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Abstract

This paper proposes a heteroskedasticity-robust Breusch-Pagan test of the null
hypothesis of zero cross-section (or contemporaneous) correlation in linear panel data
models, without necessarily assuming independence of the cross-sections. The pro-
cedure allows for either fixed, strictly exogenous and/or lagged dependent regressor
variables, as well as quite general forms of both non-normality and heteroskedasticity
in the error distribution. The asymptotic validity of the test procedure is predicated
on the number of time series observations, T , being large relative to the number of
cross-section units, N , in that: either (i) N is fixed as T → ∞; or, (ii) N2/T → 0 as
both T and N diverge, jointly, to infinity. Given this, it is not expected that asymp-
totic theory would necessarily provide an adequate guide to finite sample performance
when T/N is “small”. Because of this we also propose, and establish asymptotic va-
lidity of, a number of wild bootstrap schemes designed to provide improved inference
when T/N is small. Across a variety of experimental designs, a Monte Carlo study
suggests that the predictions from asymptotic theory do, in fact, provide a good guide
to the finite sample behaviour of the test when T is large relative to N . However, when
T and N are of similar orders of magnitude, discrepancies between the nominal and
empirical significance levels occur as predicted by the first-order asymptotic analysis.
On the other hand, for all the experimental designs, the proposed wild bootstrap ap-
proximations do improve agreement between nominal and empirical significance levels,
when T/N is small, with a recursive-design wild bootstrap scheme performing best,
in general, and providing quite close agreement between the nominal and empirical
significance levels of the test even when T and N are of similar size. Moreover, in
comparison with the wild bootstrap “version” of the original Breusch-Pagan test (God-
frey and Yamagata, 2011) our experiments indicate that the corresponding version of
the heteroskedasticity-robust Breusch-Pagan test appears reliable. As an illustration,
the proposed tests are applied to a dynamic growth model for a panel of 20 OECD
countries.

1 Introduction

In a linear panel data model, with exogenous regressors and Zellner’s (1962) Seemingly
Unrelated Regression Equation (SURE) structure, a Lagrange multiplier (LM) test to

∗We are grateful to Steve Bond, Tom Wansbeek for helpful comments.
†Corresponding author. Email: takashi.yamagata@york.ac.uk.
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detect cross-sectional dependence was proposed by Breusch and Pagan (1980) and is now
a commonly employed diagnostic tool of applied workers. This test is based on the average
of the squared pair-wise sample correlation coefficients of the residuals and is applicable
when N is fixed and T → ∞; i.e., when N is small relative to a large T. However, as
pointed out in, for example, Pesaran (2004) and Pesaran, Ullah, and Yamagata (2008),
the LM (henceforth, Breusch-Pagan) test based upon asymptotic critical values from the
relevant χ2 distribution can suffer from serious size distortion when N/T is not small.

In view of this, one area of research has focused on cross-section dependence tests for
large T and/or N panels. Frees (1995) has proposed a “distribution free” version of the
Breusch-Pagan test based on squared pair-wise Spearman sample rank correlation coef-
ficients of the regression residuals. Pesaran (2004) proposes a, so-called, CD test based
on the average pair-wise sample correlations of residuals across the different cross-section
units. The CD test statistic has very good finite sample performance under a wide class
of panel data model designs. However, it will lack power when the population aver-
age pair-wise correlations is zero, even though underlying individual population pair-wise
correlations are non-zero. Pesaran (2015) re-interprets the CD test as a test of weak
cross-section dependence. Adopting a different strategy, Pesaran et al (2008) make use of
analytical adjustments for each squared pair-wise sample correlation in order to correct
the bias of the Breusch-Pagan statistic. These analytical adjustments are derived under
the same assumptions as the original Breusch-Pagan test; i.e., normality, regressor exo-
geneity and homoskedasticity within cross-sections. In a similar vein, Baltagi, Feng, and
Kao (2012) have proposed an (asymptotic) bias-correction of Breusch-Pagan test statistic,
based on the

√
NT consistent Fixed Effect estimator and present Monte Carlo results

which suggest that their test behaves well even when T is smaller than N ; Juhl (2011)
considers a similar approach. Relaxing normality and regressor exogeneity, Sarafidis, Ya-
magata, and Robertson (2009) propose a test for cross-sectional dependence based on
Sargan’s difference test for over-identifying restrictions in a dynamic panel data model,
but again assuming homoskedasticity within each cross section and under a slope homo-
geneity assumption. Relaxing the within cross-section homoskedasticity assumption, but
still maintaining exogenous regressors, Godfrey and Yamagata (2011) recently advocated
a wild bootstrap1 version of the original Breusch-Pagan test in order to address the large
N/T (small T/N) issue. The Monte Carlo evidence presented by Godfrey and Yamagata
(2011) suggests that such a test can provide quite reliable inferences.

However, the slope homogeneity assumption of Sarafidis et al. (2009), Baltagi et al.
(2010) and Juhl (2011) can be restrictive in macroeconometric applications: see Haque,
Pesaran, and Sharma (1999), Bassanini and Scarpetta (2002), amongst others. For the
case of a dynamic panel data model, Pesaran and Smith (1995) demonstrate that ignorance
of the heterogeneity, in general, renders equation by equation OLS regression inconsistent
when regressors are serially correlated, even when N and T are large. Therefore, it is
important to allow slope heterogeneity in this type of models, unless there is evidence of
slope homogeneity; see Swamy (1970), Pesaran and Yamagata (2008) for the slope hetero-
geneity tests that are valid under our null hypothesis of no cross-sectional correlation or
Su and Chen (2013) that develop a slope homogeneity test that allows for factor structure
in the error terms.

In some situations, the OLS estimator may not be consistent under cross-sectional
correlation. Suppose that the cross section correlation is stemmed from error factor struc-
ture, such that yit = αi + x

′
itβi + λiyit−1 + uit, uit = γift + εit, where εit ∼ i.n.d.(0, σ2t ),

1See, for example, Wu (1986), Liu (1988), Mammen (1993), Davidson and Flachaire (2008), in the
context of the classical linear regression model.
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so that E (uitujt) = γiγjE
(
f2t
)
. If xit is a linear function of ft, xit can be correlated

with uit. If ft is serially correlated, it can be E (yit−1uit) 6= 0. Therefore, it is important
to detect cross-sectional correlation. Even when the OLS estimator is consistent, under
time-series heteroskedasticity, the relative efficiency of the conventional feasible general-
ized least square (FGLS) estimator (of the SUR approach) over the OLS estimator may
not be guaranteed. Furthermore, under time-series heteroskedasticity, inference based on
FGLS estimation may not be reliable. Therefore, under potential time-series heteroskedas-
ticity, it would be recommended to use a robust cross section dependence test, which is
proposed in this paper. To our knowledge there is no such test available in the literature
to date. If the null is not rejected by the test, it would be more confidently concluded that
the rejection is not due to the heteroskedasticity, and OLS estimation would be preferred.
If the null is rejected, then a suitable estimation procedure should be pursued2.

This paper makes two contributions which are distinct from Godfrey and Yamagata
(2011). First, it proposes new asymptotically pivotal heteroskedasticity robust Breusch-
Pagan tests that allow for fixed, strictly exogenous and lagged dependent regressor vari-
ables as well as quite general forms of both non-normality and heteroskedasticity, in the
linear model error distribution. (Juhl, 2011, proposes an alternative test which allows
for cross-section heteroskedasticity, but requiring time-series homoskedasticity.) The last
point is particularly pertinent because the modern approach in applied research is to imple-
ment inference by employing some heteroskedasticity robust variance-covariance estimator.
It emerges from this analysis that the original Breusch-Pagan test and its standardised
version suggested by Pesaran (2004, 2015) will asymptotically over reject, under the null,
in the presence of heteroskedasticity, except when the squared errors are (asymptotically)
contemporaneously uncorrelated. Our Monte Carlo study reveals rejection rates of 100%,
under the null, even when T is large. The asymptotic distribution of the new statistic is
first derived under the assumption that T → ∞ with N fixed and, then, an asymptoti-
cally valid normalised statistic is also developed when both T and N jointly diverge to
infinity, but requiring N2/T → 0 in order to eliminate an asymptotic bias in the resultant
limiting distribution. However, as is well known, asymptotic theory can provide a poor
approximation to actual finite sample behaviour; specifically in this case, and as noted
previously, when N/T is not small, and our Monte Carlo study does indeed reveal severe
size distortions when T and N are of comparable magnitude.

