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The terahertz (THz) gap is being rapidly filled by a variety of new THz technologies, foremost of which is the 

quantum cascade laser (QCL). Modelling is a vital component in the development of new THz QCL applications, 

with modelling efforts tending to be technology (rather than application) centric. As such, the focus is on specific 

aspects of QCL operation such as laser dynamics, heat transfer and dissipation, and emission frequency control in 

order to optimize the devices themselves. To advance THz QCL applications, however, modelling requires an 

approach that considers aspects of device behaviour that are important from an application standpoint. Our work 

aims to demonstrate how we can achieve this, by modelling a real 2.59 THz bound-to-continuum QCL under pulsed 

operation and optical feedback. The foundation of our model is an accurate large-signal representation of the free-

running QCL capable of predicting optical output power at arbitrary lattice temperature and terminal voltage [1]. In 

addition to the free-running QCL, our complete model includes the effects of self-heating thermal transients due to 

pulsed operation, and optical feedback, providing a realistic tool for predicting THz bound-to-continuum QCL 

behaviour in future applications involving pulsed QCL operation. 

 

Frequency modulated QCLs can be effectively used in interferometric applications for imaging and materials 

analysis [2,3].  To date we have extensively used adiabatic modulation in our interferometric work [2–5]. Adiabatic 

modulation is achieved by sweeping or switching the laser's drive current – change in optical cavity refractive index 

as a result of changing carrier density then alters the laser's emission frequency.  The aim of this work is to 

demonstrate, using our QCL model with optical feedback, that thermal modulation (emission frequency change) is 

an alternative way for creating the interferometric signal.  Figure 1 illustrates the self-mixing [6] behaviour of our 

exemplar 2.59 THz bound-to-continuum QCL in an interferometric application employing adiabatic modulation [3]. 

In contrast, thermal modulation relies on change in optical cavity length and refractive index with temperature to 

alter the laser's emission frequency. The simplest method of invoking this mechanism is with short, low duty cycle 

rectangular (constant current) drive pulses. Each pulse both turns the laser on and, via self-heating, induces a 

thermal transient that sweeps the laser's emission frequency sufficiently for interferometric application.  

 

To illustrate the potential for pulsed operation of laser feedback interferometers, we used the model to simulate 

optical output power for an external cavity length L = 1.42 m, target reflectivity of 0.7, and re-injection loss factor of 

0.01, giving an Acket's characteristic parameter C = 2.41.  The drive current pulse used is shown in Fig. 2 (a) and 

the self-mixing response under the given conditions in Fig. 2 (b). With appropriate signal processing [7], such self-

mixing fringes captured in the laboratory can yield a wealth of information about the target material [3, 8]. A 

noteworthy feature of Fig. 2 (b) is the uneven spacing of self-mixing fringes due to the active region's approximately 

exponential thermal response. In comparison, the adiabatic fringes seen in Fig. 1 are close to equally spaced. We are 

currently working on an experimental setup for interferometric measurement of real target properties using thermal 

modulation via low duty cycle pulsing. 

  



                       

 Figure 1. Self-mixing response to adiabatic modulation. Part 

(a) shows drive current to the laser and part (b) the 

laser terminal voltage with and without optical 

feedback present. Laser terminal voltage and optical 

output power due to self-mixing are proportional 

under small signal conditions, making part (b) 

comparable with Fig. 2(b). 

Figure 2. Self-mixing response to thermal modulation. Part 

(a) shows drive current to the laser and part (b) the 

optical output power with and without feedback 

present. 
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