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Several recent studies hint at shared patterns in decision-making between

taxonomically distant organisms, yet few studies demonstrate and dissect

mechanisms of decision-making in simpler organisms. We examine decision-

making in the unicellular slime mould Physarum polycephalum using a classical

decision problem adapted from human and animal decision-making studies:

the two-armed bandit problem. This problem has previously only been used

to study organisms with brains, yet here we demonstrate that a brainless unicel-

lular organism compares the relative qualities of multiple options, integrates

over repeated samplings to perform well in random environments, and com-

bines information on reward frequency and magnitude in order to make

correct and adaptive decisions. We extend our inquiry by using Bayesian

model selection to determine the most likely algorithm used by the cell when

making decisions. We deduce that this algorithm centres around a tendency

to exploit environments in proportion to their reward experienced through

past sampling. The algorithm is intermediate in computational complexity

between simple, reactionary heuristics and calculation-intensive optimal per-

formance algorithms, yet it has very good relative performance. Our study

provides insight into ancestral mechanisms of decision-making and suggests

that fundamental principles of decision-making, information processing and

even cognition are shared among diverse biological systems.

provided by White Rose Resear
1. Introduction
While less recognized than their animal counterparts, many non-neuronal organ-

isms, such as plants, bacteria, fungi and protists, also have the ability to make

complex decisions in difficult environments (for a full review, see [1]). The most

incredible feats of problem-solving among non-neuronal organisms, many

previously reported only in the so-called cognitive organisms, have been demon-

strated by the unicellular slime mould Physarum polycephalum. This unicellular

protist lacks a central nervous system and possesses no neurons, yet it has been

demonstrated to solve convoluted labyrinth mazes [2], find shortest length net-

works and solve challenging optimization problems [3], anticipate periodic

events [4], use its slime trail as an externalized spatial memory system to avoid

revisiting areas it has already explored [5] and even construct transport networks

that have similar efficiency to those designed by human engineers [6]. Slime

mould cells also display similar decision-making constraints to the cognitive

constraints observed in brains. Latty & Beekman [7] provide evidence that

P. polycephalum is vulnerable to making the same economically irrational

decisions that can afflict humans [8], starlings [9], honeybees [10] and grey jays
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Figure 1. Two-armed bandit experimental set-up for Physarum polycephalum. Cell biomass was placed in the centre (yellow box). White boxes indicate blank agar
sites (non-rewarding), brown boxes indicate oat-agar food sites (rewarding). Agar sites were 1 mm in diameter. The first site on either arm was always a 5% oat-
agar food site, to ensure the cell initialized exploration on both arms. Pictured here are the (a) 4e versus 8e treatment, where the LQ arm has evenly distributed
reward sites, and the HQ arm has 8 evenly distributed reward sites, and (b) 4r versus 8r treatment, where the reward sites were distributed randomly. For graphic
representations of other tested distributions, see the electronic supplementary material, figure S1. (Online version in colour.)
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[10]. The same authors also demonstrate that, like humans,

slime moulds are subject to speed-accuracy trade-offs when

confronted with a difficult choice set [11]. Studies such as

these support the growing notion that certain problem-solving

processes, as well as their associated trade-offs and paradoxes,

are spread wide on the phylogenetic tree [12,13]. To compare

the information processing abilities of different organisms,

we require a common testing platform based on challenges

likely shared by organisms from vastly different taxa.

Many of the decisions faced by humans and most other

organisms necessitate exploration of a number of options

before a commitment is made to exploit a particular choice.

