[2] Ossher H, Bellamy R, Simmonds I, Amid D, Anaby-Tavor A, Callery M, et al. Flexible modeling tools for pre-requirements analysis: conceptual

architecture and research challenges. ACM Sigplan Not 2010;45(10):848–64.
[3] Kolovos DS, Matragkas N, Rodríguez HH, Paige RF. Programmatic muddle management. In: XM 2013—extreme modeling workshop.
[4] Gabrysiak G, Giese H, Lüders A, Seibel A. How can metamodels be used flexibly. In: Proceedings of ICSE 2011 workshop on flexible modeling tools, vol.

22, Waikiki/Honolulu, 2011.
[5] Wüest D, Seyff N, Glinz M. Flexisketch: a mobile sketching tool for software modeling. In: Mobile computing, applications, and services. Seattle,

Washington, USA: Springer; 2013. p. 225–44.
[6] Bak K, Zayan D, Czarnecki K, Antkiewicz M, Diskin Z, Wasowski A, et al. Example-driven modeling: model ¼ abstractions þ examples. In: Proceedings

of the 2013 international conference on software engineering. San Fransisco, California, USA: IEEE Press; 2013. p. 1273–6.
[7] Cuadrado JS, de Lara J, Guerra E. Bottom-up meta-modelling: an interactive approach. In: MODELS'12: ACM/IEEE 15th international conference on

model driven engineering languages and systems, Lecture notes in computer science, vol. 7590. Innsbruck, Austria: Springer; 2012. p. 3–19.
[8] Kuhrmann M. User assistance during domain-specific language design. In: FlexiTools workshop; 2011.
[9] Paige RF, Kolovos DS, Rose LM, Drivalos N, Polack FA. The design of a conceptual framework and technical infrastructure for model management

language engineering. In: 14th IEEE international conference on engineering of complex computer systems. Potsdam, Germany: IEEE; 2009. p. 162–71.
[10] Zolotas A, Matragkas N, Devlin S, Kolovos D, Paige R. Type inference in flexible model-driven engineering. In: Taentzer G, Bordeleau F. (Eds.), Modelling

foundations and applications, Lecture Notes in Computer Science, vol. 9153, L' Aquila, Italy: Springer International Publishing, 2015, p. 75–91.
[11] Zolotas A, Matragkas N, Devlin S, Kolovos DS, Paige RF. Type inference using concrete syntax properties in flexible model-driven engineering. In: 1st

Flexible model-driven engineering workshop.
[12] Reiter R. On closed world data bases. In: Logic and data bases. Springer; 1978. p. 55–76.
[13] Apt KR, Wallace M. Constraint logic programming using ECLiPSe. New York, NY, USA: Cambridge University Press; 2006.
[14] Williams JR, Paige RF, Kolovos DS, Polack FA. Search-based model driven engineering, Technical report. YCS-2012-475, Department of Computer

Science, University of York; 2012.
[15] Prosser P. An empirical study of phase transitions in binary constraint satisfaction problems. Artif Intell 1996:81–109.
[16] Mitchell DG. Resolution complexity of random constraints. In: Proceedings of the 8th international conference on principles and practice of constraint

programming (CP’2002). Berlin, Heidelberg: Springer; 2002. p. 295–310.
[17] Gao Y, Culberson J. Resolution complexity of random constraint satisfaction problems: another half of the story. Discrete Appl Math 2005;153(13):

124–40.
[18] Cho H, Sun Y, Gray J, White J. Key challenges for modeling language creation by demonstration. In: 2011 icse workshop on flexible modeling tools,

Honolulu HI; 2011.
[19] Dillenbourg P. What do you mean by collaborative learning. In: Collaborative-learning: cognitive and computational approaches, vol. 1; 1999. p. 1–15.
[20] Cho H, Gray J, Syriani E. Creating visual domain-specific modeling languages from end-user demonstration. In: 2012 ICSE workshop on modeling in

software engineering (MISE). IEEE; 2012. p. 22–8.
[21] Wuest D, Seyff N, Glinz M. Semi-automatic generation of metamodels from model sketches. In: 2013 IEEE/ACM 28th international conference on

automated software engineering (ASE). IEEE; 2013. p. 664–9.
[22] Bak K, Diskin Z, Antkiewicz M, Czarnecki K, Wasowski A. Clafer: unifying class and feature modeling. Softw. Syst. Model. 2015:1–35.
[23] Antkiewicz M, Bak K, Czarnecki K, Diskin Z, Zayan D, Wasowski A. Example-driven modeling using clafer. In: MDEBE@MoDELS, vol. 1104, CEUR-WS.

