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Abstract

How does the cortex combine information from multiple sources? We tested several computational models against data

from steady-state electroencephalography (EEG) experiments in humans, using periodic visual stimuli combined across

either retinal location or eye-of-presentation. A model in which signals are raised to an exponent before being summed in

both the numerator and the denominator of a gain control nonlinearity gave the best account of the data. This model also

predicted the pattern of responses in a range of additional conditions accurately and with no free parameters, as well as

predicting responses at harmonic and intermodulation frequencies between 1 and 30Hz. We speculate that this model

implements the optimal algorithm for combining multiple noisy inputs, in which responses are proportional to the

weighted sum of both inputs. This suggests a novel purpose for cortical gain control: implementing optimal signal

combination via mutual inhibition, perhaps explaining its ubiquity as a neural computation.

Key words: gain control, Kalman filter, signal combination, visual cortex

Introduction

Neuroscience lacks a generic system-level explanation of how

information is combined in the brain. In the visual system, the

early stages of processing are selective for features such as

orientation, spatial frequency, and retinal location (Hubel and

Wiesel 1959; Blakemore and Campbell 1969; Tootell et al. 1988).

Yet, we have little understanding of the subsequent stages of

cortical processing required to represent the textures, surfaces,

and objects with which organisms must interact (Peirce 2015).

A first step in addressing this problem is to identify general

algorithms that describe how simple visual features are com-

bined into a perceptual whole.

A desirable algorithm would describe signal combination

within a range of different cues. For example, the early visual

system must pool information across eye-of-origin to provide

binocular single vision (Meese et al. 2006; Moradi and Heeger

2009), across retinal location to represent spatially extensive

textures (Kay et al. 2013a), across spatial scale to represent

edges (Georgeson et al. 2007), and across orientation to

represent curvature (Gheorghiu and Kingdom 2008). Extra-

striate areas appear to respond preferentially to textures con-

taining combinations of such features (Freeman et al. 2013).

Yet, despite the ubiquity of pooling at all stages of the visual

hierarchy, explanations have typically been domain specific

and are often inconsistent across neurophysiological and psy-

chophysical approaches. A case in point is combination over

area, which was long assumed to be nonlinear and physio-

logical at a neural level (Derrington and Lennie 1984), but linear

and probabilistic at a psychophysical level (Robson and

Graham 1981). An efficient system should use the same process

to combine information within each individual dimension, and

this should generalize across different measurement techni-

ques. But the form that such a general-purpose signal combin-

ation algorithm might take is not firmly established.

In this study, we first develop a family of models of signal

combination. We then report the results of two experiments

designed to test the predictions of these models directly for sig-

nal combination across both spatial (retinal) location and

© The Author 2016. Published by Oxford University Press.
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eye-of-presentation. We measured steady-state visual evoked

potentials from cortex using electroencephalography (EEG) in

normal human observers to provide a direct assay of neural

population responses to a range of inputs (Busse et al. 2009; Tsai

et al. 2012). The stimuli were designed to segregate across two

dimensions of interest (space or eye), as shown in Figure 1a–d.

We compared the pattern of contrast response functions elicited

by the flickering stimuli with the model predictions. Only one

model was able to predict the detailed form of the data. To verify

its generality, we then tested the predictions of this successful

model in several further conditions, and show that it is able to

predict the harmonic and intermodulation responses across the

entire frequency spectrum up to 30Hz.

Model Development

We first derive a family of models of signal combination from

basic principles. In the psychophysics literature, it is typical to

assume that physical properties of a stimulus (i.e. contrast) are

transduced into neural responses (perhaps involving nonlinea-

rities), which are then combined somehow to produce a deci-

sion variable. We take this approach here, so it is the neural

response to a stimulus that is of interest, which is assumed to

relate in some straightforward (presumably monotonic) way to

its physical properties. Consider two inputs (termed A and B)

that the system wishes to combine (these could be signals from

different eyes, or from adjacent locations in space, or across

some arbitrary feature space, and are assumed to be monoton-

ically related to the stimulus contrast of each input). The sim-

plest combination rule is summation of the neural responses to

the two stimuli that are linear transforms of their contrasts

(resp = A + B, where resp is the overall neural response that

might be measured using techniques such as magnetic reson-

ance imaging [MRI] and EEG). Under this rule, the response to

both inputs together is twice the response to either input alone

(compare solid and dashed functions in Fig. 2a). A similar pat-

tern is observed for energy summation (not shown), in which

the component neural responses are square-law transforms of

the stimulus contrasts (Adelson and Bergen 1985). The squaring

(or any other pointwise) nonlinearity alters the steepness of the

function relating input contrast to output, but does not affect

the ordering of the functions.

