
This is a repository copy of Toward fault-tolerant parallel-in-time integration with PFASST.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/109710/

Version: Accepted Version

Article:

Speck, R and Ruprecht, D orcid.org/0000-0003-1904-2473 (2017) Toward fault-tolerant
parallel-in-time integration with PFASST. Parallel Computing, 62. pp. 20-37. ISSN
0167-8191

https://doi.org/10.1016/j.parco.2016.12.001

© 2016 Elsevier B.V. Licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Toward fault-tolerant parallel-in-time integration with PFASST

Robert Specka,∗, Daniel Ruprechtb

aJülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Germany
bSchool of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK

Abstract

We introduce and analyze different strategies for the parallel-in-time integration method PFASST to recover from

hard faults and subsequent data loss. Since PFASST stores solutions at multiple time steps on different processors,

information from adjacent steps can be used to recover after a processor has failed. PFASST’s multi-level hierarchy

allows to use the coarse level for correcting the reconstructed solution, which can help to minimize overhead. A

theoretical model is devised linking overhead to the number of additional PFASST iterations required for convergence

after a fault. The potential efficiency of different strategies is assessed in terms of required additional iterations for

examples of diffusive and advective type.

Keywords: algorithm-based fault tolerance, resilience, parallel-in-time integration, Gray-Scott model, Boussinesq

equations

1. Introduction

The extremely high number of cores in today’s and future supercomputing architectures leads to a wide range

of challenges that developers of numerical methods have to face. Most obvious is probably the requirement for al-

gorithms to offer a maximum degree of concurrency: numerical methods with strong serial dependencies will never

perform well on massively parallel computers. Probably equally important are the complications arising from decreas-

ing mean-times between failures (MTBF). As computers feature more and more hardware components, the probability

of one component failing during a simulation increases. Leadership supercomputers already experience a MTBF of a

couple of hours [1] and the massive increase in components on the path to exascale computing will greatly exacerbate

this problem [2]. Moreover, relaxing reliability on the hardware side and shifting more and more responsibility to deal

with faults to the application is a possible way to reduce energy consumption – provided that the used software can

properly deal with faults. Therefore, well-developed strategies to deal with faults on the side of numerical methods

can help to reduce energy-to-solution. The central significance of fault tolerance for extreme scale computing has

been widely recognized. A recent overview is given for example by Cappello et al. [3].

We adopt the nomenclature proposed by Snir et al. [4]: faults occur at the system level and can cause errors. Errors

may then lead to failures when causing transition to an incorrect system state. Some faults can cause the system to

crash but others will just corrupt the state and cause the system to return a wrong solution (”silent errors”). Faults that

are transient in nature are referred to as soft or elusive errors while reproducible errors are called hard or solid. Fault

tolerance refers to the capacity to detect faults and to apply contingency procedures to bring the system back into a

correct state.

The most straightforward approach is checkpointing combined with a backward recovery strategy: here, the state

of the system is frequently saved and, should a failure occur, the simulation is rolled back to the last correct state

and restarted from there. Simple restarting causes massive overhead and is likely not a feasible strategy for exascale

systems, at least not on its own [5]. Much attention has therefore been paid to algorithm-based fault tolerance (ABFT)

strategies which exploit specific features of employed numerical methods for forward recovery. Upon detection of a

∗Corresponding author

Email addresses: r.speck@fz-juelich.de (Robert Speck), d.ruprecht@leeds.ac.uk (Daniel Ruprecht)

Preprint submitted to Parallel Computing June 28, 2016

fault, the application proceeds with recovery steps to correct or retrieve (sometimes partially) lost data and bring the

system back into a correct state. The concept was first studied for soft errors in matrix operations [6] but has since

then been investigated for a wide range of iterative algorithms, for example in the field of numerical linear algebra,

and also been applied to hard faults [7, 8, 9].

In this paper we consider resilience against compute node hard errors and failures, typically related to the failure of

some hardware component, for applications solving time-dependent partial differential equations. With a distributed

memory paradigm, typically MPI, a failed node results in the loss of data stored on that node. Usually, this causes

a job to either crash or stall. While some MPI libraries support coordinated checkpointing without involvement of

the application, routines that allow for user-level failure mitigation (ULFM) and specifically algorithm-based fault

tolerance are not yet part of the MPI standard [10]. Implementation of ABFT techniques into an MPI code would

therefore require using experimental extensions of MPI, which are subject of current research.

Parallel-in-time integration methods have been mainly considered as means to extend strong scaling limits of spa-

tial parallelization and/or to improve utilization of very large machines [11, 12]. However, ”parallel across-the-steps”

methods like Parareal [13], PITA [14] (”parallel implicit time-integrator”) or PFASST [15] (”parallel full approxima-

tion scheme in space and time”) share features that make them natural candidates for algorithmic-based fault tolerance:

(i) they hold copies of the (approximate) solution at different times on different processes, (ii) they are iterative, and

(iii) they use a level hierarchy with at least one computationally cheap, coarse level. Therefore, should a process fail

and the solution at one point in time is lost, a recovery process can retrieve approximate values from the previous and

following processes in time. This reconstructed solution can then be improved by iterating on the cheap coarse level,

causing minimal overhead. After recovery, continuing with the iteration leads to a solution of the same accuracy at

the end – although probably at the cost of additional iterations and thus more work. Because time stepping is typically

the outermost loop for the numerical solution of a time-dependent PDE, protecting it by ABFT covers a larger area of

the code than if only e.g. the linear or nonlinear spatial solver is protected. However, to the best of our knowledge, no

publications exist so far that consider ABFT for parallel-in-time integration.1

In this paper, we propose a recovery strategy from hard faults for the PFASST method and demonstrate its efficacy.

For spectral deferred corrections, the serial time integrator at the heart of PFASST, resilience against soft faults has

been demonstrated before [17]. Even though the iterative nature of PFASST suggests that it should also provide some

resilience against soft faults, in this paper we consider only hard failures, where a process crashes and information

handled by this process is lost completely. Since ULFM is not yet part of the MPI standard, we do not report runtimes

from an actual MPI implementation but assess overhead in terms of additional PFASST iterations which, through a

simple theoretical model, can be directly linked to computational cost. The software used for the numerical examples

presented in this paper is publicly available [18] to allow for the reproduction and extension of presented results.

A forward recovery strategy for a spatial multi-grid solver has recently been proposed [19]. There, upon failure-

stop of a process holding a sub-domain in a distributed memory multi-grid solver, information from processes holding

adjacent domains is used to reconstruct the lost information. Based on the parallel-in-time solver PFASST, we propose

a similar strategy for the time axis. Ultimately, interweaving parallel-in-time integration with iterative spatial solvers

may not only be worthwhile to optimize efficiency [20, 21] but also provide a promising direction for the construction

of fault-tolerant methods for the integration of time-dependent partial differential equations.

2. The PFASST algorithm

The PFASST algorithm has been introduced by Emmett and Minion in 2012 [15]. It is based on an extension

of spectral deferred corrections [22] (SDC) to a multi-level hierarchy plus the incorporation of a full approximation

scheme correction term on the coarse levels. These multi-level SDC iterations [23] are run concurrently on multiple

time steps with each time step frequently sending forward updated initial values. In the following, we briefly describe

SDC, MLSDC and PFASST, focusing on the key aspects which are of interest for the work presented here. Detailed

descriptions of SDC, MLSDC and PFASST are available elsewhere [15, 23, 24].

1Shortly after submission of this article, a preprint has been published independently that provides a similar analysis for the Parareal algo-

rithm [16].