Second, this paper describes three asymptotically valid wild bootstrap procedure schemes
which are employed in order to provide closer agreement between the desired nominal and
the empirical significance level of a test procedure. For all experiments, the recursive-
design wild bootstrap performs the best among the bootstrap schemes even when T and
N are of similar magnitude. Moreover, in comparison with the wild bootstrap “version”
of the (normalised) original Breusch-Pagan test (Godfrey and Yamagata, 2011) the cor-
responding (normalised) version of the heteroskedasticity-robust Breusch-Pagan test is
more reliable with this wild bootstrap scheme, performing the best under the null in all
experiments. Note also that the recursive-design wild bootstrap, employed in this pa-
per, is asymptotically justified under less restrictive assumptions than those imposed by
Goncalves and Kilian (2004) and Godfrey and Tremayne (2005), which rule out certain
asymmetric conditional heteroskedastic error processes. The reason is that Goncalves and
Kilian (2004) wish to show that the recursive wild bootstrap provides consistent estimates
of heteroskedasticity-robust standard errors. However, the additional restrictive assump-
tion they employ is not required to directly prove the asymptotic validity of the recursive

2When the null of no error cross-sectional correlation and slope homogeneity are rejected, the Common
Correlated Effects (CCE) estimator of Chudik and Pesaran (2015) could be employed.
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design wild bootstrap when used in conjunction with heteroskedasticity-robust t-ratios (see
Halunga (2005)). Thus, our assumptions still provide the basis for asymptotically valid
inferences for regression parameters, by employing this wild bootstrap scheme, under zero
cross section correlation.

Finally, it has been traditional when developing tests for cross-section dependence
that the actual null hypothesis under test is one of zero contemporaneous correlation
among cross sections (i.e., individuals, households, firms, countries, etc.) and the failure
of which, of course, is consistent with contemporaneous dependence; see, for example, the
survey by Moscone and Tosetti (2009). However, zero contemporaneous correlation does
not, necessarily, imply contemporaneous independence. Nonetheless, virtually all previous
tests of this null hypothesis that have been proposed in the literature have maintained the
stronger assumption of independence. In this paper, such independence is not assumed.

The rest of the paper is organised as follows. Section 2 introduces the notation and
assumptions which afford the subsequent asymptotic analysis. Section 3 establishes the
limit distribution of the new test statistic when T → ∞ and N is fixed and Section 4
establishes the limit distribution of the new statistic when both (N,T ) → ∞. Section 5
describes the wild bootstrap tests, which are applicable to both the new heteroskedasticity
robust Breusch-Pagan test and the original version. Section 6 reports the results of a small
Monte Carlo study designed to shed light on the finite sample reliability of the various
test procedures and Section 7 provides a simple empirical application. Finally, Section 8
concludes. All proofs of the main results are relegated to the Appendix with the other
results and technical details available in the Supplementary Appendix.

2 The Model, Notation & Assumptions

In this paper, we allow for an Autoregressive Distributed Lag (ADL) heterogeneous panel
data model structure. In particular, if i indexes the cross-section observations and t the
time series observations, then the following model is assumed

φi(L)yit = w
′
itθi + uit, i = 1, ..., N, t = 1, ..., T, (1)

where {yi,−p+1, ..., yi0, yi1, ..., yiT , wi1, ...., wiT } , i = 1, ..., N , are the sample data and
φi(L) = 1 − φi1L − φi2L2 − ... − φipLp, φip 6= 0, has all roots lying outside the unit
circle, for all i, with p, the lag length, known, finite and common across i, and ‖θi‖ <∞.
The M regressors, w′it = {witl} , l = 1, ...M, are strictly exogenous, with wit1 = 1, for all i
and t; the errors, uit, have zero mean for all i and t; and, {w′it, uit} satisfy the regularity
conditions discussed below.

Stacking the observations, t = 1, ..., T, per cross-section we write (1) as

yi = Xiβi + ui (2)

β′i =
(
θ′i, φ

′
i

)
, φ′i =

(
φi1, ..., φip

)
, where yi = {yit} , (T × 1) , Xi = (Wi, Yi) is (T ×M + p)

and has rows x′it, Wi has rows w
′
it = {witl}, Yi has rows Y ′i,t−1 = {yi,t−q} , q = 1, ..., p, and

ui = {uit} , (T × 1) . The Ordinary Least Squares estimator of βi, in (2), is given by

β̂i =
(
X ′
iXi
)−1

X ′
iyi, i = 1, ..., N

with residuals ûi = {ûit}, ûit = yit − x′itβ̂i.
Zero contemporaneous (or cross-section) correlation is equivalent to the null hypothesis

of H0 : E[uiu
′
j ] = 0, for all i 6= j, or H0 : E[uitujt] = 0 for all t = 1, ..., T and all i 6= j. It is
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common practice, in the literature, for tests of H0 : E[uitujt] = 0 to be constructed under
the stronger assumption of contemporaneous independence. The asymptotic validity of
the test procedure proposed in this paper does not rely on such a strong assumption.
Rather, a weaker set of conditions are invoked which specify various quantities of interest
to be martingale differences.

The following assumptions are made in which FNT,t−1 is the sigma field generated by:
(i) lagged values of yit (i.e., {yi,t−k} , i = 1, ..., N, k = 1, 2, ... ); and, (ii) current and lagged
values of any strictly exogenous variables, i = 1, ..., N, including wi,t−k, k = 0, 1, 2, ..., and
possibly other strictly exogenous variables as well; see, for example, White (2001, p.59).

Uniformly over i = 1, ..., N, the following hold:

Assumption A1: {w′it} is a mixing sequence, with either φ of size −η/ (2η − 1) , η ≥ 1,
or α of size −η/ (η − 1) , η > 1.

Assumption A2:

(i) E [uitwi,t+k|FNT,t−1] = 0, almost surely, for any k ≥ 0 and all t;

(ii) E
[
u2it|FNT,t−1

]
= σ2it, almost surely, for all t;

(iii) plimT→∞
1
T

∑T
t=1

{
σ2it − E[u2it]

}
= 0;

(iv) E |witl|2κ+δ ≤ ∆ < ∞, where κ = max [2, η] , for some δ > 0, and all t = 1, ..., T,
l = 1, ...,M ;

(v) E |uit|4+δ ≤ ∆ <∞ for some δ > 0, and all t = 1, ..., T.

Assumption A3:

(i) E (W ′
iWi/T ) =

1
T

∑T
t=1E[witw

′
it] is uniformly positive definite (i.e., positive definite

for all T sufficiently large).

(ii) E (u′iui/T ) =
1
T

∑T
t=1E[u

2
it] is uniformly positive.

For all 1 ≤ i < j = 2, ..., N the following holds:

Assumption A4:

(i) E [uitujt|FNT,t−1] = 0, almost surely, for all t;

(ii) E[u2itu
2
jt|FNT,t−1] = τ2ijt, almost surely, for all t;

(iii) plimT→∞
1
T

∑T
t=1

{
τ2ijt − E[u2itu2jt]

}
= 0;

(iv) ωij,T = 1
T

∑T
t=1E[u

2
itu

2
jt] is uniformly positive, such that for T sufficiently large

infi,j ωij,T > K > 0;

(v) E [uitujtuhtukt|FNT,t−1] = 0, almost surely, for i < j < k, i ≤ h < k, and for all t.