Are these simple combination rules the ones used by the

brain? For the domain of early contrast vision, this seems

unlikely. Even in the case where the variances of the two sig-

nals are equal (as is typically assumed within a modality), it is

well established that cortical responses follow a saturating

transducer nonlinearity involving contrast gain control from

nearby units (Carandini and Heeger 1994, 2012). This is mod-

eled in both single-cell neurophysiology (Heeger 1992) and

human psychophysics (Legge and Foley 1980) using a hyper-

bolic ratio function: resp = Cp/(Zq
+ Cq). A nonlinearity of this

type will distort the summation properties of the system, yet

the equation contains only a single excitatory input, the con-

trast (C). In principle, there are five ways in which it could be

extended to accommodate multiple signals, as we now outline.

Most straightforwardly, the system might sum the outputs

of two individual independent transducer functions (one for

each channel). This produces the pattern of responses shown

in Figure 2b for canonical parameter values (p = 2.4, q = 2, and

Z = 4). The response to two inputs (A + B, dashed curve) is exactly

twice the response to a single input (A, solid curve). Thus, com-

pared with the linear model in Figure 2a, the only effect of the

transducer nonlinearity is to change the shape of the functions

to be less bowed on the logarithmic contrast abscissa.

Alternatively, the responses to the two inputs could be

summed before they pass through the nonlinearity. This com-

putation describes a situation where two low-amplitude signals

both fall within the receptive field of a single linear mechanism

and has the equation:

=
( + )

+ ( + )
( )

A B

Z A B
resp . 1

p

q q

The predictions of this model (termed the early summation

model) are shown in Figure 2c for the parameter values given

above (A and B represent component contrasts). The relative

increase in response when a second component is added (com-

pare solid and dashed functions) is much smaller than for the

linear and independent transducer models. This occurs because

the denominator of the equation acts as a divisive “gain control”

to normalize the two inputs (Carandini and Heeger 2012).
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Figure 1. Example stimuli and temporal waveforms. The patterns in panels (a–c)

are micropatches of sine-wave grating arranged in a checkerboard formation

(Meese 2010). When the two components (a, b) are summed, they produce a con-

tinuous texture (c). For the binocular experiment, patches of sine-wave grating

were used, with a binocular fusion lock in the center (d). Panels (e) and (f) show

how stimulus contrast was temporally modulated to induce a steady-state

response. The black trace in each panel is the 5Hz target modulation used in both

experiments. The gray traces are the 7Hz (e) and 7.5Hz (f) mask modulations

used in the space (e) and eye (f) experiments. Circles indicate the sample points

used at the monitor refresh rates of 75 and 120Hz for the two experiments.
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In two further variants, either the numerator or denomin-

ator terms might be summed before exponentiation, and the

others summed after exponentiation, giving rise to the models:

=
( + )

+ +
( )

A B

Z A B
resp , 2

p

q q q

and

=
+

+ ( + )
( )

A B

Z A B
resp , 3

p p

q q

with predictions shown in Figure 2d and e for equations (2) and

(3), respectively. These models alter the relative slopes of the

contrast response functions for one and two components. For

the case in which inputs are summed linearly in the numer-

ator (eq. 2, Fig. 2d), the response is doubled with two inputs,

just as it is for the independent transducer model (Fig. 2b). For

linear summation in the denominator (eq. 3, Fig. 2e), the gain

is steeper for one component (solid curve) than for two compo-

nents (dashed curve) because the denominator term causes

exponentially greater inhibition with two inputs. These mod-

els are similar to those proposed by Foley (1994) to explain

combination of suppressive signals across stimuli of different

orientations, but here we additionally consider the effect of

excitatory signal combination.

A final arrangement is to sum on both the numerator and

denominator after exponentiation:

=
+

+ +
( )

A B

Z A B
resp . 4

p p

q q q

The predictions for this model are shown in Figure 2f. The

model predicts almost equal responses for single (A, solid

curve) and double (A + B, dashed curve) inputs, particularly at

high contrasts. This happens because the saturation parameter

(Z) becomes negligible for large input values, and the numer-

ator and denominator terms balance, producing a similar out-

put for one (A) or two (A + B) inputs. In the situation where the

exponents are 2 (as is often approximately the case), this model

is equivalent to that proposed by Busse et al. (2009) where the

root mean square (RMS) energy of the untuned gain pool was

used as a normalization factor across orientations.