org; 2013. p. 32–41.
[24] Javed F, Mernik M, Gray J, Bryant BR. MARS: a metamodel recovery system using grammar inference. Inf. Softw. Technol. 2008;50(9):948–68.
[25] Roth B, Jahn M, Jablonski S. On the way of bottom-up designing textual domain-specific modelling languages. In: Proceedings of the ACM workshop

on domain-specific modeling; 2013. p. 51–6.
[26] Izquierdo JLC, Cabot J. Enabling the collaborative definition of DSMLs. In: Advanced information systems engineering. Valencia, Spain: Springer; 2013.

p. 272–87.
[27] Faunes M, Cadavid J, Baudry B, Sahraoui H, Combemale B. Automatically searching for metamodel well-formedness rules in examples and counter-

examples. In: Model-driven engineering languages and systems. Springer; 2013. p. 187–202.
[28] Kessentini M, Sahraoui H, Boukadoum M, Omar OB. Search-based model transformation by example. Softw. Syst. Model. 2012;11(2):209–26.
[29] Strommer M, Wimmer M. A framework for model transformation by-example: concepts and tool support. In: Objects, components, models and

patterns. Zurich, Switzerland: Springer; 2008. p. 372–91.

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎14



[30] Langer P, Wimmer M, Kappel G. Model-to-model transformations by demonstration. In: Theory and practice of model transformations. Malaga, Spain:
Springer; 2010. p. 153–67.

[31] Varró D, Balogh Z. Automating model transformation by example using inductive logic programming. In: Proceedings of the 2007 ACM symposium on
applied computing. Seoul, Republic of Korea: ACM; 2007. p. 978–84.

[32] Kappel G, Langer P, Retschitzegger W, Schwinger W, Wimmer M. Model transformation by-example: a survey of the first wave. In: Conceptual
modelling and its theoretical foundations. Springer; 2012. p. 197–215.

[33] Famelis M. Salay R. Chechik M. Partial models: towards modeling and reasoning with uncertainty. In: 34th International Conference on Software
Engineering (ICSE). Zürich, Switzerland: IEEE; 2012. p. 573–83.

[34] Rabbi F, Lamo Y, Yu IC, Kristensen LM, Michael L. A diagrammatic approach to model completion. In: 4th Workshop on the analysis of model
transformations (AMT)@ MODELS, vol. 15; 2015.

[35] Sen S, Baudry B, Precup D. Partial model completion in model driven engineering using constraint logic programming. In: International conference on
the applications of declarative programming, Citeseer; 2007.

[36] González CA, Buettner F, Clarisó R, Cabot J. EMF to CSP: a tool for the lightweight verification of EMF models. In: Proceedings of the first international
workshop on formal methods in software engineering: rigorous and agile approaches. Zürich, Switzerland: IEEE Press; 2012. p. 44–50.

[37] Steinberg D, Budinsky F, Merks E, Paternostro M. EMF: eclipse modeling framework. Pearson Education; 2008.
[38] Cabot J, Clarisó R, Riera D. On the verification of UML/OCL class diagrams using constraint programming. J Syst Softw 2014;93:

1–23, http://dx.doi.org/10.1016/j.jss.2014.03.023.

Please cite this article as: Zolotas A, et al. Constraint programming for type inference in flexible model-
driven engineering. Computer Languages, Systems & Structures (2016), http://dx.doi.org/10.1016/j.cl.2016.12.002i

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 15


	Constraint programming for type inference in flexible model-driven engineering
	Introduction
	Background
	Proposed type inference approach
	Overview of the approach
	Formalization of the CSP
	Solving the CSP

	Experimental evaluation
	Results
	Quantitative findings
	Qualitative findings
	Threats to validity

	Related work
	Conclusions and future work
	Acknowledgements
	References