Note that the above entail uniform bounds (in both i and t) on certain moments of uit
and wit. In addition, Assumption A1 allows wit to contain fixed or random (but strictly
exogenous) regressors. Assumption A2 is somewhat weaker than allowing the errors to
be serially independent (although they are still uncorrelated). Assumption A2(i) follows
from the strict exogeneity assumption on wit and, together with Assumption A2(v) and the
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fact that wit1 = 1 for all t, it implies that {uit,FNT,t} is a martingale difference sequence
(m.d.s).3 Assumptions A2(ii) and (iii) also allow for general (conditional or unconditional)
heteroskedasticity (with σ2it possibly varying across cross-sections and through time). A
wide class of models for the variance are allowed that include cross-sectional heterogeneity,
volatility that evolves over time such as GARCH type models, trending volatility, break
and smooth transition shifts in variance. Notice, that we do not need asymptotic normality
of
√
T (β̂i−βi) in order to justify the asymptotic validity of the test procedure in this paper;

in contrast to the assumption of Godfrey and Yamagata (2011). Assumption A4 permits
the derivation of the robust test procedure for cross-section correlation (Lemma 1 and
Theorem 1 below). Assumption A4(i) states that uit and ujt are uncorrelated, i 6= j,
whilst A4(v) requires that all distinct pairs {uitujt} and {uhtukt} are uncorrelated, i 6= j
and h 6= k. These two assumptions could be replaced by the much stronger assumption
that the {uit} are independent, which we wish to resist.

3 Test Statistics and Limit Distributions: T →∞, fixed N
The commonly used Breusch-Pagan test statistic is

BPT =
N−1∑

i=1

N∑

j=i+1

ρ̂2ij,T (3)

where

ρ̂ij,T =

1√
T

∑T
t=1 ûitûjt√{

1
T

∑T
t=1 û

2
it

}{
1
T

∑T
t=1 û

2
jt

} .

As noted, for example, by Moscone and Tosetti (2009), under (1), cross-section indepen-

dence, but homoskedasticity across the time dimension, it can be shown that BPT
d→ χ2υ,

for fixed N , as T → ∞, where υ = 1
2N(N − 1). Given Theorem 1, below, and under

Assumption A4(i) and (v), rather than full independence, this remains true. However,
this will not be the case, in general, when there is heteroskedasticity across the time di-
mension. In these circumstances, the use of BPT could lead to asymptotically invalid
inferences. (This was also recently pointed out by Godfrey and Yamagata (2011), but in
the context of a static heterogeneous panel.) Therefore the availability of a test procedure
that is robust to more general heteroskedasticity would appear desirable. Such a robust
statistic is defined as

RBPT =

N−1∑

i=1

N∑

j=i+1

γ̂2ij,T (4)

where

γ̂ij,T =

∑T
t=1 ûitûjt√∑T
t=1 û

2
itû

2
jt

=

1√
T

∑T
t=1 ûitûjt√

1
T

∑T
t=1 û

2
itû

2
jt

. (5)

Allowing for heteroskedasticity across both the cross-section and time dimension, As-
sumption A4(iv) and a straightforward application of White (2001, Corollary 5.26, p.135),
yields

γij,T =

1√
T

∑T
t=1 uitujt√

1
T

∑T
t=1E[u

2
itu

2
jt]

d→ N(0, 1),

3This formulation is similar to that employed, for example, by Weiss (1986).
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a result which motivates the construction of (robust test statistic) RBPT given in (4).
We are now in a position to establish the following Theorem, which justifies the con-

struction of a robust version of BPT , as detailed in the subsequent Corollary.

Theorem 1 Under Assumptions A1-A4, we have, for all i 6= j, and as T →∞, and fixed
N, γ̂ij,T − γij,T = op(1), so that

γ̂ij,T
d→ N(0, 1).

Corollary 1 Under Assumptions A1-A4, and as T →∞, and fixed N ,

RBPT =
N−1∑

i=1

N∑

j=i+1

γ̂2ij,T
d→ χ2υ, υ =

1

2
N (N − 1) .

From Theorem 1 the asymptotic behaviour of BPT can be inferred, under certain
forms of heteroskedasticity. In particular, under cross-sectional heteroskedasticity only, it
is easily verified that ρ̂ij,T − γ̂ij,T = op(1), so that BPT remains asymptotically valid, as
noted earlier. However, in general, we have (under our assumptions)

ρ̂ij,T =





√√√√
1
T

∑T
t=1 û

2
itû

2
jt

1
T

∑T
t=1 û

2
it
1
T

∑T
t=1 û

2
jt



 γ̂ij,T

=





√√√√
1
T

∑T
t=1E[u

2
itu

2
jt]

1
T

∑T
t=1E[u

2
it]
1
T

∑T
t=1E[u

2
jt]



 γ̂ij,T + op(1),

so that, asymptotically at least, ρ̂ij,T − γ̂ij,T = op(1) if and only if u2it and u2jt are (asymp-
totically) contemporaneously uncorrelated. For illustrative purposes, suppose uit = σitεit,
where the εit are zero mean and unit variance, independently and identically distributed
(i.i.d.), random variables. In this context, for example, with a one-break-in-volatility model
which specifies σ2it = σ2i1 for t = 1, ..., T1 < T and σ2it = σ2i2 > σ2i1 for t = T1 + 1, ..., T,
u2it and u

2
jt will be (asymptotically), positively contemporaneously correlated, so that

ρ̂ij > γ̂ij,T , in probability. Under the null hypothesis of H0 : E[uitujt] = 0, this will lead
to over-rejection, asymptotically, for a test procedure which employs BPT in conjunction
with χ2υ critical values. A qualitatively similar conclusion emerges for a trending volatility

model (“Model 2” in Cavaliere and Taylor, 2008), where σit = σi0 − (σi1 − σi0)
(
t−1
T−1

)
,

σi1 > σi0, since, again, u
2
it and u

2
jt will be (asymptotically), positively contemporaneously

correlated. However, for conditional heteroskedasticity in which σ2it = E
[
u2it|FNT,t−1

]
is a

stationary process (for example, a GARCH error process) then, due to the independence
of the εit, u

2
it and u

2
jt are (asymptotically) contemporaneously uncorrelated so that the use

of BPT with χ
2
υ critical values is asymptotically valid. The tests designed by Juhl (2011),

Baltagi, Feng and Kao (2011) and Pesaran, Ullah and Yamagata (2008) might lead to
missleading inference in a similar fashion as BPT .

Thus, there will be situations in which BPT remains asymptotically robust. In general,
though, it seems prudent to use a procedure based on a statistic, such as RBPT , that is
robust under quite general forms of (unknown) heteroskedasticity.
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4 Test Statistic and Limit Distributions: (N, T )→∞
Pesaran (2004, 2015) proposed a standardised version of the BPT test as

NBPNT =
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
ρ̂2ij − 1

)
(6)

and under (1), cross-section independence but homoskedasticity across the time dimension,

NBPNT
d→ N(0, 1) as T →∞ first, followed by N →∞.

Allowing for heteroskedasticity across both the cross-section and time dimension, a
standardised version of RBTT proposed in the previous section is defined as

NRBPNT =
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
γ̂2ij,T − 1

)
. (7)

The limiting distribution of the test defined in (7) is obtained by still maintaining zero
cross-section correlation under the null rather than the stronger assumption of cross-
section independence as it is commonly assumed in the current literature. Specifically, the
following assumptions are in addition to/or strengthen the previous Assumption A, and
are made in order to derive the O(1) limiting distribution of the new statistic in (7):

Assumption B1: (N,T )→∞ jointly, such that N2/T → 0.

Assumption B2: For some δ > 0,

(i) supt,iE |uit|8+δ ≤ ∆ <∞;

(ii) there exists C > 0 such that supi6=j

∣∣∣cov
(
τ2ijt, uisujsuirujr

)∣∣∣ ≤ C (t− (s ∨ r))−(1+δ)

for t > (s ∨ r) ;

(iii) supi6=j
1
T

∑T
t6=s

∣∣∣cov
(
u2itu

2
jt, u

2
isu

2
js

)∣∣∣ ≤ ∆ <∞;

(iv) E [uitujtultumtuptuqtuhtunt|FNT,t−1] = kijlmpqhn,t and |kijlmpqhn,t| ≤ k̄ijlmpqhn for all
t such that N−4∑

i<j

∑
l<m

∑
p<q

∑
h<n

∣∣k̄ijlmpqhn
∣∣ ≤ ∆ <∞;

(v) E
[
u2jtuit|FNT,t−1

]
= 0.