These decisions are often made more complex when their vari-

ables are continually changing, resulting in a need for constant

re-evaluation of alternatives. The question boils down to a

fundamental conundrum in decision-making: to exploit fam-

iliar but potentially sub-optimal options, or to risk further

exploration for potentially more rewarding ones? This is

known as the exploration–exploitation trade-off. Several

studies in both humans and other animals have examined

the exploration–exploitation trade-off using what has

become a classic behavioural experiment in the understanding

of decision-making; the multi-armed bandit problem. The

multi-armed bandit problem derives its name from casino

slot machines—deciding which machine to play to maximize

the net payoff proves to be nearly impossible for the average

gambler to consistently solve [14]. Only one provably optimal

schedule has been derived for the special case of stationary

bandit problems where there are no costs for switching

between arms—the Gittins index [15]. Empirical studies of

bandit problem-solving have thus far only been carried out

in organisms with brains (such as humans [16], great tits [17],

pigeons [18], sticklebacks [19] and bumblebees [20]). However,

the exploration–exploitation trade-off is a problem faced by

unicellular organisms as well, which must tackle the problem

without the aid of complex nervous systems. Given the

sophisticated problem-solving abilities of the slime mould

P. polycephalum, we chose to examine this protist’s decision-

making capabilities by challenging slime mould cells with

two-armed bandit problems of increasing difficulty. Beginning

with a simple, static choice between two arms of different

quality, we advanced through levels of difficulty to our most

challenging trials in which slime moulds must make decisions

in noisy, unpredictable environments. We next uncovered the

proximate decision rules used by slime moulds to make

‘good’ decisions. Finally, we used Bayesian model selection
to select the most likely behavioural algorithm employed by

the slime mould cells, and compared this strategy to the per-

formance expected by the more complex, and in some cases

provably optimal algorithms such as the Gittins index.
2. Material and methods
2.1. Biological material
The vegetative state of P. polycephalum, called a plasmodium, is a

large, multinucleate cell. The general morphology of a plasmo-

dium includes an extending ‘search front’ at the leading edge of

the migrating cell, typically forming a dense fan-shape. This is fol-

lowed by a system of intersecting tubules towards the trailing edge

of the organism. Protoplasm is constantly and rhythmically

streamed back and forth through the network of tubules, circulat-

ing chemical signals and nutrients throughout the cell (see videos

at https://chrisrreid.wordpress.com/labwork/).

We maintained P. polycephalum plasmodia on plates of 1%

w/v agar with 5% w/v dissolved oat powder (Muscle FeastTM

Whole Oat Powder) in the dark at 258C. We obtained original

cultures from Carolina Biological Supply Companyw, and

recultured laboratory stocks on new 5% oat-agar plates weekly.

2.2. Shared experimental procedures
To challenge the slime mould with the two-armed bandit problem,

we provided P. polycephalum plasmodia (the mobile, actively fora-

ging stage of the cell’s life cycle) with a choice between two

differentially rewarding environments. These two choices consti-

tuted ‘arms’ of the two-armed bandit, and differed in their

amount and distribution of rewarding food sites (examples pro-

vided in figure 1). By expanding pseudopodia equally into both

environments, the cell could initially explore both arms. If capable

of choosing the better environment, the cell should eventually

switch from exploration to exploitation, and continue moving

only on the more rewarding arm. We considered the point at

which this happens to be where the cell made its decision.

The arms were 31 mm in length, containing varying 1 mm

blocks of either 1% w/v blank agar or 1% w/v agar with 5%

w/v dissolved oat powder (for all set-ups, see the electronic sup-

plementary material, figure S1). A 6 mm blank agar block was

placed between the two arms and acted as the start position for

the cells. Experiments were set up in lidded Petri dishes. The

first block along each arm was always a 5% oat-agar block to

ensure exploration of at least one site along each arm. The arm

with the greater number of oat-agar blocks was designated the

high-quality (HQ) arm, and the other designated the low-quality

(LQ) arm. Whether the left arm was the HQ or LQ was randomized
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between experiments. We placed 0.025 (+0.005) g of plasmodial

biomass from our culture on the start block to begin the exper-

iment. This was enough biomass to potentially cover the entire

experimental surface area during exploration, ensuring that any

differentiation we observed in biomass distribution was due to

cell choice, and not constrained by cell size. These cell fragments

begin to act as new individual plasmodia within minutes [21].

The time-course of our experiments (up to 48 h) was sufficiently

short that any redistribution of biomass was due to active cell

movement, not cell growth [22]. The first arm on which the cell

reached the last agar block was the arm we considered to be

‘chosen’. The experiment was stopped at this point. Each Petri

dish contained two replicates that were isolated from each other

by a lack of shared agar substrate.

2.3. Data collection and analysis
Each experiment lasted approximately 48 h, with up to 36 repli-

cates at a time. We took photographs every 10 min using a

GoPro Hero 3TM camera inside a darkbox. The temperature was

maintained at 258C. An LED panel beneath the Petri dishes pro-

vided illumination for photography for a duration of 10 s every

10 min. At all other times, the experiments were kept in darkness.