The six models described above make distinct predictions

about the neural response to stimuli comprising one or two com-

ponents, as summarized in Figure 2. Further combinations of

inputs are possible, such as fixing the contrast of one component

(B) at a high level and varying the contrast of the other (A). This

condition corresponds to a widely used experimental manipula-

tion in which a signal is shown in the presence of a constant

mask. This produces the dotted curves in each plot, which are

also qualitatively distinct across the different models. We there-

fore have a set of predictions that can be empirically tested to

determine the signal combination rule used by the early visual

system. We now test these predictions for steady-state EEG

responses measured from human visual cortex.

Materials and Methods

Observers

Each experiment was completed by 12 observers of either sex,

aged between 19 and 41. Five of the observers (including the first

author) completed both experiments in separate sessions, the

remaining observers completed only one experiment each.

Observers had no history of abnormal binocular vision or epi-

lepsy, and wore their prescribed optical correction if required.

We obtained written informed consent from all observers, and

the study obtained ethical approval from the Department of

Psychology Research Ethics Committee of the University of York.

Apparatus and Stimuli

Experiments were run on an Apple computer using a Bits# device

(Cambridge Research Systems Ltd, Kent, UK), driven by code

written in Matlab using the Psychtoolbox routines (Brainard

1997; Pelli 1997). In the space experiment, stimuli were displayed

on an Iiyama VisionMaster 510 CRT monitor running at 75Hz. In

the eye experiment, stimuli were displayed on a Clinton

Monoray CRT monitor running at 120Hz with stimuli presented

independently to the left and right eyes using ferro-electric shut-

ter goggles (CRS, FE-01). Both monitors were gamma corrected

using a Minolta LS110 photometer.

Stimuli for the space experiment were micropattern textures

made from single cycles of a 1 c/deg sine-wave grating modu-

lated by an orthogonal full-wave rectified carrier at half the spa-

tial frequency (see Meese 2010). The micropatterns were

arranged in a square grid spanning 20 carrier cycles (20°). To
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Figure 2. Predictions of six models of signal combination (a–f). In each panel,

the model responses to a single input (A, solid curves) or two inputs (A + B,

dashed curves) are compared as a function of component contrast. The dotted

curves show a further condition in which a fixed signal is shown to one channel

(B) and the input to the other channel (A) is increased. The individual models

are described in the text. All models are normalized to the largest response at

100% input contrast across the three conditions.
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create the ‘A’ stimulus, interdigitated checks of 2 × 2 micropat-

terns were set to 0% contrast (see Fig. 1a). This arrangement was

reversed to create the complementary ‘B’ stimulus (Fig. 1b) such

that when both A and B components were combined they

formed a continuous texture (Fig. 1c). The central four micropat-

terns were removed to make space for a small central fixation

point (black, 7 arcmin wide). Stimuli flickered sinusoidally

between 0% contrast and their nominal maximum contrast at

combinations of 5 and 7Hz as shown in Figure 1e, but did not

reverse in phase. The orientation of the entire pattern was ran-

domized on each trial to prevent retinal adaptation.

Stimuli for the binocular experiment were patches of horizon-

tal sine-wave grating 2° in diameter, with a spatial frequency of

1 c/deg. They were spatially windowed by a raised cosine enve-

lope. The stimuli were tiled in a 5 × 5 grid (14° in diameter), with

the central grating patch omitted to make space for a cluster of

dots (each 15 arcmin wide) of random luminance that was used

as a binocular fusion lock and fixation marker (see Fig. 1d). The

grid was rotated by a random amount on each trial, though the

stimuli themselves remained horizontal to avoid exciting popula-

tions of neurons sensitive to horizontal carrier disparity. Stimuli

flickered sinusoidally between 0% contrast and their nominal

contrast at combinations of 5 and 7.5Hz as shown in Figure 1f.

Stimuli presented to the left eye were arbitrarily designated ‘A’

stimuli, and those presented to the right eye were ‘B’ stimuli.

EEG signals were recorded at 64 electrode sites on the scalp

using a WaveGuard cap (ANT Neuro, the Netherlands). The EEG

computer was synchronized with the display computer using

an Arduino-based trigger device. Signals were amplified and

digitized at 1000 Hz by a PC running the ASA software (ANT

Neuro, the Netherlands), and stored for offline analysis.

Procedures

Participants were seated at a distance of 57 cm from the display,

with their chin in a rigid headrest. In the eye experiment, the

goggles were attached to the headrest (rather than mounted on

the head) so that they did not interfere with the EEG equipment.

Stimuli were presented for trials of 11 s duration, with gaps of 3 s

between each trial. There was no task; participants were

instructed to stare at the central fixation point and avoid blink-

ing during stimulus presentation.