2

2.1. Spectral deferred corrections (SDC)

Consider an initial value problem on a single time step [Tn,Tn+1] in integral form

u(Tn+1) = u(Tn) +

∫ Tn+1

Tn

f (u(t), t) dt (1)

for u(t), f (u(t), t) ∈ RN , where N ∈ N are e.g. the number of degrees-of-freedom in spatial dimensions. For simplicity,

we give the derivation for N = 1 and f (u, t) = f (u), but the extension to systems of initial value problems stemming

e.g. from a method of lines approach for PDEs as well as to non-autonomous problems is straightforward. Let

Tn ≤ t1 < . . . < tM ≤ Tn+1 denote a set of M quadrature nodes within [Tn,Tn+1]. Using a quadrature rule like

Gauss-Radau or Gauss-Lobatto to approximate the integral in (1) provides the equations

Um = U0 + ∆t

M
∑

j=1

qm, j f (U j, t j), for m = 1, . . . ,M, (2)

for the approximate solutions Um ≈ u(tm) with U0 = u(Tn). The qm, j are quadrature weights obtained by integrating

Lagrange polynomials. The Um are equivalent to the stages of an implicit Runge-Kutta methods [25, Theorem 7.7]

and such methods are referred to as collocation methods. To compute these stages, a large, fully implicit system of

equations of the form

U = U0 + ∆t Q F(U) (3)

has to be solved, where U0 := IM ⊗ U0 is the vector of initial values, Q := (qm, j)m, j=1,...,M is the so-called quadrature

matrix and F(U) := (f (U1), ..., f (UM))T is the vector of function values. Instead of solving this system directly using

e.g. a Newton-Raphson method, SDC provides an efficient preconditioned iterative approach which converges to the

solution U. This iteration can be formulated on a node-to-node basis, where each iteration updates the solutions at the

nodes one by one. For Q j being the jth row of Q we define

∆tS mF(Uk) := ∆t(Qm+1 − Qm)F(Uk) ≈

∫ tm+1

tm

f (Uk(s), s)ds (4)

as an approximation to the node-to-node integral of f at iteration k. Omitting the detailed derivation, an SDC sweep

in node-to-node formulation with implicit Euler as preconditioner reads

Uk+1
m+1 = Uk+1

m + ∆tm
(

f (Uk+1
m+1) − f (Uk

m+1)
)

+ ∆tS mF(Uk), m = 0, ...,M − 1. (5)

The preconditioner can easily be replaced by other time-stepping methods like explicit Euler or even higher order

methods and IMEX schemes. In the latter case, the resulting semi-implicit SDC [24] (SISDC) can treat stiff parts of

the right-hand side f implicitly and non-stiff parts explicitly. In each iteration (5), M (possibly non-linear) equations

of the form Uk+1
m+1
− ∆t f (Uk+1

m+1
) = bk

m need to be solved while the original system (3) requires the solution of a single

(possibly non-linear) system of size M × M . The iteration is stopped when the residual

rk = U0 + ∆tQF(Uk) − Uk (6)

falls below a predefined tolerance or a set maximum number of iterations Kmax is reached.

2.2. Multi-level SDC (MLSDC)

The goal of MLSDC [23] is to replace some of the costly fine level sweeps with sweeps on coarser and cheaper

levels of a space-time hierarchy. To this end, system (3) is solved using ideas from nonlinear multigrid methods. With

SDC sweeps playing the role of a ”smoother” on each level of the hierarchy, a V-cycle is performed. The systems

on the coarse levels are augmented with a τ-correction which corresponds to the correction term of the multigrid full

approximation scheme (FAS) [26]. Using two levels for simplicity, this τ-correction reads

τ
k = ∆t

(

RQf Ff(U
k
f) − QcFc(RUk

f)
)

, (7)

3

where R is a space-time restriction operator and the indices f and c refer to the fine and coarse versions of the quadra-

ture matrix, the function values and the solution values. The original SDC sweep (5) is modified on the coarse level

by adding a τ-correction term, so that

Uk+1
c,m+1 = Uk+1

c,m + ∆tm
(

fc(Uk+1
c,m+1) − fc(Uk

c,m+1)
)

+ ∆tS c,mF(Uk) + τk
m+1 − τ

k
m. (8)

These values are then used to apply a coarse level correction to the values on the fine level with

Uk+1
f = Uk+1

f + P(Uk+1
c − RUk

f), (9)

where P is a space-time prolongation operator and indices f and c indicate fine and coarse level again. The key to an

efficient MLSDC scheme is choosing suitable coarsening strategies. With FAS helping to represent information of the

fine level on coarser ones, the classical strategies are [23]:

• reduction of quadrature nodes (reduced order of time discretisation),

• reduction of degrees-of-freedom in space (especially for PDE-based ODE systems),

• reduced order of the space discretisation,

• inexact implicit solves if implicit SDC is used,

• reduced physical model of the problem.

2.3. Parallel full approximation scheme in space and time (PFASST)

In order to parallelize in time, PFASST initiates MLSDC cycles on multiple time steps on different processors,

with frequent communication of updated initial values on all levels. The key is that closely synchronized, blocking

communication is required only at the coarsest and cheapest level. All other levels have weaker dependencies and

allow for substantial overlapping of computation and communication, in particular when using more than two levels.

coarse

sweep

fine

sweep

coarse

comm.

fine

comm.

P0
t0 P1

t1 P2
t2 P3

t3 t4

c
o
m
p
u
ta
ti
o
n
ti
m
e

p
re
d
ic
to
r

Figure 1: Schematic view of the PFASST algorithm with two levels and four processes P0, ..., P3 handling four parallel time steps. Only commu-

nication on the coarsest level is blocking, communication on other levels can be overlapped with computation. Created using pfasst-tikz [27].

A simple example is sketched in Figure 1: four parallel time steps are shown, each with two levels. It is often

beneficial to perform a start-up phase (“predictor”), where the initial value U0 is communicated to all processes and

a number of coarse level sweeps is performed to produce a very early guess of the solution [15]. After the prediction

phase, the processes P0, ..., P3 perform their fine sweep (large red blocks) simultaneously and send the result at t1, ..., t4
forward in time. This communication is non-blocking and all processes can directly continue with the iteration. This

leads to a staggered or pipelined execution if communication and computation are correctly overlaid [28]. In the

next step, the solution from the fine level is restricted, the τ-correction is formed and the coarse sweep (blue small

blocks) is started. For the coarse sweep, each process has to wait for the new initial condition to arrive from the

previous process, so sweeps on the coarsest level are performed in serialized order using blocking communication.

4

After receiving an updated fine level initial value from the previous process, the coarse level correction is computed

and added to the fine solution. This approach can easily be extended to multiple levels and an algorithmic view of

PFASST with L + 1 levels is provided in Algorithm 1. As for SDC and MLSDC, the iteration stops if the residual

on all time steps falls below a predefined threshold or if the maximum number of PFASST iterations Kmax is reached.

Typically, the last process in time will have to perform the most iterations and determine the overall runtime.

Algorithm 1: PFASST iteration

input : Values Uk
m,l

for m = 1, . . . ,M and l = 0, . . . , L.

output: Update values Uk+1
m,l

.

On fine level

1.1 Perform SDC sweep on finest level 0 with U0, F0

1.2 Send updated final value UM,l to following process (non-blocking)

Move from fine (l = 0) to coarsest level (l = L)

1.3 Restrict values from level 0 to level 1

1.4 Compute FAS correction τ1

1.5 for l = 1, L − 1 do

1.6 Perform SDC sweep with Ul, Fl, τl

1.7 Send updated final value UM,l to following process (non-blocking)

1.8 Restrict values from level l to level l + 1

1.9 Compute FAS correction τl+1

1.10 end

On coarsest level

1.11 Receive new initial value U0,L on coarsest level from previous process

1.12 Perform SDC sweep with UL, FL, τL

1.13 Send updated final value UM,L to following process (blocking)

Move from coarsest to fine level

1.14 for l=L-1,1 do

1.15 Receive new initial value U0,l for current level from previous process

1.16 Interpolate and apply coarse correction from level l + 1 to Ul

1.17 Perform SDC sweep with Ul, Fl, τl

1.18 end

On fine level

1.19 Receive new initial value U0,0 for current level from previous process

1.20 Interpolate and apply coarse correction from level 1 to U0

3. Fault-tolerant PFASST

This section introduces different strategies to recover solutions lost due to failure of a process. Since in PFASST

each process handles one time step, we assume here that a fault leads to the loss of all data associated with a specific

time step. Without a recovery strategy, the whole block of parallel time steps will have to be computed again after a

fault occurs, discarding the information obtained so far (backward recovery). Clearly, when using an iterative method

like PFASST, this is the least efficient way of treating failures. The presented recovery strategies use information

from adjacent time steps to reconstruct the lost data on a replacement process (forward recovery). For a discussion of

this replacement process, we refer to Section 5. For now, we assume that we can either use the failed process again

(e.g. after a reboot) or that there is a spare replacement process available. We furthermore assume that a fault occurs

right before a fine sweep or, equivalently, at the end of an iteration. Therefore, all recovery strategies have to provide

enough information to continue with a fine sweep at the beginning of a V-cycle. Of course, in a real-world simulation,

recovery strategies will have to deal with faults occurring at any phase in the algorithm. Restarting a failed step at

the beginning of a V-cycle is therefore a reasonable choice, because enough information is available for the adjacent

5

processes to continue their cycles with information on all levels. Also, as soon as the replacement process reaches

the coarse level during the V-cycle, the blocking communication “aligns” this process and its computation with the

workflow of the others.