Assumption B1 ensures that an asymptotic bias in the limiting distribution ofNRBPNT
in (7) disappears as T and N diverge jointly to infinity. A CLT for martingale difference
arrays of Hall and Heyde (1980, Corollary 3.1) applies under Assumption B2. Assump-
tions B2(ii), (iii), (iv) and (v) restrict the cross-section dependence and resemble similar
assumptions as in Bai (2009) with Assumption B2(ii) and (iii) being employed to establish
that the asymptotic variance of NRBPNT is one.

Theorem 2 Under Assumptions A1-A4 combined with Assumptions B1-B2

NRBPNT =
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
γ̂2ij,T − 1

) d→ N(0, 1).

The method of proof is in two stages. The first stage requires the following Central
Limit Theorem:

8



Lemma 1 Under Assumptions A2(v), A4(i), (iv) and (v) combined with/or strengthened
by Assumptions B1-B2

ZNT =
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
γ2ij,T − 1

) d→ N(0, 1),

where

γij,T =

1√
T

∑T
t=1 uitujt

√
ωij,T

and ωij,T =
1
T

∑T
t=1E[u

2
itu

2
jt].

In the second stage, Lemma 2, below, establishes that the asymptotic bias which
appears in the limiting distribution of NRBPNT disappears as N

2/T → 0. This implies
that the standard normal limiting distribution approximates the limiting distribution of
the statistic NRBPNT when T is large relative to N . Thus, in the case when (N,T )→∞
jointly, the chi-square version of the test RBPT should do as well as its standardised
version, NRBPNT .

Lemma 2 Under Assumptions A1-A4 combined with/or strengthened by Assumptions B1,
B2(i), (iii), (v)

NRBPNT = ZNT + op (1) .

Armed with Lemmas 1 and 2, Theorem 2 follows immediately.4

Although, Theorem 1 and Theorem 2 show that the chi-square version of the new sta-
tistic, RBPT , and its standardised version, NRBPNT , are asymptotically robust to general
forms of heteroskedasticity, it might be anticipated that improved sampling behaviour, in
finite samples, will be afforded by employing a wild bootstrap scheme. Indeed, Godfrey
and Yamagata (2011) proposed the use of a wild bootstrap scheme in order to control
the significance levels of the BPT test procedure, in the presence of non-normality and
unknown heteroskedasticity, under both large T and large N asymptotics. Their analy-
sis, however, is limited to the static heterogeneous panel data model and is not based
on an asymptotic pivot. In the next section, asymptotic validity of three wild bootstrap
schemes is established in a dynamic heterogenous panel data model under non-normality
and unknown heteroskedasticity.

5 Wild Bootstrap Procedures

The wild bootstrap tests based on either the chi-square version of RBPT (resp., BPT )
for fixed N or the standardised version of NRBPNT (resp., NBPNT ), proposed as (N,T )
diverge jointly to infinity, will deliver the same empirical size and power results, since
it does not matter which asymptotic distribution is employed for the bootstrap. As a
consequence, the wild bootstrap procedures considered in this section are based only on
the standardised normal statistics, i.e. NRBPNT and NBPNT , respectively.

We consider three wild bootstrap procedures, as follows.

4The test can detect local alternatives at the rate (NT )−1/2; see the local alternative analysis result in
the Supplementary Appendix.
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5.1 Wild Bootstrap 1 (WB1)

This is a recursive design wild bootstrap scheme, implemented using the following steps:

1. Estimate the model by OLS to get ûit , i = 1, ..., N , and construct test statistics
NRBPNT and NBPNT .

2. (which is repeated B times)

(a) Generate u∗it = εitûit, where the εit are i.i.d., over i and t, with zero mean and
unit variance.

(b) Construct

y∗it = β̂
′
ix
∗
it + u

∗
it. (8)

Here, x∗it is generated recursively, from (8), given initial values y∗it, t ≤ 0 for
any regressors which are lagged dependent variables (these could be zero or
sample values). Sample values of the regressors are employed in this wild
bootstrap scheme for any strictly exogenous variables. Thus, for example, if
x′it = (w

′
it, yi,t−1) , where wit is strictly exogenous, then w

∗
it = wit, for all i and

t, β′i =
(
θ′i, φi

)
and choosing y∗i0 = yi0 bootstrap data are generated according

to

y∗i1 = θ̂
′
iwi1 + φ̂iyi0 + u

∗
i1

y∗it = θ̂
′
iwit + φ̂iy

∗
i,t−1 + u

∗
it, t = 2, ..., T.

(c) Construct the bootstrap test statistics (B simulations)

NRBP ∗NT =
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
γ̂∗2ij,T − 1

)
, γ̂∗ij,T =

1√
T

∑T
t=1 û

∗
itû

∗
jt√

1
T

∑T
t=1 û

∗2
it û

∗2
jt

(9)

NBP ∗NT =
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
ρ̂∗2ij,T − 1

)
, ρ̂∗ij,T =

1√
T

∑T
t=1 û

∗
itû

∗
jt√

1
T

∑T
t=1 û

∗2
it
1
T

∑T
t=1 û

∗2
jt

(10)

where û∗it = y
∗
it − x∗′it β̂

∗
i is the OLS residual from (8).

3. Calculate the proportion of bootstrap test statistics, NRBP ∗NT (resp., NBP
∗
NT ),

from the B repetitions of Step 2c that are at least as large as the actual value of
NRBPNT (resp., NBPNT ). Let this proportion be denoted by p̂ and the desired
significance level be denoted by α. The asymptotically valid rejection rule is that
H0 is rejected if p̂ ≤ α.

5.2 Wild Bootstrap 2 (WB2)

This is a fixed design wild bootstrap scheme which replaces (8) in the recursive design
scheme with

y∗it = β̂
′
ixit + u

∗
it

at stage 2b.
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5.3 Wild Bootstrap 3 (WB3)

Note, from Theorem 1, γ̂ij,T − γij = op(1); i.e., γ̂ij,T has the same limit distribution as it
would have if βi were known. This suggests that the following wild bootstrap procedure
should work (asymptotically) at least.

1. As for WB1.

2. (which is repeated B times)

(a) Generate u∗it = εitûit, as in WB1(but omit step 2b in WB1).

(b) Construct the bootstrap test statistics

NRBP ∗NT =
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
γ̃∗2ij,T − 1

)
, γ̃∗ij,T =

1√
T

∑T
t=1 u

∗
itu

∗
jt√

1
T

∑T
t=1 u

∗2
it u

∗2
jt

,

NBP ∗NT =
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
ρ̃∗2ij − 1

)
, ρ̃∗ij,T =

1√
T

∑T
t=1 u

∗
itu

∗
jt√

1
T

∑T
t=1 û

∗2
jt
1
T

∑T
t=1 û

∗2
jt

3. Calculate the proportion of bootstrap test statistics, NRBP ∗NT (resp., NBP
∗
NT ),

from the B repetitions of Step 2b that are at least as large as the actual value of
NRBPNT (resp., NBPNT ). Let this proportion be denoted by p̃ and the desired
significance level be denoted by α. The asymptotically valid rejection rule is that
H0 is rejected if p̃ ≤ α.

The asymptotic validity of these wild bootstrap schemes is established in the theorem
below5 under the strengthened assumption:

Assumption B3 E ‖wit‖4κ+δ ≤ ∆ < ∞ where κ = max [2, η] , for some δ > 0, and all
i = 1, .., N, t = 1, ..., T and l = 1, ...,M ;

Theorem 3 Under Assumptions A1-A4 combined with/or strengthened by Assumptions
B1-B3 6, and for all three wild bootstrap designs, WB1, WB2 and WB3,

sup
x
|P ∗(NRBP ∗NT ≤ x)− P (NRBPNT ≤ x)|

p→ 0

sup
x
|P ∗(NBP ∗NT ≤ x)− P (NBPNT ≤ x)|

p→ 0

where P ∗ is the probability measure induced by the wild bootstrap conditional on the sample
data.