Each experiment consisted of 30 different conditions, which

were different pairings of A and B stimuli at various contrasts

(from 4% to 64% in logarithmic steps). In some conditions, A and B

flickered at the same frequency, in other conditions they flickered

at different frequencies. All of the conditions were interleaved

within a block of 60 trials for a given experiment (space or eye).

Each block lasted around 14min and repeated each of 30 condi-

tions twice in pseudo-random order. Participants completed five

blocks in a single session, yielding 10 repetitions of each condition.

To analyze the data, we discarded the first 1 s of each 11-s trial

(to eliminate onset transients), and took the Fourier transform of

the remaining 10 s. The main dependent variables were the

Fourier amplitudes at the stimulus frequencies (5 and 7Hz or 5

and 7.5Hz), calculated separately for each electrode. We performed

coherent averaging across the 10 trials for each observer, and then

averaged the absolute amplitudes across the 12 observers.

Results

The main dependent variable was the Fourier amplitude at the

target frequency (5 Hz), which gave a robust signal-to-noise

ratio (SNR; Fig. 3b) at the occipital pole (Fig. 3a). For a single

component stimulus (e.g. a stimulus shown to one eye only or

to a single set of spatial locations, as shown in Fig. 1a), the con-

trast response function was monotonic and showed evidence

of saturation (circles in Fig. 3c,d). Note that the standard errors

(shaded regions) are larger at higher response levels because of

individual variation in the maximum amplitude of the steady-state

visually evoked potential (SSVEP) response, as detailed elsewhere

(Baker and Vilidaitė 2014), yet the pattern of contrast response

functions we now detail was clear for individual observers.

To assess the summation properties of the system, we then

flickered both components in phase at the same frequency (5Hz).

Regardless of whether the stimulus was shown binocularly, or to

both sets of spatial locations, there was very little increase in the

5Hz neural response (squares in Fig. 3c,d). This is a counter-

intuitive finding, as the input to the system has increased by a

factor of 2 (presumably activating many more neurons), yet the

population response remains approximately constant. Models

that sum stimulus contrast linearly (Fig. 2a) or sum the outputs

of two independent transducers (Fig. 2b) entirely fail to predict

this result, as do models in which components are summed

before any nonlinearities on either the numerator (Fig. 2d), the

denominator (Fig. 2e), or both (Fig. 2c). However, the architecture

of the late summation model predicts this precise pattern

(Fig. 2f), which has been termed “ocularity invariance” in the bin-

ocular domain (Baker et al. 2007)—the observation that the world

does not change in contrast when one eye is opened or closed.

A strong prediction of the late summation model is shown

by the dotted curve in Figure 2f. This represents a condition

where the B component is fixed at a high contrast (32%) and the

contrast of the A component is increased. The model predicts

that activity will remain constant over an intermediate range

of A contrasts, despite the input to the system continually

increasing. None of the other models makes this prediction, yet

it is clear from the data in both experiments.

To assess which candidate model produced the best descrip-

tion of our results, we performed least-squares fits (downhill

simplex algorithm, from 100 random starting vectors) for all six

models (from Fig. 2) to the data from each experiment. The lin-

ear summation model had only a single free parameter (Rmax)

that multiplicatively scaled the maximum response. The other

five models had four free parameters each: p, q, Z, and Rmax. For

both the space and binocular experiments, the late summation

model gave the best numerical fit, capturing 98% and 92% of

the variance within each data set, respectively. The other mod-

els all produced poorer fits that explained a lower proportion of

the variance, and had obvious qualitative failings. Summed

squared errors (SSEs) and Akaike’s Information Criteria (AIC)

scores that account for the number of parameters (Akaike 1974)

for the six models are summarized in Table 1.

Model Predictions for Suppression Conditions

Another manipulation available using the steady-state para-

digm is to flicker the two components at different frequencies

(Candy et al. 2001; Tsai et al. 2012). Responses to the two

inputs can be measured independently through the early vis-

ual system (Regan and Regan 1988), permitting the isolation

of suppressive processes. Figure 4a–d shows data and model

predictions at the target frequency (5 Hz) for component A,

when the second component (B) flickered at either 7 Hz (for

the space stimuli) or 7.5 Hz (for the eye stimuli). Figure 4e,f

shows the responses for the same conditions at the higher

frequency. In each panel, the circles show the response for a

single component (as shown in Fig. 3c,d). The gray triangles
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(in panels a, b, e, and f) show the response when both A and B

components increase in contrast together. This is equivalent

to the gray squares in Figure 3, but now flickering at different

frequencies. Note that the gray triangle function in all panels

is shallower than the single component (circle) function,

showing the effect of suppression on the gain of the system.

This demonstrates the action of the inhibitory terms in the

denominator of equation (4).