3.1. Recovery strategies

Exploiting the iterative and multi-level nature of PFASST, we present four different strategies which allow a re-use

of data from pre- and succeeding time steps for the recovery of lost data: one-sided interpolation with and without

coarse correction and two-sided interpolation with and without coarse correction.

3.1.1. One-sided interpolation

The one-sided recovery strategy reconstructs lost information using data from the process handling the previous

time step. In its most simple form, the replacement process fetches the current initial value on the finest level from

the previous time step (which is the final value there) and spreads it to all quadrature nodes, corresponding to constant

interpolation. Using these reconstructed fine level values, the standard MLSDC V-cycle is restarted to populate the

coarse level and continue the PFASST iteration. Optionally, before starting the V-cycle, an additional coarse correction

step can be performed, see Section 3.1.3. The coarse level is populated using the restriction operator R and values

are improved by performing a set number nrec of coarse level recovery sweeps. Coarse level values are then used to

correct the fine level values before restarting the MLSDC V-cycle. Numerical experiments in Section 4 show that

the coarse correction step can greatly reduce the overhead in terms of required additional iterations. This recovery

strategy is sketched in Algorithm 2.

Algorithm 2: 1-sided recovery after failure of process p in iteration k.

input : rank p, flag do correction, number of recovery sweeps nrec

output: reconstructed fine and coarse level values Uk,f, Uk,c

Receive new starting value from previous process

2.1 Receive U0 from process p − 1

Spread new initial value to all fine level nodes and recompute f

2.2 for m = 0,Mf − 1 do

2.3 U
k,f
m ← U0

2.4 Compute f (Uk,f
m)

2.5 end

Perform possible additional coarse-level corrections

2.6 if do correction then

2.7 Uk,f,Uk,c ← coarse-level-correction(Uk,f, nrec)

2.8 else

2.9 Uk,c ← 0

2.10 Start MLSDC iteration k + 1 on fine level

3.1.2. Two-sided interpolation

Instead of using only information from the previous time step, additional information from the following time step

can be used to reconstruct lost information. This strategy uses linear interpolation to repopulate the fine level nodes.

As for the one-sided strategy, using coarse level corrections before restarting the MLSDC V-cycle can greatly reduce

the number of additional iterations required. This strategy is sketched in Algorithm 3. In the examples analyzed

in Section 4, two-sided recovery produces slightly better results than one-sided recovery. However, it requires one

additional message to be send during recovery.

3.1.3. Coarse level corrections

One-sided as well as two-sided recovery can be augmented by performing additional coarse level sweeps before

restarting the local V-cycles. This provides a coarse level correction to the reconstructed fine level values, increases the

6

Algorithm 3: 2-sided recovery after failure of process p in iteration k.

input : rank p, flag do correction, number of recovery sweeps nrec

output: reconstructed fine and coarse level values Uk,f, Uk,c

Receive starting value from previous process

3.1 Receive U0 from process p − 1

Receive end value from following process

3.2 Receive Uend from process p + 1

Repopulate fine level values through linear interpolation

3.3 for m = 0,Mf − 1 do

3.4 U
k,f
m ← (1 − τm) Uend + τmU0

3.5 Compute f (Uk,f
m)

3.6 end

Perform possible additional coarse-level corrections

3.7 if do correction then

3.8 Uk,f,Uk,c ← coarse-level-correction(Uk,f, nrec)

3.9 else

3.10 Uk,c ← 0

3.11 Start MLSDC iteration k + 1 on fine level

accuracy of the reconstructed solution and helps to reduce the number of additional iterations required by PFASST

to converge after a fault. Coarse level corrections entail the cost of a number of sweeps on the coarse level. For

all experiments documented here, we sweep on the coarse level until either the number of sweeps nrec is as large

as the number of iterations before the failure or the residual of the coarse level is below the residual of the coarse

level on the previous time step. Both numbers need to be received from the previous process as part of the recovery

process. Also, the maximal number of sweeps is limited by the number of parallel time-steps P, see Section 3.2. Since

PFASST can only be efficient when coarse level sweeps are cheap compared to sweeps on the fine level, the resulting

overhead should be relatively small, see also Section 3.2. The proposed coarse level correction strategy is sketched

in Algorithm 4. For simplicity, we sketch the coarse level correction only for two-level PFASST. For multi-level

PFASST, this correction would be performed on the coarsest level only in order to minimize overhead. This approach

is similar to the standard predictor phase in the PFASST algorithm.

Algorithm 4: coarse level correction

input : fine level values Uk,f, number of recovery sweeps nrec

output: updated coarse values Ũk,c, updated fine level values Ũk,f

Repopulate coarse level through restriction

4.1 Restrict Uk,c ← Uk,f

Perform additional coarse sweeps

4.2 Ũk,c ← Uk,c

4.3 for k = 1, nrec do

4.4 coarse sweep update of Ũk,c

4.5 end

Compute updated coarse correction

4.6 Ũk,f ← Uk,f + Interpolate
(

Ũk,c − Uk,c
)

4.7 return Ũk,f, Ũk,c

7

3.2. Overhead and efficiency

Overhead is a key metric to assess the performance of strategies for resilience. It is defined as the difference

between the wall clock time Tfault of a simulation in a faulty system with recovery minus the wall clock time Tno-fault

of a simulation in an ideal fault-free system [4]

O = Tfault − Tno-fault. (10)

We have theoretical models for both and can thus derive a theoretical model for O, which allows to assess the efficiency

of our recovery by using the number of iterations of PFASST as a proxy. Two-level PFASST without faults runs

approximately in wall clock time

Tno-fault = PncΓc + K (ncΓc + nfΓf) = (P + K) ncΓc + KnfΓf. (11)

Here, P is the number of processors, K the number of iterations, nc and nf are the number of coarse and fine sweeps

per iteration while Γc, Γf are the cost of a coarse or fine sweep. The model ignores communication cost and other

overhead but gives a reasonable estimate of PFASST’s performance [11, 12]. Now, if PFASST simply restarts after

failure in iteration Kfault, the wall clock time is

T restart
fault = 2PncΓc + (K + Kfault) (ncΓc + nfΓf) = (2P + K + Kfault) ncΓc + (K + Kfault) nfΓf (12)

with Kfault being the iteration in which the fault occurs. When PFASST performs a full restart, the number of iterations

required for convergence after the fault remains the same and the total number of iterations is K + Kfault. By taking

the difference of (11) and (12), we can compute the overhead of a simple restarting strategy as

Orestart = (P + Kfault) ncΓc + KfaultnfΓf. (13)

Because a fine sweep is much more expensive than a coarse sweep, that is Γf ≫ Γc, the additional fine sweeps required

by restarting will lead to significant overhead, particularly if the fault occurs late in the iteration and Kfault is large. For

a recovery procedure that performs nrec coarse level sweeps, we get the following wall clock time estimate:

T
recovery

fault
= PncΓc + (K + Kadd) (ncΓc + nfΓf) + nrecΓc + Γrec (14a)

= (P + K + Kadd) ncΓc + (K + Kadd) nfΓf + nrecΓc + Γrec, (14b)

where Γrec measures overhead from the reconstruction step due to communication of data or idle times. Because the

reconstructed values are not perfect, PFASST will typically require more iterations to converge than in the non-fault

case: the number of additional iterations requires is denoted as Kadd. The overhead from recovery then is

Orecovery = (Kaddnc + nrec)Γc + KaddnfΓf + Γrec. (15)

We define α := ncΓc/nfΓf as the coarse-to-fine ratio. The ratio between the overhead of a full restart and the overhead

of a recovery strategy then is given by

Orestart

Orecovery

=
(1 + α)Kfault + αP

(1 + α)Kadd + αnrec/nc +
Γrec

nfΓf

. (16)

Clearly, an effective recovery strategy has to satisfy Orecovery ≤ Orestart. This requires that (i) Kadd ≤ Kfault, (ii)

nrec ≤ ncP and (iii) Γrec ≪ nfΓf. As mentioned in Section 3.1, we choose nrec ≤ P, so that the second criterion is

always satisfied. Since the parameter α controls the potential speedup achieved by the temporal parallelization with

PFASST [11, 15], it can assumed to be small: otherwise it would not make much sense to use PFASST in the first

place. The main contributions to the reconstruction overhead Γrec will be the time required to start up a replacement

process and for it to receive data. Start-up times for a replacement process will depend on the architecture and MPI

implementation and efficient strategies like “hot replacement” are available to keep them small [9]. Communication

costs during recovery of a single step will be equal or smaller to the communication cost of a full PFASST iteration

(which requires communication for all processes) and thus, in a regime where PFASST is reasonably effective, will

be smaller than the cost of a fine sweep so that Γrec ≪ Γf. Therefore, the key criterion to decide whether a recovery

strategy is efficient compared to a simple restart is Kadd < Kfault.