Note that, even when allowing for conditional heteroskedasticity, we do not require
the restrictive Assumption A’ (iv’) of Goncalves and Kilian (2004) to justify the recursive-
design WB1, since our test criteria are asymptotically independent of β̂i. Specifically,
the class of conditionally heteroskedastic autoregressive models is not restricted to the
symmetric ones as in Goncalves and Kilian (2004).

5 In the Appendix, we verify this for the recursive wild bootstrap scheme (WB1) only and, following
Davidson and Flachaire (2008), with u∗it = εitûit where the εit are independently and identically distributed
for all i and t taking the discrete values ±1 with an equal probability of 0.5.

6Note that the weaker alternative rate can be sufficient for establishing the asymptotic validity of the
wild bootstrap similarly to the first-order asymptotic results.
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Henceforth, a test procedure which employs NRBPNT (resp., NBPNT ) in conjunction
with asymptotic critical values will be called an “asymptotic test”, whilst the one that
employs either of WB1, WB2 or WB3 will be referred to as a “bootstrap test”. In order
to shed light on the relevance of the preceding asymptotic analysis as an approximation
to actual finite sample behaviour, the next section describes, and reports the results of,
a small Monte Carlo study which investigates the sampling behaviour of the test statis-
tics considered above under a variety of heteroskedastic error distributions, and (N,T )
combinations.

6 Monte Carlo Study

Three data generating processes (DGPs) are considered: Panel autoregressive and distrib-
uted lag (ADL) models, with strictly exogenous regressors, and pure panel autoregressive
(AR) models.

6.1 Monte Carlo Design

6.1.1 DGP1

The first data generating process considered is a dynamic panel ADL(1, 0) model, which
is specified by

yit = θi1 + θi2zit + φiyi,t−1 + uit
= θ′iwit + φiyi,t−1 + uit, i = 1, 2, ..., N and t = −49,−48, ..., T (11)

with θi1 ∼ i.i.d. N(0, 1), θi2 = 1 − φi, φi ∼ i.i.d. Uniform[0.4, 0.6], and the zit are gen-
erated for (N = 5, T = 25) as independent random draws from the standard lognormal
distribution. This block of regressor values is then reused as necessary to build up data
for the other combinations of (N,T ). yi,−50 = 0, and first 49 values are discarded. The
error term is generated as

uit = σitεit, i = 1, 2, ..., N and t = −49,−48, ..., T (12)

and
εit =

√
1− ρ2ξit + ρζt (13)

where ξit ∼ i.i.d. (0, 1) independently of ζt ∼ i.i.d. (0, 1). Thus, corr (uit,ujt) = ρ, a
constant in this case. For estimating significance levels, the value of ρ is set to zero, whilst
power is investigated using ρ = 0.2, which provides a useful range of experimental results.
Two distributions are used to obtain the i.i.d. standardised errors for ξit and ζt: the
standard normal distribution and the chi-square distribution with six degrees of freedom
(χ26), with the latter being employed to provide evidence on the effects of skewness. In
particular, with a coefficient of skewness greater than 1, it is heavily skewed, according to
the arguments of Ramberg, Tadikamalla, Dudewicz, and Mykytka (1979).

Five models for σit are considered, all of which satisfy, in particular, Assumption
A2(v). First, there is homoskedasticity, denoted HET0, with σit = 1 for all t. Second,
a one-break-in-volatility model, henceforth HET1, is employed with σit = 0.8 for t =
1, 2, ...,m = bT/2c and σit = 1.2 for t = m,m + 1, ..., T , where bAc is the largest integer
part of A. Third, HET2 is a trending volatility model, with σit = σ0 − (σ1 − σ0)

(
t−1
T−1

)
;

see “Model 2” in Cavaliere and Taylor (2008), where σ0 = 0.8 and σ1 = 1.2. Fourth, HET3
is a conditional heteroskedasticity scheme, with σit =

√
exp(czit), t = 1, ..., T ; this sort of
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skedastic function is discussed in Lima, Souza, Cribari-Neto, and Fernandes (2009). The
value of c in HET3 is chosen to be 0.4; so that max(σ2it)/min(σ

2
it), which is a well-known

measure of the strength of heteroskedasticity, remains 7.9 across the different combinations
of (N,T ). For HET0-HET3, σit = 1 for t = −49, ..., 0. Finally, we consider a generalized
autoregressive conditional heteroskedasticity, GARCH(1,1) model, denoted HET4, where

σ2it = δ + α1u
2
i,t−1 + α2σ

2
i,t−1, t = −49,−48, ..., T . (14)

Following Godfrey and Tremayne (2005), the value of parameters are chosen to be δ = 1,
α1 = 0.1 and α2 = 0.8.

6.1.2 DGP2

The second data generating process considered is a model with strictly exogenous regres-
sors, specified by

yit = βi1 + βi2zit + uit (15)

= β′iwit + uit, i = 1, 2, ..., N and t = 1, 2, ..., T, (16)

where βi1 ∼ i.i.d. N(0, 1), βi2 ∼ i.i.d. Uniform[0.9, 1.1] and the zit are generated for
(N = 5, T = 25) as independent random draws from the standard lognormal distribution.
Again, this block of regressor values is then reused as necessary to build up data for the
other combinations (N,T ).

The error term in (15) is written as

uit = σitεit, i = 1, 2, ..., N and t = 1, 2, ..., T. (17)

The three distributions of εit and the five models for σit are considered as before.

6.1.3 DGP3

The third data generating process considered is a dynamic panel AR(1) model, which is
specified by

yit = θi (1− φi) + φiyit−1 + uit, i = 1, 2, ..., N and t = −49,−48, ..., T. (18)

with θi ∼ i.i.d. N(0, 1), φi ∼ i.i.d. Uniform[0.4, 0.6], yi,−49 = 0, and first 49 values are
discarded. The error term is written as

uit =

√
1− φ2iσitεit, i = 1, 2, ..., N and t = −49,−48, ..., T. (19)

The three distributions of εit and the five models for σit are considered as before.
All combinations of N = 5, 10, 25, 50, 100 and T = 25, 50, 100, 200 are considered. The

sampling behaviour of the tests are investigated using 2000 replications of sample data
and 200 bootstrap samples, employing a nominal 5% significance level.

6.2 Monte Carlo Results

Before looking at the results from the Monte Carlo study, it is important to define criteria
to evaluate the performance of the different tests considered. Given the large number
of replications performed, the standard asymptotic test for proportions can be used to
test the null hypotheses that the true significance level is equal to its nominal value. In
these experiments, this null hypothesis is accepted (at the 5% level) for estimated rejection
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frequencies in the range 4% to 6%. In practice, however, what is important is not that the
significance level of the test is identical to the chosen nominal level, but rather that the
true and nominal rejection frequencies stay reasonably close, even when the test is only
approximately valid. Following Cochran’s (1952) suggestion, we shall regard a test as being
robust, relative to a nominal value of 5%, if its actual significance level is between 4.5%
and 5.5%. Considering the number of replications used in these experiments, estimated
rejection frequencies within the range 3.6% to 6.5% are viewed as providing evidence
consistent with the robustness of the test, according to this definition.

To economize on space, and as the results for three DGPs are qualitatively similar, the
discussion below focuses on the results in the case of dynamic ADL(1, 0) model (DGP1),
since this nests the other two models and can thus be regarded as the most general one.
The experimental results, in this case, under the various heteroskedastic schemes and
error distributions are reported in Tables 1 to 5. We summarise, first, the finite sample
behaviour of the asymptotic tests before reporting that of the bootstrap tests.