The images were analysed using custom-designed computer

vision software (run on MatlabTM version R2014a) that determined

the leading edges of the slime mould on each arm. We stopped

image analysis after each cell had reached the end of an arm. We

excluded any replicates where the cell left the arm and explored

the plate before reaching the end of an arm, or invaded or fused

with the adjacent replicate on a plate.

For all treatments where one arm was higher in quality than

the other, we graphed the proportion of replicates where the cell

reached the end of the HQ arm first (‘chose’ that arm). We also pro-

duced graphs depicting the dynamics of the decision-making

process, by graphing the difference in site discovery between HQ

and LQ arms for the first time each site was discovered on

either arm.

2.4. Choice scenarios
2.4.1. Baseline decision behaviour
As a baseline, we first examined how the cell behaved when given

a choice between two environments that were identical in quality.

Our treatments thus contained arms that were completely reward-

ing (31 versus 31), relatively devoid of reward (1 versus 1), or

intermittently rewarding in an evenly distributed (8e versus 8e)

or randomly distributed (8r versus 8r) pattern (electronic sup-

plementary material figure S1 and see figure S2 for the mean

reward site distributions). We compared the cell’s behaviour in

these treatments to a treatment in which one arm was considerably

more rewarding than the other (1 versus 8e).

2.4.2. Consistent reward with dissimilar, regular environments
As a standard bandit scenario, we chose a static, well-structured

and predictable exploration environment, where the HQ arm was

twice as rewarding as the LQ arm. We therefore set up treatments

with an LQ arm of 4 reward sites and a HQ arm of 8 reward

sites, distributed evenly along the arms (4e versus 8e, figure 1).

2.4.3. Consistent reward with dissimilar, irregular environments
We next examined how the predictability of the environment

affects the decision-making process. Our experimental set-up

allowed us to control the pattern of information received by the

cell as it explored both environments, simply by controlling the

distribution of reward sites along each arm. We were able to

ensure that as the cell explored both arms, the information relating

to the quality of each alternative could be received in a random
manner, representing a more naturalistic and unpredictable

environment. We repeated the 4 versus 8 treatment above, but in

this case the position of each reward site along the arm was deter-

mined randomly. The treatment was thus 4r versus 8r. The mean

distributions of reward sites and the randomization method are

available in the electronic supplementary material, figure S2.

2.4.4. Sensitivity to reward differences
In many models of decision-making, the level of similarity

between options can have a large impact on the decision-making

process [23,24]. Our previous treatments used a 1 : 2 ratio of

choice quality. Keeping this constant, we first doubled the absolute

number of food sites on each arm, in both evenly distributed (8e

versus 16e) and randomly distributed (8r versus 16r) scenarios

(electronic supplementary material, figure S1). Comparing these

treatments with their 4 versus 8 counterparts informs us of the sen-

sitivity of the cell to changes in the absolute quality of the opposing

options, while keeping the relative difference in quality constant.

We next lowered this relative difference in quality between the

arms, such that the LQ arm contained 11 reward sites and the

HQ arm contained 16 reward sites (11e versus 16e; electronic sup-

plementary material, figure S1), thereby making the discrimination

problem harder. We also repeated the treatment with a random

distribution of reward sites (11r versus 16r; electronic supplemen-

tary material figure S1. See the electronic supplementary material,

figure S2 for distribution of reward sites).

2.4.5. Random, non-binary reward with dissimilar, irregular
environments

In the treatments above, all reward sites contained an identical

concentration of oats as food (5%). Thus, in evaluating the environ-

ments on the LQ and HQ arms, the cell need only compare the

number of times a reward has been discovered on each arm. To

solve the non-binary two-armed bandit problem, the cell must

be able to make the more sophisticated comparison of the magni-

tude of the rewards returned from each environment sampled. In

our next experiments, both arms had an equal number of reward

sites (eight) distributed randomly along their lengths. The magni-

tude of each reward site was chosen randomly between 1% and 8%

oat-agar, and the HQ arm contained twice the overall percentage

of oat-agar as the LQ arm (reward sites totalling 2.5% oat-agar

on the LQ arm and 5% on the HQ arm; electronic supplementary

material, figure S1). We refer to this treatment as the ‘non-binary’

bandit. The mean distribution of reward sites is available in the

electronic supplementary material, figure S2.