8

4. Experiments

We start with parameter studies for two prototype problems in Subsection 4.1. While the problems are idealized,

their simplicity allows to study a wide range of parameters in a reasonable amount of time. Their dynamics (one

diffusive, the other advective) are also representative for a wider range of more complex problems. Performance of the

proposed recovery strategies is then illustrated in Subsections 4.2 and 4.3 for two complex problems, the Gray-Scott

diffusion-reaction model and the linearized Boussinesq equations for stratified, compressible flow. All experiments

are performed using the Python framework pySDC [18].

4.1. Prototype problems

As a diffusive example problem, the one-dimensional heat equation with a forcing term is used:

ut(x, t) = νuxx(x, t) + f (x, t), x ∈ [0, 1], t ∈ [0, 8],

f (x, t) = − sin(πx)(sin(t) − νπ2 cos(t)) for all x ∈ [0, 1], t ∈ [0, 8]

u(0, t) = u(1, t) = 0 for all t ∈ [0, 8],

u(x, 0) = sin(πx) for all x ∈ [0, 1],

ν = 0.5, ∆t = 0.5, N = 255.

(17)

As an advective example, the one-dimensional transport equation is studied:

ut(x, t) = cux(x, t), x ∈ [0, 1], t ∈ [0, 2],

u(0, t) = u(1, t) for all t ∈ [0, 2],

u(x, 0) = cos(2πx) for all x ∈ [0, 1],

c = 1.0, ∆t = 0.125, N = 256.

(18)

Here, N is the number of degrees-of-freedom in space for the finite difference discretizations. In both cases, we use

P = 16 parallel time steps and M = 5 Gauss-Lobatto collocation nodes for the temporal discretization. Only one

sweep is performed per level and iteration, so that nc = nf = 1.

Figure 2 shows the PFASST residuals in time step 7 for both problems plotted against the iteration number k. A

fault is simulated in this step after six iterations, i.e. Kfault = 6. Before the fault, PFASST is converging well for both

problems. For the heat equation, PFASST reaches the set tolerance of ε = 10−9 after K = 9 iterations, when no faults

are simulated. Note that for some reason the residual stalls in iteration 7 and 8 just above the tolerance and a slightly

larger ε would result in convergence in only 7 iterations. The advection equation requires K = 8 iterations to reach

the prescribed tolerance.

The fault after iteration k = 6 and subsequent recovery increases the residual, since the reconstructed solution is

not exact but only approximates lost data. For both equations, the two-sided reconstruction gives somewhat better

results than the one-sided strategy. However, interpolation alone increases the residual dramatically and causes a

massive increase in the number of PFASST iterations required to push the residual below the tolerance of 10−9. For

the diffusive problem, simple interpolation requires Kadd = 4 or Kadd = 5 additional iterations, for the advective

problem it requires Kadd = 3 or Kadd = 4 additional iterations. Interpolation alone is clearly not a very efficient

strategy. Note that the residual after the fault is even higher than the one at the beginning of the PFASST run. This is

due to the weak initial data for the replacement process compared to the initial data used for a standard PFASST run,

where a series of coarse sweeps are performed during the predictor phase.

Employing coarse corrections in addition to interpolation significantly reduces the increase of the residual, leading

to faster convergence after the fault. In the cases studied here, the best strategy is two-sided recovery with coarse

correction. It requires only Kadd = 1 additional iterations for the heat equation and Kadd = 2 additional iterations for

the advective problem. Compared to the K = 9 or K = 8 iterations in the case without a fault, this corresponds to

approximately a 11 % or 25 % overhead compared to the no-fault execution plus a small additional overhead from the

coarse correction sweeps. In both cases, this is also much better than the overhead of Kfault = 6 iterations that a simple

restart would incur.

9

(a) Heat equation

1 2 3 4 5 6 7 8 9 10 11 12 13 14
iteration

11

10

9

8

7

6

5

4

3

2

1

lo
g
1
0
(r
e
si
d
u
a
l)

tolerance

n
o
d
e
 f

a
ilu

re

no fault

1-sided

2-sided

1-sided + corr

2-sided + corr

(b) Advection equation

1 2 3 4 5 6 7 8 9 10 11 12
iteration

11

10

9

8

7

6

5

4

3

2

1

lo
g
1
0
(r
e
si
d
u
a
l)

tolerance

n
o
d
e
 f

a
ilu

re

no fault

1-sided

2-sided

1-sided + corr

2-sided + corr

Figure 2: Residual in time step 7 against number of iterations with a fault after iteration six for different recovery strategies. The design of this

figure is inspired by Figures 4 and 5 in Huber et al. [19].

These results show only the effect of a single fault and subsequent recovery on the residual of a single time step.

Since each time step communicates information to its successors, the increase in the residual will propagate forward

in time and affect other time steps. This is illustrated in Figure 3, which shows the residual at all time steps (y-axis) in

all iterations (x-axis) for two different recovery strategies. In the no-fault case (not shown), PFASST requires K = 9

iterations to converge. For the simple one-sided recovery shown in Figure 3a, the increased residual after a fault in

step 7 after iteration 6 not only affects subsequent iterations on time step 7 but spreads to later time steps and pollutes

their solutions, too. Using a better strategy leads to much smaller impact on later time steps as shown in Figure 3b.

Even though there is still a small increase in residual in later time steps after the fault, time steps 7 to 15 converge

quickly within a total of K = 10 iterations, i.e. Kadd = 1.

Essentially the same behavior is seen for the advection equation in Figure 4. Here, the no-fault run takes K = 11

iterations to converge. Because there is no diffusion, pollution of later time steps from incomplete recovery is worse

than for the diffusive problem. For the one-sided interpolation strategy depicted in Figure 4a, the fault in time step 7

10

pollutes all later time steps in the next iteration equally, increasing their residual by several orders of magnitude. In

contrast, two-sided interpolation with coarse corrections shown in Figure 3b only marginally affects later time steps

and allows for convergence of all later steps within 4 iterations, which results in a perfect Kadd = 0.

2 4 6 8 10 12 14
iteration

1

3

5

7

9

11

13

15

st
ep x

11

10

9

8

7

6

5

4

3

2

1

lo
g1

0(
re
si
du

al
)

(a) 1-sided recovery

2 4 6 8 10 12 14
iteration

1

3

5

7

9

11

13

15

st
ep x

11

10

9

8

7

6

5

4

3

2

1

lo
g1

0(
re
si
du

al
)

(b) 2-sided+corr strategy

Figure 3: Example with fault injection at step (i.e. processor) 7, iteration 7 and impact on residuals for the heat equation, see (17).

2 4 6 8 10 12 14
iteration

1

3

5

7

9

11

13

15

st
e
p

x

11

10

9

8

7

6

5

4

3

2

1

lo
g
1
0
(r
e
si
d
u
a
l)

(a) 1-sided recovery

2 4 6 8 10 12 14
iteration

1

3

5

7

9

11

13

15

st
e
p

x

11

10

9

8

7

6

5

4

3

2

1

lo
g
1
0
(r
e
si
d
u
a
l)

(b) 2-sided+corr recovery

Figure 4: Example with fault injection at step (i.e. processor) 7, iteration 7 and impact on residuals for the advection equation, see (18).