[INSERT Table 1 HERE]

Under the null, with homoskedastic errors (reported in Table 1, H0 : E [uitujt] = 0), the
rejection frequencies of the asymptotic RBPT and BPT tests and the normalised versions,
NRBPNT and NBPNT , respectively, are in the main close to the nominal significance
level of 5% when N/T is "small", less than 0.5, although BPT and NBPNT are slightly
oversized when N = 10 and T = 25. Under standard normal errors, with the exception of
the case when the empirical size of RBPT is 3.3% for N = 5 and T = 25, RBPT performs
slightly better than the normalised test NRBPNT . It can also be noted that the BPT
chi-square test performs better than its standardised version NBPNT under both types
of errors. When N/T = 0.5, slight over-rejections occur for all tests with the empirical
sizes being in the range 7.4% − 9%. However, when N/T is not "small", being greater
than 0.5, severe distortions can occur. For example, when N = 100, BPT rejection rates
are 86.8% and 36.1% for T = 25 and T = 50, respectively. The possibility of such size
distortions, when N/T is not “small”, has been pointed out by Pesaran et al (2008). Even
the normalised tests, NBPNT and NRBPNT , do suffer from such distortions since these
tests require that N2/T → 0 in order for an asymptotic bias in their limiting distribution
to disappear. Similar patterns are revealed under asymmetric errors as well. A comparison
of their rejection frequencies under HA : E [uitujt] = 0.2, reveals similar power properties
under homoskedastic normal and χ26 errors. However, the power of the asymptotic RBPT
and NRBPNT tests is slightly lower than that of the corresponding asymptotic BPT and
NBPNT tests under χ

2
6 errors. For example, with N = 5 (resp., N = 10) and T = 100, the

empirical power of NRBPNT is 18.1% (resp., 36.4%) compared with 24.6% (resp., 45.7%)
for NBPNT .

[INSERT Tables 2 - 5 ABOUT HERE]

The results obtained when the errors are heteroskedastic (Tables 2 - 5), show that the
asymptoticRBPT andNRBPNT tests again exhibit close agreement, between nominal and
empirical significance levels across both error distributions, when N/T is small. The chi-
square test RBPT performs in general better thanNRBPNT whenN/T is small, except for
the case whenN = 5 and T = 25, whenRBPT is slightly undersized. In fact, the results are
qualitatively similar to those obtained with homoskedastic errors, with severe distortions
apparent when N/T is not small. By contrast, and consistent with the analyses in Sections
3 and 4, the asymptotic BPT and NBPNT tests tend to over-reject the null hypothesis
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significantly even when N/T is small, except for GARCH errors (Table 5). Moreover, for
all results in Tables 2 - 5, the rejection rates for BPT are less than those for NBPNT .
For example, when T = 200, and under the one-break-in-volatility heteroskedastic scheme
(HET1, reported in Table 2) the rejection frequencies for the asymptotic NBPNT (resp.,
BPT ) tests, under normal errors, range from 12.1% − 100% (9.5% − 100%) whereas for
the NRBPNT (resp., RBPT ) range from 6.0% − 10.3% (4.7% − 10.1%). Similar pattern
across the tests is revealed for the χ26 errors. For the trending volatility model, Table 3, the
corresponding ranges are: 8.3% − 86.1% (resp., 6.6% − 85.8%) for NBPNT (resp., BPT )
and 6.5%− 7.5% (resp., 4.4%− 9%) for NRBPNT (resp., RBPT ). For the HET3 scheme
(Table 4), these ranges are 7.5%− 86.8% (resp., 5.3%− 86.3%) and 6.8%− 13.8% (resp.,
5.0%−13.7%), forNBPNT (resp., BPT ) andNRBPNT (resp., RBPT ), respectively. There
is significantly less over-rejection in the latter when N/T is small, where σ2it = exp(czit),
since the zit are generated as i.i.d. random variables but held fixed in repeated samples,
yielding a low (but positive) contemporaneous correlation measure between the squared
errors. Under GARCH(1,1) errors, where σ2it is a stationary process, BPT (resp., NBPNT )
remains asymptotically justified and exhibits close agreement, in general, between nominal
and empirical significance levels across all error distributions, when N/T is small, although
with more pronounced distortions, than that of RBPT .

7

Turning our attention to the wild bootstrap tests, both procedures, employingNRBP ∗NT
and NBP ∗NT , control the significance levels much better than their asymptotic counter-
parts, across all models and wild bootstrap schemes. Under H0 : E[uitujt] = 0 and over
the 135 different models investigated, the recursive-design wild bootstrap scheme WB1
performs the best among all bootstrap schemes and across all models. Specifically, when
N = 5 and 10, there is not much to choose between the bootstrap schemes but when N
increases, WB1 clearly dominates the other bootstrap schemes WB2 and WB3. Under
homoskedasticity and employing WB1, NBP ∗NT performs slightly better than NRBP

∗
NT

under χ26 errors when N and T are large, as NBP ∗NT is more efficient. Nevertheless, under
heteroskedasticity, the bootstrap heteroskedasticity-robust test NRBP ∗NT performs bet-
ter than NBP ∗NT across all bootstrap schemes and across all models, except for GARCH
errors (Table 5) when both NRBP ∗NT and NBP

∗
NT are comparable. In particular, empir-

ical size distortions occur for NBP ∗NT when N is large and T is small. For example, for
HET1 and WB1, there is hardly any evidence of distortion in the empirical significance
level, with two cases, for NRBP ∗NT across both error distributions, whereas there are
thirteen times when empirical rejections of the non-robust test NBP ∗NT fall outside the
acceptable interval of [3.6%, 6.5%]. For WB2 under normal errors, only once does the
empirical rejection rate fall outside the acceptable interval for NRBP ∗NT given HET1 and
HET2, whereas for NBP ∗NT eight times for HET1 and five times for HET2. Under HET2
with normal errors, the rejection rate for NRBP ∗NT is 7% when N = 100 and T = 25,
whereas rejection rate for NBP ∗NT is 11.1% for this combination of N and T . Higher
rejection rates are revealed under HET3, i.e. the rejection rate for NRBP ∗NT is 9.7%
when N = 100 and T = 50, whereas the rejection rate for NBP ∗NT is 26.8%. Such results
for NBP ∗NT are consistent with those found by Godfrey and Yamagata (2011), although
their experiments only considered a static (not dynamic) heterogeneous panel data model.
Thus, the bootstrap test NRBP ∗NT , employing WB1, exhibits good agreement between
nominal and empirical significance levels and appears more reliable than NBP ∗NT . With

7Observe that the rejection frequencies of NRBPNT test under no error cross-sectional correlation along
a path of N2/T being constant seem not to get worse when N and T increase. For example, in Table 4,
the estimated size of NRBPNT test for (N,T ) = (25, 50), (50, 200), where N2/T = 12.5, are 8.8% and
8.9%, respectively. This seems consistent with our analytical results, in particular, under Assumption B1
(N2/T → 0).
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regard to power comparisons, for WB1, between NRBP ∗NT and NBP
∗
NT , there is not

a significant difference, except that NBP ∗NT appears consistently more powerful under
χ26 errors. Note that these are not size-adjusted power results and NBP

∗
NT has revealed

higher distortions under the null. Qualitatively, the results are similar across all schemes
but, as an illustration, under one-break-in-volatility model with correlated errors (Table
2), under χ26 errors and for N = 25, the rejection rates for NBP ∗NT are approximately
26%, 49%, 82% and 99%, respectively for T = 25, 50, 100 and 200, for the recursive-design
resampling scheme (WB1), whilst those of NRBP ∗NT are 18%, 36%, 72% and 98%.

7 An empirical application

In this section we examine error cross section correlation in a dynamic growth equation
following Bond et al. (2010). Two variables, real GDP per worker and the share of
total gross investment in GDP are obtained from Penn World Table Version 7.0 (PWT
7.0). Our sample consists of 20 OECD countries (N = 20) with annual data covering the
period 1955-2004 (50 data points).8 In order to factor out common trending components,
we transformed the log of output per worker (lgdpwit) and the log of the investment

share (lkit) to the deviations from the cross section mean: namely, l̃gdpwit = lgdpwit −
N−1∑N

i=1 lgdpwit and l̃kit = lkit − N−1∑N
i=1 lkit. We statistically checked the order of

integration of these variables, and the evidence suggests that l̃gdpwit lgdpwit are I(1) but
l̃kit are I(0), which is consistent with the results given by Bond et al (2010, Table I(b)).