2.5. Bayesian model selection
To reveal the specific behavioural algorithm that the cell used in

each step of exploring/exploiting the environment, we considered

10 rules of varying complexity which the cell could use to accu-

rately detect the availability of food in the experimental arena

and exploit this information to maximize total food intake. We

encoded these possible mechanisms as mathematical models for

the cell’s progression and used Bayesian model selection methods

[25,26] to identify which of these models best predicted the

observed movements, over all different treatments and the entire

duration of the experiments. These models ranged from very

simple rules through more complex heuristics, to rules that

approximate optimal two-arm bandit algorithms (Thompson

Sampling [27]). Our final model was the optimal Gittins process,

which provides a benchmark performance level that cannot be

exceeded in the bandit problem, assuming a decision-maker

with a correct Bayesian prior over alternative environmental

states, and extensive computational abilities [15]. The performance

of each model was evaluated by comparison to our experimental

data (electronic supplementary material, figure S3).
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2.5.1. Models
In each case, the model specifies the probability that the cell will

move to the right in the next move, mt, conditioned on its past experi-

ences encoded as six variables; (i) its last previous movement

direction, (ii) whether the last movement led to a reward site,

(iii) AR—the number of reward sites it has encountered on the

right arm (plus one pseudo-observation); (iv) AL—the number of

reward sites it has encountered on the left arm (plus one pseudo-

observation); (v) BR—the number of non-reward sites on the right

arm (plus one pseudo-observation); and (vi) BL—the number of

non-reward sites on the left arm (plus one pseudo-observation).

The pseudo-observations account for the effect of a uniform prior

distribution on the density of food (between zero and one, see the

electronic supplementary material for more information). The fol-

lowing is a summary of the models considered. Where used,

I(condition) is an indicator variable that takes the value one if the

condition is met and zero otherwise. For models 7 and 8, Q(x, j A,
B) is a function that represents the rational belief of an agent that

food density is x, given previous observations A and B (see the elec-

tronic supplementary material for details). For all models, since there

are only two arms to sample and cells were observed always to

explore, P(mt¼ L)¼ 1 2 P(mt¼ R).

(1) Autocorrelation: move in the same direction as the previous

time step, P(mt ¼ R) ¼ I(mt21 ¼ R).

(2) Anti-autocorrelation: move in the opposite direction to the

previous time step, P(mt ¼ R) ¼ I(mt21 ¼ L).

(3) Most successes: move in the direction where the most

reward has been found, P(mt ¼ R) ¼ I(AR . AL) þ 0.5 I(AR

¼ AL).

(4) Highest mean: move in the direction with the highest mean

number of encountered reward sites, P(mt ¼ R) ¼ I(AR/(AR

þ BR) . AL/(AL þ BL)) þ 0.5 I(AR/(AR þ BR) ¼ AL/(AL þ
BL)).

(5) Relative Successes: move with a probability in proportion to

the number of reward sites discovered on each arm, P(mt ¼

R) ¼ AR/(AL þ AR).

(6) Relative means (Thompson sampling): move with a prob-

ability in proportion to the mean number of reward sites

encountered on each arm,

Pðmt ¼ RÞ ¼ ½AR=ðAR þ BRÞ�
½AL=ðAL þ BLÞ þ AR=ðAR þ BRÞ�

:

(7) Most likely: move to the arm most likely to have the higher

reward density (as estimated from previous reward encoun-

ters, see below),

Pðmt¼RÞ¼I
ð1

0

ð1

x
QðyjAR, BRÞQðxjAL,BLÞdydx.0:5

� �

þ0:5I
ð1

0

ð1

x
QðyjAR,BRÞQðxjAL,BLÞdydx¼0:5

� �
:

(8) Probability matching: move with a probability that matches

the chance of either arm containing the higher reward den-

sity,

Pðmt ¼ RÞ ¼
ð1

0

ð1

x
QðyjAR, BRÞQðxjAL, BLÞdy dx:

(9) Chemotaxis: our experiments were designed to minimize dif-

fusion of food cues through the agar substrate. Nevertheless,

we included a model that accounts for chemotaxis of the cell

towards nearby food sites. If IR and IL are indicator functions

for the presence (one) or the absence (zero) of food at the next

available position on the right- and left-hand side,
respectively, then,

Pðmt ¼ RÞ ¼
1, IR . IL

0, IR , IL

0:5, otherwise:

8<
:

(10) Gittins Index: select the arm with the highest index, which

takes account of future expected rewards from both explora-

tion and exploitation of an arm, based on a Beta prior over its

expected Bernoulli reward probability, and a discount par-

ameter applied to future rewards. To calculate these we

adapted the MatlabTM code from [28], which implements

the calibration method for calculating Gittins indices of

single-armed bandits with Bernoulli rewards, generalizing

this to work for arbitrary hyperparameters of the Beta

distribution.