So far, a fault was only simulated at one specific time step in one specific iteration. However, both time step as

well as iteration number where a fault occurs will have an important influence on how the fault affects convergence.

For both setups, Figures 5 and 6 show parameter studies for the four different strategies, where both the affected

iteration Kfault (y-axis) and time step (x-axis) are varied. The total number of required iterations is color-coded with

larger numbers being darker.

For the diffusive problem, the no-fault case takes K = 9 iterations. In Figure 5, the impact of the four recovery

strategies can be seen. Darker colors indicate higher numbers of additional iterations Kadd, which vary from −1 to

7. Besides the small regions, where up to 6 additional iterations are required at Kfault = 2, the two-sided strategy

with additional coarse correction is clearly superior, requiring only Kadd = 3 additional iterations. The one-sided

strategy with coarse correction is slightly less effective. When using recovery without coarse correction, the number

of additional iterations mainly depends on the affected iteration, while the affected step plays only a minor role. In

general, the later the affected iteration, the larger Kadd becomes. The reason is that in later iterations, the approximate

solution is already very accurate so that the error made during recovery has a more significant impact. In early

11

iterations, the solution is still so inaccurate that the recovery error has almost no effect. Most importantly, in all cases

we have Kadd < Kfault so that the recovery strategies produce less overhead than a hard restart.

For the advective problem the no-fault case takes K = 11 iterations. Figure 6 shows the impact of the four recovery

strategies in this case. Again, darker colours indicate higher numbers of additional iterations Kadd, which vary from −1

to 6. Both one-sided and two-sided interpolation with coarse correction are effective strategies. The latter can recover

faults up to Kfault = 7 without any additional iterations. Even a fault in the last iteration in the last time step, which is

the worst-case, only causes Kadd = 3 additional iterations compared to the overhead of Kfault = 11 for a simple restart.

In contrast to the heat equation, faults in later time steps cause fewer additional iterations, unless they occur in late

iterations. Again, all strategies satisfy the criterion Kadd < Kfault for efficiency compared to restarting.

In some cases we observe one of two rather odd situations: (1) a recovery after an early fault (i.e. small Kfault)

can actually lead to a reduction of iterations compared to the no-fault case and (2) sometime recovery strategies can

lead to a massive increase in iterations while performing well for most other cases. Incident (1) can be observed e.g.

in Figure 5a, step 6, iteration 1 or in Figure 6c, steps 0 to 3, iterations 3 to 4. It seems that the recovery strategies

provide slightly better initial data in this early phase, so that the algorithm converges faster here, saving one iteration.

In our experiments, incident (2) seems to occur only for the heat equation example when using the two-sided recovery

strategy, i.e. in Figures 5b and 5d. When using a higher resolution in space (511 degrees-of-freedom instead of 255)

and thus a better coarse level resolution, this effect does not occur. In turn, using less degrees-of-freedom and thus a

worse coarse level resolution results in extremely slow convergence even when no fault occurs. Therefore, the quality

of the coarse level is crucial not only for convergence of the PFASST algorithm itself (which is well-known) but also

for the effectiveness of recovery strategies.

4.2. Gray-Scott reaction-diffusion

As a more complex diffusive example we consider the 1D Gray-Scott model [29] for a chemical reaction of two

componentsU andV. The model is given by the reaction-diffusion equations

ut = ∆u − uv2 + A(1 − u),

vt = D∆v + uv2
− Bu,

(19)

where u = u(x, t) and v = v(x, t) are the concentrations of the two species U and V, D is the normalized diffusion

coefficient ofV, A denotes the fed rate into the system (e.g. a reactor) and B is the overall decay rate ofV. Using this

model, chemical reactions of the type U + 2V → 3V, V → P can be simulated, where P is some inert product of

the reaction. Investigation of this model and its dynamics is an active topic of research [30, 31, 32].

We select A = 0.09, B = 0.086 and D = 0.01, which corresponds to the setup used to generate Figure 10 in

Doelman et al. [30] and leads to a dynamical evolution of pulses as shown in Figure 7. We start with initial conditions

u(x, 0) = 1 −
1

2
sin100(πx/L), v(x, 0) =

1

4
sin100(πx/L) (20)

for x ∈ [0, L] = [0, 100] in our case, representing a sharp initial peak at the center of the domain, see Figure 7a. We

use homogeneous Neumann boundary conditions.

For the spatial discretization, we use the FEniCS framework [33] and in particular the user interface DOLFIN [34]

with its Python front-end. For this project, we extended pySDC to handle FEniCS’ weak formulation of PDEs and it

is now capable of handling complicated multi-component equations by exploiting FEniCS’ formalism. By specifying

the right-hand sides in weak form and using FEniCS’s built-in solvers, pySDC provides easy-to-use high-order time-

stepping for finite element discretizations.

We choose 3 Gauss-Radau collocation nodes (with right end-point included) for fifth-order accuracy in time. We

also use a LU decomposition of the quadrature matrix to speed up SDC’s and PFASST’s convergence [35]2. The

simulation is run until to T = 1280.0 with time step ∆t = 2.0, i.e. for 640 time steps. To properly resolve the sharp

pulses in space, we use fourth-order standard finite elements with N = 513 degrees-of-freedom. FEniCS’ built-in

2Colloquially, this strategy has become known as ”St. Martin’s trick” due to the first name of its inventor.

12

1 3 5 7 9 11 13 15
affected step

1

2

3

4

5

6

7

8

9

a
ff

e
ct

e
d

 i
te

ra
ti

o
n

 (
K

fa
u
lt
)

0

2

4

6

K
ad

d

(a) 1-sided recovery

1 3 5 7 9 11 13 15
affected step

1

2

3

4

5

6

7

8

9

a
ff

e
ct

e
d

 i
te

ra
ti

o
n

 (
K

fa
u
lt
)

0

2

4

6

K
ad

d

(b) 2-sided recovery

1 3 5 7 9 11 13 15
affected step

1

2

3

4

5

6

7

8

9

a
ff

e
ct

e
d

 i
te

ra
ti

o
n

 (
K

fa
u
lt
)

0

2

4

6

K
ad

d

(c) 1-sided+corr recovery

1 3 5 7 9 11 13 15
affected step

1

2

3

4

5

6

7

8

9
a
ff

e
ct

e
d

 i
te

ra
ti

o
n

 (
K

fa
u
lt
)

0

2

4

6

K
ad

d

(d) 2-sided+corr recovery

Figure 5: Number of additional iterations Kadd for the heat equation (17) if a fault occurs at a particular step (x axis) and a particular iteration (y

axis).

Newton method serves as spatial solver with absolute tolerance 10−9 and relative tolerance 10−8, treating the full right-

hand side of the PDE implicitly. We parallelize in time using 20 blocks of 32 parallel steps with two-level PFASST.

Standard coarsening via reduction of degrees-of-freedom is employed, i.e. we use N = 257 degrees-of-freedom on

the coarse level. PFASST iterates until a residual of 10−7 is reached (absolute tolerance).

For the no-fault run, the maximum number of iterations is K = 7 except for the first block which needs K = 10 iter-

ations due to its fast dynamics. To “stress-test” the different recovery strategies, faults are injected at random. Before

starting a new iteration, we inject a fault with a probability of 3%. This probability is clearly very high and (hope-

fully) does not reflect hardware properties of real-world HPC systems. It however creates different realistic failure

patterns throughout the run, which are difficult to anticipate and create a-priori. It also minimizes the chance of testing

the recovery strategies for favorable conditions only. Interesting structures observed in the distribution of faults are

e.g. multiple faults of the same process in quick succession, which, in a real-world system, could be caused by a faulty

component or clusters of faults mimicking cascading failures. In order to be able to compare different strategies, the

random pattern of faults is generated a-priori and then applied to all simulations testing different recovery strategies.

We only allow faults in iterations that are also performed in the no-fault case, that is additional iterations caused by

fault recovery are not subjected to faults. Otherwise, comparison with the no-fault reference becomes difficult.