9

Allowing the slope coefficients to differ across countries, the dynamic specification of
the growth equation is adopted from Bond et al. (equation 10):

∆l̃gdpwit = θ1i + θ2i l̃kit + θ3i∆l̃kit + θ4i∆l̃kit−1 + φ1i∆l̃gdpwi,t−1 + φ2i∆l̃gdpwi,t−2 + uit,
(20)

i = 1, 2, ..., N = 20 and t = 1, 2, ..., T = 47. In line with our notation, this model

can be written as yit = x′itβi + uit, where yit = ∆l̃gdpwit, x
′
it = (yit−1, yit−2, w′it) with

w′it = (1, l̃kit,∆l̃kit,∆l̃kit−1), and βi = (θ1i, θ2i, θ3i, θ4i, φ1i, φ2i)
′.

Firstly, we applied a (time-varying) heteroskedasticity-robust version of Lagrange mul-
tiplier (LM) test for error serial correlation for each country regression, as discussed in
Godfrey and Tremayne (2005). The test statistic for mth-order serial correlation is defined
by

RLMT,i = û
′
iÛi

(
Û ′iMxiΛ̂iMixÛi

)−1
Û ′i ûi (21)

where ûi = (ûi1, ûi2, ..., ûiT )
′ is a (T × 1) residual vector, Ûi = (ûi,−1, ûi,−2, ..., ûi,−m)

which is a (T ×m) matrix with ûi,−` = (ûi,1−`, ûi,2−`, ..., ûi,T−`)
′ being a (T × 1) vector

but ûi,t−` ≡ 0 for t − ` < 1, ` = 1, 2, ...,m, Mix = IT − Xi (X ′
iXi)

−1X ′
i with t

th row

vector of Xi being x
′
it, and Λ̂i = diag(û2it). Under the null hypothesis of no error serial

correlation, RLMT,i is asymptotically distributed as χ
2
m. The finite sample experimental

results in Godfrey and Tremayne (2005) show that the use of asymptotic critical value can

8These OECD countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Greece,
Iceland, Ireland, Italy, Japan, Luxembourg, Netherland, Norway, Spain, Sweden, Switzerland, United
Kingdom and United States.

9The values of t-bar statistics, which are the cross-sectional averages of country ADF(2) statistics with

a linear trend for l̃gdpwit is -1.55, and the exact 5% critical values reported Im et al. (2003; table 2) for

N = 20 and T = 50 is -2.47. The values of similar t-bar statistics but with an intercept only for ∆l̃gdpwit,

l̃k and ∆l̃k are -3.45, -2.00 and -4.71, respectively, and the exact 5% critical value is -1.85.
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be unreliable but that recursive resampling wild bootstrap (our WB1) approach is reliable
with good control over finite sample significance levels.10

We have applied the WB1 bootstrap RLMT,i test for second-order serial correlation
(m = 2) to the model (20) and the results show that the null hypothesis of no error serial
correlation cannot be rejected at the 5% significance level for all 20 OECD countries.
Therefore, there is no strong evidence against a claim of no error serial correlation for all
20 OECD countries.11

[INSERT Table 6 HERE]

Now let us turn our attention to error cross section correlation tests. Table 6 reports
the asymptotic and various bootstrap p-values of the tests. As can be seen, the asymptotic
NBPNT test rejects the null hypothesis at the 5% level, but our asymptotic NRBPNT
test does not. When the bootstrap methods are applied to these tests, both have similar
p-values, ranging between 10.7% to 12.8%. Therefore, based on our proposed testing
approach, there is no strong evidence of contemporaneous error cross section correlation.

8 Conclusion

The paper has developed heteroskedasticity robust Breusch-Pagan tests for the null hy-
pothesis of zero-cross section correlation in dynamic panel data models under the assump-
tion that the number of time series observations, T , is large relative to the number of cross
sections, N, with either N fixed or both N and T large; but not under an assumption
cross section independence. The procedures can be employed with fixed, strictly exoge-
nous and/or lagged dependent regressors and are (asymptotically) robust to quite general
forms of non-normality and heteroskedasticity, in the error distribution, across both time
and cross-section. However, when N/T is not small, the asymptotic tests reveal severe
size distortions in line with the qualitative predictions from first order asymptotic theory.
Wild bootstrap schemes can be used to improve the finite sample behaviour of the tests,
with the recursive-design wild bootstrap scheme performing the best among the bootstrap
procedures employed in our Monte Carlo study. By allowing conditional heteroskedasticity
with asymmetric errors, these wild bootstrap schemes are all asymptotically valid under
less restrictive assumptions than those imposed by, say, Goncalves and Kilian (2004).
Across all combinations of error distributions and types of heteroskedasticity, considered
in our study, the recursive-design wild bootstrap version of the new robust standardised
Breusch-Pagan test (NRBP ∗NT ) provides quite reliable finite sample inferences, even when
N/T is not small, as hoped would be the case. Furthermore, the NRBP ∗NT seems to be as
powerful as its asymptotic counterpart NRBPNT (except when T is small and N is large,
but NRBPNT is severely oversized in this case) under homoskedasticity and therefore
there appears to be no penalty attached to using these wild bootstrap schemes even if the
errors are homoskedastic. An intetesting feature, perhaps, is that the Breusch-Pagan wild

10They considered a Hausman-type test and a modified version of the LM test, but based on the finite
sample results the bootstrap RLMT,i test or a bootstrap modified LM test is recommended. We consider
the WB1 bootstrap RLMT,i test only, since the reported performance of these two tests by Godfrey and
Tremayne (2005) was very similar and the former is computationally simpler. Note, however, that these
procedures require more restrictive assumptions than those imposed in this paper.
11Full test results are available upon request. Only the p-value of Norway was on the borderline, being

5.1%. However, assuming all country specific errors are cross-sectionally independent, then the serial
correlation test statistics are also independent over countries. Thus, the result that the proportion of the
rejections, at (about) the 5% significance level and over 20 countries, is 5% is consistent with the hypothesis
of no error serial correlation.
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bootstrap tests also provide significant improvements over first-order asymptotic theory
but appeared less reliable than NRBP ∗NT . Thus the use NRBP

∗
T in conjunction with a

recursive-design bootstrap scheme recommends itself as an additional useful test procedure
for applied workers.
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Appendix A

In what follows ‖A‖ =
√∑

i

∑
j a

2
ij denotes the Euclidean norm of a matrix A = {aij}, N the set of positive

integers and µmax (A) (or µmin (A)) denotes the largest (or smallest) eigenvalue of a real symmetric matrix
A.

Asymptotic Validity of RBPT
Proof of Theorem 1. It is shown that γ̂ij,T − γij,T = op(1) and the result follows.
1. First, define Hi = Xi (X

′
iXi)

−1
X ′
i. Then,

T∑

t=1

ûitûjt =

T∑

t=1

uitujt − u′iHiuj − u′iHjuj + u
′
iHiHjuj

It follows from Lemma S.3 that u′iHiuj , u
′
iHjuj and u

′
iHiHjuj are all Op(1) with T

−1X ′
iXi, in particular,

being uniformly positive definite with probability one. Thus T−1/2
∑T

t=1 ûitûjt = T−1/2
∑T

t=1 uitujt +

Op(T
−1/2).

2. We now show that 1
T

∑T
t=1 û

2
itû

2
jt − 1

T

∑T
t=1 u

2
itu

2
jt = op(1), and the result follows. Making the substi-

tution ûit = uit − x′it(β̂i − βi) we get

û2it = u
2
it − 2uitx′it(β̂i − βi) + (β̂i − βi)′xitx′it(β̂i − βi),
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so that, writing δi = β̂i − βi = Op(T−1/2),

1

T

T∑

t=1

û2itû
2
jt −

1

T

T∑

t=1

u2itu
2
jt = 4δ′i

(
1

T

T∑

t=1

uitujtxitx
′
jt

)
δj

−2δ′i
1

T

T∑

t=1

u2jtuitxit − 2δ′j
1

T

T∑

t=1

u2itujtxjt

+δ′i

(
1

T

T∑

t=1

u2jtxitx
′
it

)
δi + δ

′
j

(
1

T

T∑

t=1

u2itxjtx
′
jt

)
δj

+δ′i

(
1

T

T∑

t=1

xitx
′
itδiδ

′
jxjtx

′
jt

)
δj

−2δ′i

(
1

T

T∑

t=1

ujtx
′
jtδjxitx

′
it

)
δi

−2δ′j

(
1

T

T∑

t=1

uitx
′
itδixjtx

′
jt

)
δj

=

8∑

q=1

RqT , say.