The white inverted triangles in Figure 4c–f represent the con-

dition in which a high contrast (32%) mask stimulus is shown at

the higher frequency. The target contrast at the lower frequency

(5Hz) is increased along the abscissa. The white triangle contrast

response function in Figure 4c,d is shifted to the right relative to

the single component (circles) function. This is a classic contrast

gain control effect, reported widely in previous human SSVEP

(Candy et al. 2001; Busse et al. 2009; Tsai et al. 2012; Baker and

Vilidaitė 2014), animal SSVEP (Afsari et al. 2014), and single-cell

(Morrone et al. 1982; Carandini and Heeger 1994) studies. The

white inverted triangles in Figure 4e,f show the complementary

response at the mask frequency as target contrast increases.

There is a reduction in response at higher target contrasts, show-

ing the suppressive effect of the target on the mask.
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Figure 3. Results for stimuli presented at a single flicker frequency (5 Hz) to assess summation properties. (a) SSVEP amplitude at 5 Hz across all electrode sites, aver-

aged across 12 observers for the “full” space stimulus (Fig. 1c) at 64% contrast. Circle diameter and shading are proportional to amplitude. (b) Example Fourier spec-

trum for the same stimulus, averaged across 12 observers and two electrode sites (Oz and POz—the two largest circles in [a]). (c) Contrast response functions for the

space stimuli when either one (circles) or two (squares) components were presented at the same flicker frequency (5 Hz). The diamonds are for a condition in which

one component was fixed at a high (32%) contrast, and the contrast of the other component increased. The shaded regions give ±1 SE across observers (n = 12).

Curves are fits of the late summation model, as described in the text (fitted parameters: p = 2.43, q = 2.18, Z = 7.46, and Rmax = 0.53). (d) Analogous contrast response

functions for the eye stimuli (fitted parameters: p = 2.22, q = 2.22, Z = 9.48, and Rmax = 0.71).

Table 1 SSEs and AIC scores for six candidate models, fitted to two data sets

Linear summation Independent transducers Early summation Linear numerator Linear denominator Late summation

Space (SSE) 2.52 0.65 0.12 0.20 0.11 0.05

Eye (SSE) 1.11 0.24 0.04 0.07 0.05 0.01

Space (AIC) −3.80 −2.22 −5.85 −6.05 −7.89 −10.33

Eye (AIC) −6.49 −5.46 −11.10 −9.46 −10.77 −14.79

Smaller values indicate a better fit.
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We obtained predictions for the results of these additional

conditions by assuming (following Foley 1994) that components

at both frequencies continue to contribute to the gain pool

(denominator). Responses to individual inputs can be identified

by their frequency tags, so the numerator contains terms at

only a single frequency (presumably involving the same popu-

lations of neurons as when a single component is presented at

that frequency), giving,

=
+ +

( )
A

Z A B
resp . 5

p

q q q

Importantly, we fixed the parameters at the fitted values

from Figure 3. With no free parameters, the model correctly

predicted the form of the data in Figure 4a–e. Because

responses were reduced slightly at 7.5 Hz, we permitted Rmax to

vary (it reduced from 0.71 to 0.53) in order to better fit the data

in Figure 4f.

The model explained 89% (space) and 73% (eye) of the vari-

ance in these extra conditions. The poorer fit for the eye data is

mostly due to a shallower-than-predicted contrast response

function in Figure 4d (inverted triangles). This resembles a

response gain effect (e.g. a change in Rmax) rather than a con-

trast gain effect (see Li et al. 2005), and we are actively investi-

gating this discrepancy in a further study. It is possible that a

more sophisticated multi-stage model (Meese et al. 2006) would

give a better description of the binocular data. However, despite

this shortcoming, the model correctly predicts the differences

in gradient of the contrast response functions in all panels of

Figure 4. Overall, we can capture the pattern of eight contrast
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Figure 4. (a–d) SSVEP responses at the target frequency (5 Hz) when the mask (B component) flickered at a higher frequency (7 Hz for the space condition (a,c) and

7.5 Hz for the eye condition (b,d)). (e,f) SSVEP responses at the mask frequency (7 or 7.5 Hz) when the target flickered either at 7/7.5 Hz (circles) or at 5 Hz (with a mask

at the higher frequency). In each panel, the shaded regions indicate ±1 SE of the mean of each data point. The curves are predictions of the late summation model

with no free parameters (except in [f], where Rmax was permitted to vary).
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response functions (40 data points) for two distinct stimulus

domains with only four free parameters. This illustrates the

generality and predictive power of the model.

Model Predictions for Harmonic and Intermodulation

Frequencies

In addition to making analytic predictions about activity at a

given frequency, gain control models can also be used to pre-

dict how stimuli of different frequencies interact (Tsai et al.