13

1 3 5 7 9 11 13 15
affected step

1

2

3

4

5

6

7

8

9

10

11

af
fe

ct
ed

 it
er

at
io

n
(K

fa
u
lt
)

0

2

4

6

K
ad

d

(a) 1-sided recovery

1 3 5 7 9 11 13 15
affected step

1

2

3

4

5

6

7

8

9

10

11

af
fe

ct
ed

 it
er

at
io

n
(K

fa
u
lt
)

0

2

4

6

K
ad

d

(b) 2-sided recovery

1 3 5 7 9 11 13 15
affected step

1

2

3

4

5

6

7

8

9

10

11

af
fe

ct
ed

 it
er

at
io

n
(K

fa
u
lt
)

0

2

4

6

K
ad

d

(c) 1-sided+corr recovery

1 3 5 7 9 11 13 15
affected step

1

2

3

4

5

6

7

8

9

10

11
af

fe
ct

ed
 it

er
at

io
n

(K
fa
u
lt
)

0

2

4

6

K
ad

d

(d) 2-sided+corr recovery

Figure 6: Number of additional iterations Kadd for the advection equation (18) if fault occurs at a particular step (x axis) and a particular iteration

(y axis).

The simplest recovery strategy is applied, one-sided interpolation without coarse level corrections. In Figure 8,

three representative time-parallel blocks are shown, ranging from t = 578 to t = 768 (blocks 9, 10, 11) which contain

time steps 288 to 384. In particular, this part of the run contains the worst result using one-sided recovery: up to

Kadd = 7 additional iterations are required to converge in block 9 (steps 288–320). This is due to the cluster of

failures in iterations 3 and 5. Darker colors indicate higher residuals on this process and while the two isolated faults

in iterations 1 and 2 have negligible impact on convergence, the three failures in iteration 3 as well as the failures

in iterations 5 and 6 lead to very high residuals on all subsequent processes. In the next block, only four faults are

injected and their impact is limited, leading to Kadd = 2 additional iterations which are mainly due to the isolated

faults in iterations 5 and 6. The last bock shows a cluster of faults: during six iterations there are four faults within

the last seven processes. While the previous processes converge rapidly within less than the original K = 7 iterations,

this last group of affected processes needs another Kadd = 3 iterations to finish. We emphasize, however, that even

the most simple recovery strategy performs quite well: except for the first block, we always have Kadd < Kfault despite

multiple failures. Since simple restarting would have to restart after every single fault and probably not make any

progress at all, recovery is clearly the more efficient option.

In Figure 9 we show the additional iterations Kadd caused by the faults for the four recovery strategies. For clarity

14

(a) Initial concentrations (b) Time t = 100 (c) Time t = 400

Figure 7: Evolution of the concentrations of componentsU andV over time.

288 304 320 336 352 368
step

2

4

6

8

10

12

14

it
e
ra

ti
o
n

x

x
x

xx

x

x

x
x

x
x

x
x

x
x

x
x

x

x

-9

-7

-5

-3

-1

lo
g
1
0
(r
e
si
d
u
a
l)

Figure 8: Evolution of the residual for the Gray-Scott example (19) using 32 parallel steps per block, showing 3 representative blocks out of 20

(blocks 9 to 11), which comprise the steps 288 to 384 and cover the time interval t = 576 to t = 768. Failures are marked with an x. Simple

one-sided recovery without coarse correction sweeps is performed.

0 5 10 15 20
block

0

2

4

6

8

K
ad

d

1-sided

2-sided

1-sided+corr

2-sided+corr

Figure 9: Additional iterations Kadd for each block in the Gray-Scott example using the four different recovery strategies. We only show iteration

counts of the last process for each block to avoid cluttering. The black line indicates the the base line of the run without faults.

15

and in contrast to Figure 8, we only consider the iteration count at the last process of each block, but now show data

for the whole run containing all 20 blocks. Since the last process in each block is always the last one to converge,

its iteration count determines the iteration count of the whole PFASST block. Except for blocks 0, 9 and 16, using

two-sided interpolation is always better than one-sided interpolation. In all other blocks, the two-sided strategy is

clearly superior, reducing Kadd by one or two.

Interestingly, applying coarse corrections does not improve performance further, neither for one- nor for two-

sided interpolation. Only at blocks 5 and 9 does the coarse correction reduce Kadd compared to solely two-sided

interpolation. Two-sided interpolation alone already provides an effective recovery strategy and the more expensive

application of coarse corrections is, for this configuration, not justified. This is related to the observation made

before: the quality of the coarse level determines not only the convergence of the PFASST algorithm itself but also

the effectiveness of recovery strategies. Tests with twice as many degrees-of-freedom show that when overall spatial

resolution of the problem is higher, coarse corrections do help to reduce Kadd further.

4.3. Boussinesq equations

As complex benchmark of hyperbolic type we consider the linearized Boussinesq equations [36, Section 8.2.4]

ut + Uux + cs px = 0,

wt + Uwx + cs pz = b,

bt + Ubx + N2w = 0,

pt + U px + cs (ux + wz) = 0,

(21)

a transformed variant of the Euler equations. Equations (21) describe flow of a compressible, stably stratified fluid.

Here, (u,w) is the velocity field, b the buyoancy and p the pressure. The parameter U is the advection velocity of

the background, cs is the acoustic wave speed while N is a parameter governing the stability of the stratification of

the fluid, the so-called Brunt-Väisälä frequency. We consider a test case widely used in meteorology, where an initial

perturbation in buoyancy generates a gravity wave traveling through a channel [37].

Equations (21) are discretized in space on the fine level using fifth order upwind stencils for the advective terms

and fourth order centered differences for the other derivatives. On the coarse level, first order upwind stencils together

with second order centered stencils are used. Only operator coarsening is used here, but no reduction of degrees-of-

freedom on the coarse levels. The computational domain is [−150, 150] × [0, 10], corresponding to a channel with

a length of 300 km and a height of 10 km. Both levels in PFASST use 450 nodes in the horizontal and 30 nodes

in the vertical direction, resulting in a slightly anisotropic mesh where the vertical resolution is twice as fine as the

horizontal resolution. The horizontal background velocity is set to U = 0.02, corresponding to 20 m s−1, the acoustic

wave velocity to cs = 0.3, corresponding to 300 m s−1. Both are realistic values for wind and sound speeds in the

troposphere. The stability parameter is set to N = 0.01 s−1. Periodic boundary conditions in horizontal direction and

a no-slip condition at the top and bottom are used.

PFASST integrates the problem until T = 960 s on P = 16 processors with M = 3 Gauss-Lobatto nodes per time

step and a tolerance of ε = 10−6. The time step size is ∆t = 3 s, leading to 320 time steps and thus 20 PFASST

blocks. A SDC sweep with fast-wave slow-wave splitting [38] is used, where the slow advective terms are integrated

explicitly, while the terms associated with fast traveling gravity and acoustic waves are integrated implicitly. To solve

the implicit part, GMRES with a tolerance of 10−10 and restarting after ten iterations is used. A localized perturbation

of buoyancy

θ(x, z, 0) = ∆θ sin

(

πz

H

)

1

1 +
(x−xc)2

a2

(22)

with xc = −50, a = 5, H = 10 and ∆θ = 0.01 is set as initial data while u, w and p are initially set to zero. This

initial buoyancy perturbation generates gravity waves travelling to the left and to the right through the channel, see

Figure 10. Since the model is compressible, sounds waves are present as well but too small in amplitude to be visible

in the depicted solution.

Figure 11 shows the evolution of the PFASST residual for the Boussinesq equation for three consecutive blocks

of sixteen steps without faults. Shown are the ninth, tenth and eleventh blocks, covering the time from t = 384 s to

t = 528 s. Other blocks show essentially the same behavior. As can be seen, for the hyperbolic example PFASST

16

converges noticeably slower than for the diffusive Gray-Scott problem. In all blocks, the last processor needs between

K = 11 and K = 12 iterations to reach the requested tolerance. The step-shaped structure indicates that time steps

converge at a rate of about one per iteration, in contrast to the Gray-Scott example where usually multiple processors

converge in the same iteration.

Figure 12 shows the same blocks but now with randomly injected faults, indicated by black crosses. Only simple

one-sided recovery without coarse corrections is performed here. For the Boussinesq problem, all four analyzed

recovery strategies perform essentially the same. Thus we show results only for the most simple one, since the

higher cost of the more elaborate procedures seem to provide no benefit for this particular setup. Again, using better

resolution in space may lead to more pronounced differences between the recovery strategies.

