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1. Introduction  

The use of quantum cascade lasers (QCLs) for laser feedback interferometry (LFI) has received significant attention 
since it enables a wide range of sensing applications without requiring a separate detector, and hence simplifies 
experimental apparatus [1]. LFA (based on the self-mixing effect) refers to the partial reinjection of the radiation 
emitted from a laser after reflection from a target; the injected radiation field then interacts with the intra-cavity field 
causing measurable variations of the QCL terminal voltage.  

The theory of LFI with conventional laser sources is well studied and explained by the Lang–Kobayashi 
model [2, 3]. However, while this enables the dynamic state populations and light interaction to be modelled, a linear 
relationship between the change in cavity light power, ∆P, and terminal voltage variation is commonly assumed, i.e. 
VSM ן ∆P [4, 5]. This is not strictly applicable to QCL structures since carrier transport is dominated by the 
mechanisms of electron subband alignment, intersubband scattering and photon driven transport between subbands 
with energy separations that change with applied bias (terminal voltage). We present experimental results of a QCL 
which departs significantly from this assumed linear behavior. We observe strong enhancement of the self-mixing 
signal in regions where the local gradient of the current-voltage (I–V) curve increases. 

We explain the origin of this signal using an extended density matrix (DM) approach [6] which accounts for 
coherent transport and interaction of the optical light field with the active region. The model is used to calculate the 
I–V characteristics of a bound-to-continuum (BTC) terahertz (THz) QCL and predict the effect of light variation on 
terminal voltage at a fixed drive current. This approach is shown to predict the experimental signal with good 
agreement. 

 

2.  Experimental and theoretical method 
 
An experimental LFI system was configured, in which a 2.9 THz QCL was driven using a dc current source. The 
radiation was collimated using an off-axis paraboloid and reflected back along the same optical path into the QCL 
cavity using a planar mirror. The resulting interference between the intra-cavity and reflected THz fields gave rise to 
changes in the photon and electron density within the laser cavity, and this was observed as a self-mixing (SM) 
perturbation, VSM, to the terminal voltage. The phase of the reflected field was adjusted by oscillating the path length 
between the QCL and the target, hence generating a periodic SM signal.  

In our QCL electron transport model, the applied electric field (corresponding to voltage) and cavity loss are inputs, 
while current is a calculated output. To account for this an inverse interpolation of the data was performed to determine 
the equivalent applied field across the device for each current and cavity loss value.  

The effect of external optical feedback was interpreted through a cavity loss change (∆L) ansatz. Calculating the 
change in loss while accounting for changing emission frequency, mode formation and dynamic effects is beyond the 
scope of the present work where the origin of terminal voltage is of interest. The magnitude of the SM signal, VSM, at 
each current (when the laser is on) is calculated as 

             VSM(I) = |V (I,LFR) − V (I,LFR + ∆L)|    (1) 

where LFR is the free-running loss found to be 16 cm-1 by fitting the threshold current of the DM model with experiment. 
Two ∆L values are used: one which approximates a 5% reinjection of optical light field injected to the cavity  
(-0.3 cm-1) and a value used to fit with the experimental signal (-1.4 cm-1). The measured VSM represents the peak 
amplitude observed during the oscillating target sweep with a constant driving current [4].  



3.  Results 
 

The comparison of calculated and experimental peak self-mixing signal is shown in Fig. 1(a). Theoretical results using 
a loss change of -1.4 cm-1 shows best agreement with experiment over a wide range of current densities. At 257 A/cm2 
the predicted SM signal increases sharply to 0.58 V however the experimental value maximum is 0.16 V. We attribute 
this to the laser reaching an early current saturation and negative differential resistance (NDR) region, causing 
oscillation of the applied bias field and the laser turning off. Before this occurs, the differential resistance of the device 
increases, and voltage must vary over a larger range to maintain the drive current as stimulated emission current varies, 
leading to a larger self-mixing voltage. An expression for this phenomenon (referred to as a “hybrid” approach) is ୗܸ୑ሺܫሻ ൌ ቀୢ௏ూ౎ୢூ ሺܫሻ ୢூୢ௅  ୢ௅ୢ௉ቁ οܲ                                                                       (2) 

where ୢ
௏ಷೃୢூ  is the differential resistance of the free-running QCL. The terms dI/dL and dP/dL are the response of 

current and optical power to changing cavity loss, and are extracted from the DM model output. It is found that best 
agreement is achieved with a loss change of 0.5 cm-1 as shown in Fig. 1(b). 

 
Fig. 1. (a) Comparison of experimental and theoretical peak self-mixing signal using Eq. 1. (b) Comparison of experimental and hybrid approach 
using experimental I–V curve as in Eq. 2. This uses values of dI/dL=-1.5 A/cm and dP/dL=-0.5 mW·cm extracted from the DM model output.  

4.  Conclusion 

We have presented the results of a DM model applied to a BTC QCL structure. Its inclusion of light interaction with 
the cavity allows the current response of the QCL to be calculated and therefore the effect of changing loss to be 
investigated. LFI is a promising application of QCLs since it allows the QCL to be used as both a source and detector. 
By applying the model to this application an explanation for the origin of terminal voltage variations is presented for 
QCLs. We propose that the bias voltage varies to maintain the constant drive current while stimulated emission current 
changes with cavity loss. By combining experimental I–V data of a QCL with DM output parameters excellent 
agreement is obtained for the magnitude of peak self-mixing signal and the QCL drive current at which it occurs. This 
model could be used to design and evaluate QCLs tailored to have large sensitivities at desired wavelengths.  
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