2012). This is achieved by passing the sinusoidal temporal

waveforms for each stimulus through the model and inspecting

the Fourier spectrum of the resulting output waveform.

However, the noise in the Fourier spectrum of EEG data (e.g.

Fig. 5a) declines as a function of frequency, and can have idio-

syncratic properties unrelated to the stimulus frequencies (e.g.

endogenous alpha activity around 10Hz). We therefore calcu-

lated the SNR at each frequency to normalize out these differ-

ences, by dividing by the average amplitude in the neighboring

frequency bins (the mean of the five bins on either side, with

0.1 Hz frequency resolution). This produced a flat spectrum

aside from the substantial peaks evoked by the stimulus

(Fig. 5b), with the salience of higher harmonics (integer multi-

ples of the fundamental frequency) being enhanced because of

the lower noise in that region of the spectrum. To produce

model responses, we fed the temporal waveforms (scaled

appropriately by contrast) into equation (4), and took the

Fourier transform of the output. To convert to SNR, we added

an arbitrary constant (0.01) to the model spectrum, and divided

the sum by that same constant (so that in the absence of a sig-

nal the SNR was 1).

Presentation of two frequencies simultaneously produced

evoked responses at sums and differences of the fundamentals,

as has been reported previously (Tsai et al. 2012). These can be

seen in the empirical and model spectra shown in Figure 5c,d

(highlighted green), and as a function of contrast for one condi-

tion in the surface plots of Figure 6. A novel observation is that

responses are also evoked at specific additional frequencies

that appear to be combinations of fundamental, harmonic, and

intermodulation terms (e.g. 3, 4, 8, 9, 16, 18, and 19Hz all had
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Figure 5. Example spectra between 1 and 30Hz. (a) The Fourier amplitude, averaged across 12 participants, for the full checkerboard stimulus (see Fig. 1c) at the high-

est contrast tested (64%). The spectrum shown in Figure 3b is a subset of these data (from 2 to 9 Hz). (b) The same data but expressed as SNR, with the amplitude at

each frequency normalized by the average amplitude in the adjacent 10 bins (5 below and 5 above). (c) The spectrum for a condition in which one stimulus (A) was

presented at 5 Hz and the other (B) at 7 Hz, both at 64% contrast. Responses at additional frequencies besides the sums, differences, and multiples of the fundamental

frequencies are apparent. (d) Predictions of the late summation model for the conditions in (c), using the parameters from the fits described above. The model repro-

duces the additional responses reasonably well. In panels (a–c), gray shaded regions indicate the standard error across observers (N = 12). The colors highlight

responses at the fundamental and integer harmonics of 5 Hz (blue) and 7Hz (red), and the sums and differences of the fundamentals (green).
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SNR > 2). The model also produces responses at most of these

frequencies (Fig. 5d), though the signals are sometimes stronger

(e.g. 12 Hz) and sometimes weaker (e.g. 14 Hz) than those found

in the empirical data. We suspect that these discrepancies

might indicate the presence of neurons that involve further

nonlinear stages of processing. Examples include complex cells

that code changes in contrast (which might account for the

increased second harmonic responses) and conjunction detec-

tors (AND gates). We intend to model these cell types explicitly

in future, though doing so is beyond the scope of the present

study.

We also attempted fitting the model to the entire spectrum

from 1 to 30Hz across all conditions. This produced similar par-

ameter values to those described above, and comparable fits to

the contrast response functions at fundamental frequencies,

but additionally gave a good account of responses at harmonic,

intermodulation, and other integer frequencies. The model was

able to account for 69% of the variance of each of the space and

eye data sets, with each data set consisting of 8730 data points

(30 conditions by 291 frequencies in steps of 0.1 Hz). With only

four free parameters, this seems an impressive performance.

Discussion

We tested the predictions of six models of cortical signal com-

bination for two visual stimulus domains (space and eye-of-

origin). We found that the late summation model (eq. 4) cor-

rectly captured the pattern of contrast response functions for

three conditions (Fig. 3c,d) and predicted several other con-

ditions with no free parameters (Figs 4a–c, 5c,d, and 6).

Alternative models that sum individual channel responses

before nonlinear transduction failed to correctly describe the

pattern of results. We discuss the implications of these findings

for our understanding of the relationship between perception

and neural activity, and speculate that the preferred model of

contrast normalization is a neural implementation of Bayes-

optimal signal combination.