The impact of the faults on the number of iterations is small: the last block needs one additional iteration (Kadd = 1)

to converge while, for some reason, the middle block requires one iteration less in the case with fault recovery. In

this particular case, the fault removes an unfavorable value from the iteration, similar to the incidents described in

Section 4.1. Faults still do have a visible impact on the evolution of the residual, see e.g. the fault in iteration 7 in

step 136 which causes a small localized increase in residual in later iterations in subsequent time steps. However,

these disturbances have only a small effect on the convergence of the last processor, which determines overall cost.

Therefore, even with a rather basic recovery strategy, fault-tolerant PFASST allows the simulation to progress at

almost the same rate as in the no-fault case.

150 100 50 0 50 100 150

x in km

0

2

4

6

8

10

z
in

 k
m

Figure 10: Buoyancy b at t = 960 s for the Boussinesq equations. The initial perturbation has created gravity waves travelling to the left and right

in the channel while background advection moves them slowly to the right. The difference between isolines is 0.001 with negative values in dark

blue and positive values in red.

5. Outlook and possibilities for further research

Extension to multi-level PFASST. One direction for further research is to study the impact on fault recovery when

using multiple levels in PFASST. By design, PFASST can be used with a full space-time hierarchy. Application of the

recovery strategies presented should lead to lower recovery costs when more than two levels are accessible. However,

the influence on the number of additional iterations Kadd is not obvious and detailed tests are required to evaluate the

final overhead. There may also exist more involved strategies for recovery, especially when PFASST runs with more

than two levels. Also, it is worth investigating whether or not processes waiting for the recovery procedure to finish

can do other meaningful work, e.g. perform additional iterations as in the predictor phase. This could potentially

reduce Kadd further.

Extension of the overhead model. The convergence of the spatial iterative solver, e.g. the Newton solver for the Gray-

Scott example in Section 4.2 or GMRES for the Boussinesq equation in Section 4.3, benefit from recovery strategies

as well. As PFASST converges, the accuracy of the initial solutions provided for the spatial solver improves, which

17

128 136 144 152 160 168
step

2

4

6

8

10

12
it
e
ra

ti
o
n

-8

-7

-6

-5

-4

-3

-2

lo
g
1
0
(r
e
si
d
u
a
l)

Figure 11: Evolution of the residual for the Boussinesq example (21) without faults. Shown are the 3 representative blocks 9, 10 and 11 out of 20,

which corresponds to time steps 128 to 176 and cover the time interval [384, 528].

128 136 144 152 160 168
step

2

4

6

8

10

12

it
e
ra

ti
o
n

x

x
x

x

x
x

x

x
x

x

x
x -8

-7

-6

-5

-4

-3

-2

lo
g
1
0
(r
e
si
d
u
a
l)

Figure 12: Evolution of the residual for the Boussinesq example (21) with faults. Shown are the 3 representative blocks 9, 10 and 11 out of 20,

which correspond to time steps 128 to 176 and cover the time interval [384, 528]. Simulated hardware failures are marked by an x. Only one-sided

recovery without coarse correction sweeps is used.

means that in later iterations they converge quicker and implicit solves get much cheaper [21, 39]. With reasonably

accurate solutions after the recovery attempt, the spatial solver starts with better initial values on the fine level. For

a complete restart, in contrast, these accurate initial values are not available which will lead to further increase of

overhead. Since the model in Section 3.2 assumes constant costs for coarse or fine sweeps, this effect is not covered.

A more detailed investigation is left for future work.

Combination with parallelization in space. In most cases, parallel-in-time integration will be used in combination

with large-scale spatial parallelization. Since spatial parallelization usually employs some form of decomposition of

the spatial domain, a single failing process does not mean that the full solution at a time step is lost but only the

solution of one spatial subdomain. The straightforward generalization of the here presented strategies would be a

local recovery, using only information from the solution on the same subdomain at the time step before and after. A

direct continuation of this work would be to assess the impact of the different recovery strategies in such a scenario.

Since approaches for algorithm-based fault tolerance and fault recovery for spatial solvers already exist, more intricate

forms of combined space-time recovery procedures could be devised as well.

Generalization to other parallel-in-time integration methods. The fundamental idea of the algorithm-based recovery

approach presented here relies on the iterative nature of PFASST. It is natural to transfer the concept to other iterative

18

parallel-in-time integration schemes such as Parareal [13] or MGRIT [40]. In these methods, each level (two for

Parareal, multiple for MGRIT) is equipped with standard, non-iterative propagators such as implicit Euler or Runge-

Kutta methods. Using similar strategies as presented here, it seems likely that these method lend themselves equally

well to algorithm-based fault tolerance. Investigating recovery strategies in the context of Parareal and/or MGRIT is

an interesting topic for further studies.

Implementation into an MPI framework. While the paper illustrates that the PFASST algorithm is a promising can-

didate for algorithm-based fault tolerance, the feasibility of the approach in large-scale parallel computations remains

to be shown. An important next step would be to validate that the theoretical model of overhead in terms of iterations

gives an accurate representation of overhead in terms of wall clock time. For the Python framework pySDC, imple-

menting fault injections and testing new strategies for recovery in PFASST is straightforward but does not allow for

meaningful runtime measurements. However, for tests on actual HPC machines using a lower-level programming lan-

guage like C++ and advanced communication libraries like MPI, a number of technical questions arise. In particular,

analysing the impact of start-up times for replacement processes will be critical, since it could constitute an important

bottleneck. Also, realistic hard-faults are more complex than the simulated faults used in the paper.

For the transition to non-emulated faults, a suitable MPI implementation is necessary that robustly detects and

deals with non-responsive MPI processes during sends and receives. It also has to provide an interface for user-level

recovery procedures and a reliable mechanism to replace or restart a failed process. This replacement process could

be the one that failed after a reboot, a spare process on a different node or one of the other time-parallel processes.

In the latter case, information from one of the other time steps has to be dropped in order to take over the failed one.

If one of the earlier time steps has already converged, the choice is easy. If all processes are still iterating, on the

other hand, using the very last process as replacement seems to be reasonable, since here the iteration is in the earliest

stage. In contrast to the fault emulation presented here, a parallel implementation furthermore necessitates a number

of additional technical steps during recovery: data from adjacent processes have to be received and these processes

have to know that they are expected to send these data. Then, the problem has to be set up on the replacement process,

including allocation of memory. Finally, for the identification as well as for the restart of a replacement process,

some kind of supervisor or at least global, up-to-date information on all processes seems to be necessary. Efficient

implementation of recovery strategies into the MPI-based C++-framework PFASST++ [41] is ongoing work.

Convergence analysis. In most of the cases shown in this work, two-sided interpolation with coarse correction seemed

to be among the most effective strategies, but in others the coarse correction provided no benefit at all. As mentioned

in the numerical experiments of Section 4, the quality of the coarse level is essential for the efficiency of the different

recovery strategies. To predict the effect of faults, different recovery strategies and additional coarse corrections as

well as to identify optimal strategies for a given setup, an in-depth mathematical analysis of PFASST is required.

Unfortunately, such an analysis proves to be difficult and is the subject of substantial ongoing efforts. A recent

paper casts the method into the framework of space-time multigrid methods [42] and hopefully this will allow for a

comprehensive analysis in the future.

6. Summary

We present and compare different strategies that could, in principle, allow the parallel-in-time integration method

PFASST to recover from hard faults and subsequent loss of data. As a parallel-across-the-steps method, PFASST

stores solutions at multiple points in time on different processors, which allows to recover a solution that is lost due to

process failure. A theoretical model links the overhead of different approaches to the number of additional iterations

required by fault-tolerant PFASST to reach a specific residual tolerance. Efficiency of the different strategy is assessed

in multiple examples of diffusive and advective type. For both the Gray-Scott reaction diffusion model and the

Boussinesq model for compressible flows we demonstrate that fault-tolerant PFASST can allow a simulation to make

progress even when subjected to a high number of randomly occurring faults. Since PFASST shares features with

other parallel-in-time methods like Parareal or MGRIT, similar strategies to exploit algorithm-based fault tolerance

for parallel-in-time integration could be devised for other methods as well. The paper focusses on assessing the impact

of simulated faults and subsequent recovery on the convergence of PFASST and leaves runtime measurements in a

parallel environment for future work.