We further incorporated a noise parameter u (detailed in the

electronic supplementary material), which represents the pro-

portion of occasions when the cell does not follow the

dominant heuristic. We then used the standard procedure of

Bayesian performance evaluation via marginal-likelihood, and

examined the relative performance of the ‘Relative Successes’

heuristic, both described in further detail in the electronic

supplementary material.
3. Results
3.1. Choice scenarios
3.1.1. Baseline decision behaviour
Regardless of treatment (31 versus 31, 1 versus 1, 8e versus 8e or

8r versus 8r), the cell explored both arms equally, making no

decision to exploit one over the other. When one arm was con-

siderably more rewarding (1 versus 8e), the cell chose the more

rewarding arm after a short exploration period (figure 2). These

results provide the important information that (i) the cell does

not make a decision to exploit one environment over another

without information suggesting they differ in quality and

(ii) the amount of biomass we used per cell was sufficient for

the organism to fully exploit both environments simul-

taneously. Hence, in later experiments when the slime moulds

do prefer one environment over the other, they are making a

choice to do so. Though the cell is capable of exploring sites

on both arms simultaneously, the cell would then ignore the

valuable information it has acquired and which should be

useful to optimally condition the investment of biomass.

Indeed, we only observed simultaneous exploration of sites

on both arms in 5% of all timesteps over all of our experiments.
3.1.2. Consistent reward with dissimilar, regular environments
As shown in figure 3, the vast majority of replicates in the

4e versus 8e treatment completed exploitation of the

HQ environment (reached the end of the arm) first, demon-

strating that the cell can choose the better of the two

environments. This was the case for all of our subsequent treat-

ments (figure 3), and all relationships were statistically

significant (binomial test, electronic supplementary material,

table S1). The cells on average displayed a short exploration

phase for seven sites on both arms (figure 2), followed by a

rapid and exclusive exploitation of the HQ arm. In regular

environments, therefore, slime mould appears to undertake a

brief period of exploration, followed by exploitation of the

most profitable environment discovered.

http://rsif.royalsocietypublishing.org/
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3.1.3. Consistent reward with dissimilar, irregular environments
When the reward sites were distributed randomly along each

arm, the same overall pattern of HQ arm exploitation was

observed as for when the reward sites were distributed

evenly (figure 2). These results demonstrate that the cell is

capable of exploiting the most rewarding arm when infor-

mation is noisy and obtained randomly. The cell appears to

explore for a slightly greater distance (around 11 sites on

average) before switching to exploitation than in the above

experiments where information was arranged in a regular

distribution along the arms (figure 2). Similarly, the differ-

ence in exploitation between the arms (figure 2), and the

proportion of replicates completing exploitation of the HQ

arm first (figure 3), are often slightly higher in the evenly

distributed treatments than the randomly distributed treat-

ments. In many randomly distributed treatments, the first
few sites of exploration actually presented more reward

sites on the LQ arm than the HQ arm. Yet the decision to

exploit the HQ arm was made after a similar number of

explored sites as when the rewards were distributed evenly

above. These results suggest that the cell integrates the qual-

ity of each site discovered in the opposing environments over

several explored sites, rather than simply responding to the

first rewarding site discovered.
3.1.4. Sensitivity to reward differences
The results of the two treatments (4 versus 8 and 8 versus 16)

followed identical patterns (figure 2), with a short exploration

phase for seven sites on each arm, followed by a rapid and

exclusive exploitation of the HQ arm. There was no obvious

difference between the evenly and randomly distributed

http://rsif.royalsocietypublishing.org/


1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1 v
ers

us
 8e

pr
op

or
tio

n 
re

ac
hi

ng
 e

nd
 o

f 
H

Q
 a

rm
 f

ir
st

4e
 ve

rsu
s 8

e

4r
 ve

rsu
s 8

r

11
e v

ers
us

 16
e

11
r v

ers
us

 16
r

8e
 ve

rsu
s 1

6e

8r
 ve

rsu
s 1

6r

no
n-

bin
ary

Figure 3. Proportion of replicates in each treatment that reached the end of the HQ arm before they reached the end of the LQ arm. All treatments showed a
proportion reaching the end of the HQ arm significantly greater than what would be expected by chance or if the cell could not choose between the two environ-
ments (dashed line, 0.5. Binomial test. For p-values, see the electronic supplementary material, table S1). Only treatments containing two different quality
environments are shown. (Online version in colour.)
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treatments. The choice pattern of the cell indicates that absolute