Perception and Neural Activity

A body of recent psychophysical work has converged on the

same algorithm for signal combination that we are proposing

in this study (Meese and Baker 2013). These studies used a

range of detection, discrimination, and matching paradigms to

investigate the perception of stimuli summed across dimen-

sions such as eye (Meese et al. 2006; Baker et al. 2007), space

(Meese and Summers 2007), and time and orientation (Meese

and Baker 2013). Our results demonstrate that this model is

consistent with the pattern of cortical responses at a popula-

tion level, and other work has converged on a similar algorithm

for binocular combination using functional MRI (fMRI) (Moradi

and Heeger 2009) and for combination across orientation in

neural populations (Busse et al. 2009). Such consistency across

measurement techniques is extremely unusual, and implies

that the model is an accurate reflection of the operations per-

formed by the brain in combining signals.

The development of a general model will aid in our under-

standing of how signals are pooled across successive stages of

processing. In the spatial domain, recent fMRI studies have

characterized a compressive nonlinearity that grows more

severe at later stages in the cortical hierarchy (Kay et al. 2013a,

2013b). This is presumably closely related to the late summa-

tion model described here, which is effectively compressive at

high contrasts with an overall exponent equivalent to the dif-

ference of the numerator and denominator exponents (p–q is

typically around 0.4). However, the precise form of the suppres-

sive interactions characterized here go far beyond a descriptive

model and could presumably improve the accuracy of attempts

to explain blood oxygen level-dependent (BOLD) responses to

visual patterns of different spatial extents, and more generally

to arbitrary broadband visual stimuli.

In general, there is no reason to think that the model pro-

posed here applies only to vision, or to the specific visual

dimensions explored (space and eye-of-origin). We have shown

already that the same algorithm applies equally well to psycho-

physical summation across orientation and time (Baker et al.

2013; Meese and Baker 2013). Furthermore, a strikingly similar

model has been proposed for explaining neural population

responses to stimuli of different orientations (Busse et al. 2009).

That model involved subtle differences in the way that sup-

pressive signals are pooled (computing the RMS contrast), but

fitted the present data almost as well as the preferred model

here (not shown). The models can be considered architecturally

(a)

(b)

Figure 6. Surface plots showing empirical (a) and model (b) SNRs as a function

of frequency (left abscissa) and contrast (right abscissa). The condition was the

A5 + B7 mask condition from the space experiment, in which the 7 Hz mask

component had a fixed contrast of 32%, and the 5Hz target component contrast

increased along the right abscissa. The blue-highlighed functions indicate the

target frequency (5 Hz) and its harmonics. The red-highlighted functions indi-

cate the mask frequency (7 Hz) and its harmonics. Green-highlighted functions

indicate the intermodulation frequencies (7−5 = 2 Hz and 7 + 5 = 12Hz). In the

human data, the higher harmonics produce relatively larger amplitudes than in

the model. Model parameters are given in the caption to Figure 3.
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equivalent, supporting the idea that common operations apply

within distinct visual cues.

Given the ubiquity of canonical microcircuits and computa-

tions, such as gain control (Carandini and Heeger 2012), it is

conceivable that the same algorithm will be implemented at

higher levels of the visual system and in other senses. Likely

candidates are binaural and cross-frequency combination in

hearing (Treisman 1967), and spatial summation across the

skin for vibration (Haggard and Giovagnoli 2011). In high-level

vision, there is evidence that information is pooled across

objects such as faces (Young et al. 1987; Boremanse et al. 2013).

In principle, these operations might be achieved by the same

computations that are used for combining simpler visual

features.

At What Level is the Algorithm Implemented?

Steady-state EEG is believed to measure aggregate responses

across large populations of neurons (most likely pyramidal cells

in the superficial layers of cortex) that are responsive to a given

stimulus (Norcia et al. 2015). This population response will

likely encompass neurons with differential weightings across

the two inputs (in the binocular case, different levels of ocular

dominance, and in the spatial case, different receptive field

positions or shapes), as well as a range of contrast sensitivities,

that we do not model explicitly here (for further discussion, see

Busse et al. 2009). As such, the model we propose can be

thought of as representing an omnibus population response,

rather than the activity of individual cells, in a manner similar

to the fMRI BOLD response. From the perspective of David

Marr’s framework (Marr 1983), the models described here are

therefore algorithm-level explanations of signal combination,

rather than implementation-level explanations (i.e. circuit dia-

grams) that would make assumptions about synaptic connec-

tions between neurons, specific classes of cell involved, or

numbers of cells responding to a particular stimulus. In prin-

ciple, the basic algorithm could be implemented in any number

of ways, and we expect that single-cell neurophysiology might

reveal how this is achieved in cortex.