19

Acknowledgments

The outline of this paper was drafted during a meeting of both authors at the Centre for Interdisciplinary Research

(ZIF) at the University of Bielefeld in Germany. D. Ruprecht thankfully acknowledges an invitation by the ZIF for a

research visit in August 2015 during which this meeting took place.

References

[1] G. Bosilca, A. Bouteiller, T. Herault, Y. Robert, J. Dongarra, Assessing the impact of ABFT & checkpoint composite strategies, in: Parallel

Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International, pp. 679–688.

[2] J. Dongarra, P. Beckman, al., The international exascale software roadmap, Int. Journal of High Performance Computer Applications 25

(2011).

[3] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, M. Snir, Toward exascale resilience: 2014 update, Supercomputing Frontiers and

Innovations 1 (2014).

[4] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien, P. Coteus,

N. A. DeBardeleben, P. C. Diniz, C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyffer,

D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, E. V. Hensbergen, Addressing failures in exascale computing, International Journal

of High Performance Computing Applications 28 (2014) 129–173.

[5] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra, A. Guermouche, T. Herault, Y. Robert, F. Vivien, D. Zaidouni, Unified model

for assessing checkpointing protocols at extreme-scale, Concurrency and Computation: Practice and Experience 26 (2014) 2772–2791.

[6] K.-H. Huang, J. Abraham, Algorithm-based fault tolerance for matrix operations, Computers, IEEE Transactions on C-33 (1984) 518–528.

[7] Z. Chen, J. Dongarra, Algorithm-based fault tolerance for fail-stop failures, Parallel and Distributed Systems, IEEE Transactions on 19

(2008) 1628–1641.

[8] Z. Chen, Algorithm-based recovery for iterative methods without checkpointing, in: Proceedings of the 20th International Symposium on

High Performance Distributed Computing, HPDC ’11, ACM, New York, NY, USA, 2011, pp. 73–84.

[9] E. Yao, R. Wang, M. Chen, G. Tan, N. Sun, A case study of designing efficient algorithm-based fault tolerant application for exascale

parallelism, in: Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pp. 438–448.

[10] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, J. Dongarra, Post-failure recovery of mpi communication capability: Design and rationale,

International Journal of High Performance Computing Applications (2014).

[11] R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. L. Minion, M. Winkel, P. Gibbon, A massively space-time parallel N-body solver, in:

Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, IEEE Computer

Society Press, Los Alamitos, CA, USA, 2012, pp. 92:1–92:11.

[12] D. Ruprecht, R. Speck, M. Emmett, M. Bolten, R. Krause, Poster: Extreme-scale space-time parallelism, in: Proceedings of the 2013

Conference on High Performance Computing Networking, Storage and Analysis Companion, SC ’13 Companion.

[13] J.-L. Lions, Y. Maday, G. Turinici, A ”parareal” in time discretization of PDE’s, Comptes Rendus de l’Acadmie des Sciences - Series I -

Mathematics 332 (2001) 661–668.

[14] C. Farhat, M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure

applications, International Journal for Numerical Methods in Engineering 58 (2003) 1397–1434.

[15] M. Emmett, M. L. Minion, Toward an Efficient Parallel in Time Method for Partial Differential Equations, Communications in Applied

Mathematics and Computational Science 7 (2012) 105–132.

[16] A. S. Nielsen, J. S. Hesthaven, Fault tolerance in the parareal method, 2016.

[17] B. W. Grout, H. Kolla, M. L. Minion, J. Bell, Achieving algorithmic resilience for temporal integration through spectral deferred corrections,

arXiv:1504.01329v1 [cs.CE], 2015.

[18] R. Speck, D. Ruprecht, pySDC: Fault-tolerant PFASST, http://dx.doi.org/10.5281/zenodo.51033, 2016.

[19] M. Huber, B. Gmeiner, U. Ruede, B. Wohlmuth, Resilience for multigrid software at the extreme scale, arXiv:1506.06185 [cs.MS], 2015.

[20] O. Mula, Some contributions towards the parallel simulation of time dependent neutron transport and the integration of observed data in real

time, Ph.D. thesis, Université Pierre et Marie Curie - Paris VI, 2014.

[21] M. L. Minion, R. Speck, M. Bolten, M. Emmett, D. Ruprecht, Interweaving PFASST and parallel multigrid, SIAM Journal on Scientific

Computing 37 (2015) S244 – S263.

[22] A. Dutt, L. Greengard, V. Rokhlin, Spectral deferred correction methods for ordinary differential equations, BIT Numerical Mathematics 40

(2000) 241–266.

[23] R. Speck, D. Ruprecht, M. Emmett, M. L. Minion, M. Bolten, R. Krause, A multi-level spectral deferred correction method, BIT Numerical

Mathematics 55 (2015) 843–867.

[24] M. L. Minion, Semi-implicit spectral deferred correction methods for ordinary differential equations, Communications in Mathematical

Sciences 1 (2003) 471–500.

[25] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff problems, Springer-Verlag Berlin Heidelberg, 2nd

edition, 1993.

[26] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977) 333–390.

[27] F. Köhler, pfasst-tikz: visualization of the PFASST algorithm, https://github.com/f-koehler/pfasst-tikz, Accessed: October 15,

2015.

[28] M. Emmett, M. L. Minion, Efficient implementation of a multi-level parallel in time algorithm, in: Domain Decomposition Methods in

Science and Engineering XXI, volume 98 of Lecture Notes in Computational Science and Engineering, Springer International Publishing,

2014, pp. 359–366.

20

http://dx.doi.org/10.5281/zenodo.51033
https://github.com/f-koehler/pfasst-tikz

[29] P. Gray, S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability, Chem.

Eng. Sci. 38 (1983) 29–43.

[30] A. Doelman, T. J. Kaper, P. A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity 10 (1997) 523.

[31] A. Doelman, R. A. Gardner, T. J. Kaper, Stability analysis of singular patterns in the 1D Gray-Scott model: a matched asymptotics approach,

Physica D 122 (1998) 1–36.

[32] W. N. Reynolds, J. E. Pearson, S. Ponce-Dawson, Dynamics of self-replicating patterns in reaction diffusion systems, Phys. Rev. Lett. 72

(1994) 2797–2800.

[33] A. Logg, K.-A. Mardal, G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Springer

Berlin Heidelberg, 2012.

[34] A. Logg, G. N. Wells, DOLFIN: Automated finite element computing, ACM Trans. Math. Softw. 37 (2010) 20.

[35] M. Weiser, Faster SDC convergence on non-equidistant grids by DIRK sweeps, BIT Numerical Mathematics 55 (2014) 1219–1241.

[36] D. R. Durran, volume 32 of Texts in Applied Mathematics, Springer New York, 2 edition, 2010.

[37] L. J. Wicker, W. C. Skamarock, A Time-Splitting Scheme for the Elastic Equations Incorporating Second-Order Runge-Kutta Time Differ-

encing, Monthly Weather Review 126 (1998) 1992–1999.

[38] D. Ruprecht, R. Speck, Spectral deferred corrections with fast-wave slow-wave splitting, arXiv:1602.01626 [math.NA], 2016.

[39] R. Speck, D. Ruprecht, M. Minion, M. Emmett, R. Krause, Inexact spectral deferred corrections, in: T. Dickopf, J. M. Gander, L. Halpern,

R. Krause, F. L. Pavarino (Eds.), Domain Decomposition Methods in Science and Engineering XXII, Springer International Publishing, 2016,

pp. 389–396.

[40] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, J. B. Schroder, Parallel time integration with multigrid, SIAM Journal on Scientific

Computing 36 (2014) C635–C661.

[41] T. Klatt, M. Emmett, D. Ruprecht, R. Speck, S. Terzi, PFASST++: MPI Bugfix (v0.5.0) (2015).

[42] M. Bolten, D. Moser, R. Speck, A multigrid perspective on the parallel full approximation scheme in space and time, arXiv:1603.03586

[math.NA], 2016.

21

	Introduction
	The PFASST algorithm
	Spectral deferred corrections (SDC)
	Multi-level SDC (MLSDC)
	Parallel full approximation scheme in space and time (PFASST)

	Fault-tolerant PFASST
	Recovery strategies
	One-sided interpolation
	Two-sided interpolation
	Coarse level corrections

	Overhead and efficiency

	Experiments
	Prototype problems
	Gray-Scott reaction-diffusion
	Boussinesq equations

	Outlook and possibilities for further research
	Summary