differences between two options are not as important as their

relative difference in quality—the cell takes into account

the unique qualities of the alternatives available to it, and

chooses the better of the two. Previous choice experiments in

P. polycephalum decision-making have shown that the cell is

capable of making a relative comparison of the quality of two

or three food sources provided simultaneously [7,11,29]. How-

ever in our experiments, the cell was required to integrate the

amount of food present over multiple distant sites and discov-

ered at different times in the exploration process, in order to

determine the better of two foraging environments. The

reduction in relative difference in quality (11 versus 16) did

not result in an extended exploration period; however, the

overall difference in exploitation was slightly lower than in

the other treatments (figure 2).

3.1.5. Random, non-binary reward with dissimilar, irregular
environments

Even for our most complicated choice scenario, the pattern of

exploration/exploitation was similar to those reported above;

a period of exploration of both arms extending to around 12

sites, followed by rapid exploitation of the HQ arm (figure 2).

This simple pattern belies a sophisticated and complex pro-

blem-solving capability for this protist. Taken together, our

results demonstrate that P. polycephalum is able to integrate

the total food quantity and quality in two randomly provi-

sioned environments, in order to swiftly and accurately

predict which environment will provide the most resources

for future growth.

3.2. Bayesian model selection
The model selected with the highest marginal-likelihood was

‘Relative Successes’; P(mt ¼ R) ¼ AR/(AL þ AR), in which the
probability of exploring each arm (e.g. P(mt ¼ R) for the right

arm) is proportional to the number of successes (rewards)

previously encountered on that arm (e.g. AR for the right

arm; electronic supplementary material, figure S3). Figure 2

compares the performance of Relative Successes to the per-

formance of the slime mould for each choice scenario (the

relative performance of the other models is provided in the

electronic supplementary material, figures S5–S13). Impor-

tantly, the decision-making heuristic ‘Chemotaxis’ performed

quite poorly in comparison, providing strong evidence that

the recent experience of the cell is the information driving

decision-making, and not solely chemotaxis towards the arm

with the highest reward.

The Relative Successes strategy invokes a level of sophisti-

cation far greater than many of our proposed strategies, yet is

computationally simpler than the ‘optimal’ strategies such as

Thompson Sampling and the Gittins Index. As shown in the

electronic supplementary material, figure S4, this strategy still

performs well relative to the best achievable performance.

Furthermore, the Relative Successes heuristic can be employed

in a fully decentralized manner at the local level in the cell by

reinforcing exploitation in HQ areas (as in [6]), so it does not

require complex global processing based on calculations of

either arm being the best. Nonetheless, this strategy performs

well in identifying and exploiting the arm with the highest

reward, as shown in our experiments and simulations.
4. Discussion
The capacity to solve the two-armed bandit problem has pre-

viously only been demonstrated in animals with brains.

Human subjects have repeatedly been tested with the

multi-armed bandit problem and are usually deemed to oper-

ate sub-optimally. It is commonly thought that human

http://rsif.royalsocietypublishing.org/
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subjects tend to naturally allow for the possibility that

reward rates on the different arms change over time

(termed a ‘restless bandit’). Hence, humans tend to switch

between exploration and exploitation, and rarely maximize

their reward by exclusively exploiting the HQ option [30].

Pigeons [31], great tits [17] and stickleback fish [19] have

been shown to learn to exclusively exploit the HQ option in

a two-armed bandit scenario. Besides using biological sub-

jects with sophisticated nervous systems, these previous

studies all recorded an increase in efficiency gained through

repeated testing, and hence learning on behalf of the subject.

Our experiments were not specifically designed to test for the

effects of learning, in contrast to the previous animal studies;

slime mould cells in our experiment were each tested a single

time, and so could not learn from past testing. Therefore, the

efficiency of the slime mould’s strategy described in our

results is the result of evolution, rather than individual

experience. In the future, it could be interesting to investigate

whether repeated testing with P. polycephalum leads to an

increase in efficiency through learning, given their documented

abilities to predict occurrences of events [4].