In psychophysical studies that have used similar stimuli

(Meese et al. 2006; Meese and Summers 2007; Meese and Baker

2013), observers are assumed to base their responses on the

activity of a small number of neurons most appropriate for the

task at hand, and make discriminations within a signal detec-

tion theory framework (i.e. choosing the interval that produces

the largest response after combination with additive internal

noise). That the algorithm presented here is also able to give a

good account of such data suggest that the combination rules

are sufficiently generic that they apply across the whole popu-

lation of neurons.

Optimal Signal Combination

Equation (4) can be straightforwardly rewritten as,

ω

ω ω

ω

ω ω

=
+ +

+
+ +

( )
A

Z A B

B

Z A B
resp , 6A

p

A
q

B
q

B
p

A
q

B
q

where the weight terms (ωA, ωB) are implicitly set to unity. This

bears a striking similarity to the optimal combination rule for

two inputs (Ernst and Bülthoff 2004), which is a Kalman filter

(Kalman and Bucy 1961). The static filter gain (L) is given by

⎢

⎣
⎢

⎥

⎦
⎥

σ

σ σ σ σ

σ

σ σ σ σ

=
+ + + +

( )L
P

P P

P

P P
, 7A A

A B A A B B

B B

B A B B A A

2

2 2 2 2

2

2 2 2 2

where PA is the response of the channel (or sensor) tuned to

input A, and σA
2 is the variance, with terms bearing the sub-

script B corresponding to a second channel (Einicke 2012).

Hence, the filter weights each input by the inverse of its contri-

bution to the total variance. This filter has numerous applica-

tions in engineering, including the fusion of image data from

multiple sensors (e.g. Willner et al. 1976). For the situation

where the two inputs have equal variance (i.e. the two eyes),

the weight terms are immaterial, and the filter becomes similar

to our model. In the hypothetical case where the numerator

and denominator exponents are equal (as we found for binocu-

lar combination, see Fig. 3) and P represents contrast energy

(A2 and B2), the two models become identical. We therefore

speculate that combination within a cue might be statistically

optimal as a consequence of divisive normalization. We also

note that dynamic (time-dependent) Kalman filters include

the history of recent inputs in calculating the weights, a com-

putation that has obvious parallels with contrast adaptation

(Carandini and Ferster 1997) and attention (Reynolds and

Heeger 2009), both of which are closely related to gain control.

Previous models that implement optimal cue combination

have focused on cases where the two inputs are from different

modalities (e.g. vision and touch, Ernst and Banks 2002) that

have unequal variances. Indeed one recent study developed a

normalization model with the same general form as that we

propose here to account for several specific multisensory inte-

gration phenomena in neurons in the superior colliculus and

area MSTd (Ohshiro et al. 2011). Yet so far a theoretical link

between normalization and optimal signal combination has

remained elusive: as Ohshiro et al. (2011) explicitly state, “It is

currently unclear what roles divisive normalization may have

in a theory of optimal cue integration and this is an important

topic for additional investigation.” We speculate here that gain

control suppression may be the mechanism by which signals

are weighted to permit their optimal combination. The expo-

nent values in equation (6) are presumably a consequence of

the neural implementation of this weighting principle.

To our knowledge, this is a novel account of the purpose of

cortical gain control, which is a canonical neural operation

observed throughout the brain (Carandini and Heeger 2012). In

addition, it makes clear predictions for situations in which one

input is noisier than the other. A natural example for binocular

vision is amblyopia, in which the amblyopic eye’s responses

are both weaker (i.e. suppressed) (Baker et al. 2008, 2015) and

noisier (Levi and Klein 2003; Baker et al. 2008) than those of the

fellow eye. Previously, the increased noise has been considered

secondary to the suppression. But our account suggests that

the amblyopic suppression might be a Bayes-optimal conse-

quence of one input being noisier (perhaps because of erratic

fixation due to strabismus) than the other during development.

This might explain why attempts to reduce the suppression by

increasing noise in the fellow eye appear to be successful (Hess

et al. 2010).

Conclusions

A single, simple algorithm was shown to accurately predict a

complex pattern of steady-state contrast response functions for

signal combination across space and eye. This algorithm is a

strong candidate for a canonical model of optimal neural signal

combination, and may well be relevant in senses other than
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vision, and perhaps throughout the cerebral cortex more gener-

ally. Because the same model can explain both steady-state

EEG and psychophysical data, it highlights the close link

between perception and neural activity. By suggesting that gain

control suppression implements optimal signal combination,

we have shown how two of the most influential concepts in

modern neuroscience (contrast gain control [Heeger 1992;

Carandini and Heeger 2012] and Bayesian information theory

[Ernst and Bülthoff 2004; Friston 2010]) might be unified.
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