The non-human animals tested with the multi-armed

bandit problem in previous studies [17,19,31] performed

close to the optimal rate predicted by the models proposed

by the authors. These previous studies only compared their

empirical results to models based on economic optimality,

whereas in our study we also chose models that tempered

pure optimality measures with reasonable biological con-

straints within which the tested system should operate. The

ultimate reason why such a problem-solving capacity might

be necessary for a unicellular organism seems clear. The natural

foraging environment of P. polycephalum is the forest floor,

where its prey resources of fungi, bacteria and decaying veg-

etable matter are distributed patchily [32]. The amoeboid

form and large size (potentially exceeding 930 cm2 [33]) of

the slime mould results in a large area of the environment

which can be sensed and explored simultaneously. The ability

to quickly compute which areas of the foraging environment

will lead to the highest nutritional payoff, and to abandon all

areas less profitable, should result in increased fitness and

hence be favoured by natural selection.

Without a brain or even neurons, what physical or bio-

chemical mechanisms could be responsible for slime mould

decision-making? The slime mould possesses a unique,

coupled-oscillator based sensorimotor system that may be the

key to its highly developed problem-solving abilities. The cell

is composed of many small units, each oscillating at a fre-

quency dependent upon both the local environment and

interactions with neighbouring oscillators [34]. When one of

these units senses attractants such as food, it oscillates faster,

stimulating neighbouring units to do the same, and causing

cytoplasm to flow towards the attractant [7]. The reverse pro-

cess is initiated when repellents such as light are perceived.

The collective behaviour of these coupled oscillators, each pas-

sing on information to entrain its neighbours, is the most likely

platform of decision-making.

The majority of models of decision-making have focused

on how neurons in the vertebrate brain interact to reach a

decision [35–37]. The central mechanism behind most of

these models is the notion that ‘evidence’ in favour of each

alternative, in the form of firing rate, builds in competing

neurons until a decision threshold is reached [35]. The inter-

action of competing oscillators in distant regions of the cell
may form an analogous function in the slime mould. Evi-

dence in favour of each environment is sensed through the

cell membrane and influences the local oscillation pattern.

The local oscillation pattern influences the width of transport

tubules, and hence controls the flow of protoplasm [34].

Distant oscillators entrain to each other’s frequencies, leading

to interactions that may influence the final decision and the

rate at which it is reached, providing a potential analogy to

models of human brains [11]. Similarities in the fundamental

principles of such vastly different decision-making systems as

human brains, slime mould, and social insect colonies have

recently come to the attention of researchers [1,7,38–40].

These similarities raise the compelling notion that deep prin-

ciples of decision-making, problem-solving and information

processing are shared by most, if not all, biological systems.

Our framework is a tool for the comparative study of infor-

mation processing between species and indeed across

nearly all taxa.

The advanced problem-solving capacity of the slime

mould, at a level previously demonstrated only in brained

organisms, provides support for the view that many ‘lower’

organisms can perform cognition-like feats in the absence of

a nervous system (often termed ‘minimal cognition’ [41–44]).

Intelligence, perception and traditionally higher order

cognitive processes are understood to be derived from

sensory-motor coupling [41,45]. Classic models separate the

‘lower’ and ‘higher’ organisms by the flow of sensorimotor

information processing between the organism and its environ-

ment [46,47]; non-cognitive organisms are defined by their

reaction to external stimuli without internal feedback between

the stimulus receptor and the site of action. By contrast, cogni-

tive organisms modulate the receptor by internal neural

feedback from the site of action [46,47]. More recent models

of cognition argue that there are many alternative sensorimotor

systems that may replace the function of the nervous system in

cognition. For instance, van Duijn et al. [41] argue that the two-

component signal transduction system of the bacterium Escher-
ichia coli is a functional sensorimotor equivalent of a nervous

system. According to classic cognition models, the oscillation

system of P. polycephalum may also be a sensorimotor analogue

of a nervous system; as information is transferred throughout

the cell along the oscillating membrane, oscillators provide

internal feedback to each other, and modulate each other’s

actions. Our results show that taking a wider, more inclusive

view of cognition allows a greater appreciation for the broad

diversity of information processing, problem-solving and

decision-making strategies spread across all taxa.
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