By Markov’s inequality, Assumption A2(v), Proposition S.1(a) and repeated application of Cauchy-Schwartz,
it can be shown that RqT = op(1), q = 1, ..., 8, and the result follows.

For example, consider R1T = 4δ
′
i

(
1
T

∑T
t=1 uitujtxitx

′
jt

)
δj . By Cauchy-Schwartz

E |uitujtxitlxjtm| ≤
√
E |uitxitl|2 E |ujtxjtm|2 ≤ ∆ <∞,

and E |uitxitl|2 ≤ E |uit|4 E |xitl|4 ≤ ∆ < ∞, by Assumption A2(v) and Proposition S.1(a). Thus, by
Markov’s equality, R1T = Op(T

−1). Similar reasoning gives RqT = Op(T
−1/2), q = 2, 3, and RqT =

Op(T
−1), for q = 4, 5.

For R6T = δ
′
i

(
1
T

∑T
t=1 xitx

′
itδiδ

′
jxjtx

′
jt

)
δj , note that vec(ABC) = (C

′ ⊗A) vec (B) , yielding

vec

(
1

T

T∑

t=1

xitx
′
itδiδ

′
jxjtx

′
jt

)
=
1

T

T∑

t=1

(
xjtx

′
jt ⊗ xitx′it

)
vec

(
δiδ

′
j

)

where elements of
(
xjtx

′
jt ⊗ xitx′it

)
are xjthxjtlxitmxitn, with

E |xjthxjtlxitmxitn| ≤
√
E |xjthxjtl|2 E |xitmxitn|2 ≤ ∆2 <∞,

implying that R6T = Op(T
−2). Again, similar reasoning gives RqT = Op(T

−3/2), q = 7, 8, and this
completes the proof.
3. We show that plimT→∞

1
T

∑T
t=1

{
u2itu

2
jt − E[u2itu2jt]

}
= 0. Note that, with τ2ijt = E[u

2
itu

2
jt|FNT,t−1]

1

T

T∑

t=1

{
u2itu

2
jt − E[u2itu2jt]

}
=
1

T

T∑

t=1

{
u2itu

2
jt − τ2ijt

}
+
1

T

T∑

t=1

{
τ2ijt − E[u2itu2jt]

}

where the second term is op(1) by Assumption A4(iii). The first term is op(1) by a Law of Large Numbers

for the heterogeneous m.d.s.,
{
u2itu

2
jt − τ2ijt,FNT,t

}
, since E

∣∣u2itu2jt
∣∣1+δ <∞.

Proof of Corollary 1. Since γ̂ij,T − γij,T = op(1) and γij,T
d→ N(0, 1), γ̂2ij,T

d→ χ21. Furthermore, by
asymptotic normality of γij,T , verifying that E [uitujtuksums] = 0, for pairs (i, j) 6= (k,m) and all t, s
establishes the asymptotic independence of the γ̂ij,T and the result follows. Firstly, note by Assumption
A4(i), E [uitujt|FNT,t−1] = 0 so we need only consider t = s. Now, without loss of generality, we can
assume i < j and k < m, with i ≤ k < m so that E [uitujtuktumt] gives the covariance between all possible
distinct products {uitujt} , i < j, and {uktumt} , k < m. But this is zero by Assumption A4(v) and we are
done.
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Proof of Lemma 1. Firstly, write

ZNT =
1√

N (N − 1)

N−1∑

i=1
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j=i+1




1
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u2itu

2
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[
u2itu

2
jt

])

ωij,T

)

= Z1,NT + Z2,NT

and Z2,NT = op (1) by Chebyshev’s inequality, Proposition S.1(c), Assumptions A4(iv) and B1 because
(for T sufficiently large)

|Z2,NT | ≤ K−1
√
N(N − 1)

T

1

N (N − 1)
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2
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)
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√
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T
Op (1)→ 0.

Now, for the first term, Z1,NT , we have

Z1,NT =
T∑

t=2

t−1∑

s=1

HT (ut, us)

where ut = (u1t, .., uNt)
′ and

HT (ut, us) = 2
1

T

1√
N (N − 1)

N−1∑

i=1

N∑

j=i+1

uitujtuisujs
ωij,T

Let WTt =
∑t−1

s=1HT (ut, us) so that

E [WTt|FNT,t−1] = 0 a.s.

by Assumption A4(i) and thus WTt is a mds array with respect to FNT,t−1.
Therefore, we can apply the CLT martingale difference arrays of Hall and Heyde (1980, Corollary 3.1),
where T = g (N) and (N,T ) → ∞. The following conditions for CLT for mds have to be satisfied as
(T,N)→∞:
(i) s2T → 1
where

s2T = E



(

T∑

t=2

WTt

)2


(ii)
(
s2T
)−1∑T

t=2 E
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W 2
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]
→ 0 all α > 0

(iii)
(
s2T
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t=2 E
[
W 2
Tt|FNT,t−1

]

Then

Z1,NT =

T∑

t=2

WTt
d−→ N (0, 1)

as (T,N)→∞.
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For (i),
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where the last two terms are zero by Assumption A4(v), whereas for the first term we can write
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by Assumption B2(ii) since
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−δ < ∞, whereas for the second term E [uisujsuirujr] = 0 by As-
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sumption A4(i) for s 6= r and i 6= j. Moreover,

2
1

T 2

T∑

t=2

t−1∑

s=1

E
[
u2itu

2
jtu

2
isu

2
js

]
=

1

T 2

∑

t6=s
E
[
u2itu

2
jtu

2
isu

2
js

]

=
1

T 2

∑

t6=s
cov

(
u2itu

2
jt, u

2
isu

2
js

)
+

1

T 2

∑

t6=s
E
[
u2itu

2
jt

]
E
[
u2isu

2
js

]

=
1

T 2

∑

t6=s
E
[
u2itu

2
jt

]
E
[
u2isu

2
js

]
+O

(
T−1

)

= ω2ijT +O
(
T−1

)
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by Cauchy-Schwartz inequality and Assumption B2(i). Thus
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To establish (ii) it is sufficient to show that

(
s2T
)−1−δ T∑
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E |WTt|2+δ → 0 as (T,N)→∞ for some δ > 0. (22)

Since s2T = O (1), (22) is established for δ = 2 if

T∑

t=2

E
[
W 4
Tt

]
→ 0 as (T,N)→∞

where

E
[
W 4
Tt

]
= E



(
t−1∑

s=1

HT (ut, us)

)4


=

t−1∑

s=1

E
[
H4
T (ut, us)

]
+ 3

t−1∑

s 6=r

t−1∑
E
[
H2
T (ut, us)H

2
T (ut, ur)

]

+

t−1∑

s 6=r 6=s′ 6=r′

t−1∑ t−1∑ t−1∑
E [HT (ut, us)HT (ut, ur)HT (ut, us′)HT (ut, ur′)]

+6

t−1∑

s 6=r 6=s′

t−1∑ t−1∑
E
[
H2
T (ut, us)HT (ut, ur)HT (ut, us′)

]

+4

t−1∑

s 6=r

t−1∑
E
[
H3
T (ut, us)HT (ut, ur)

]
(23)

The first term in (23) is

E
[
H4
T (ut, us)

]
= 16T−4 [(N (N − 1))]−2 E



(
N−1∑

i=1

N∑

j=i+1

uitujtuisujs
ωij,T

)4


≤ 16K−4T−4 [(N (N − 1))]−2 E



(
N−1∑

i=1

N∑

j=i+1

uitujtuisujs

)4


24



by Assumption A4(iv) and where
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uitujtuisujsultumtulsumsuptuqtupsuqsuhtuntuhsuns

]

= E

[
∑

i<j

∑

l<m

∑

p<q

∑

h<n

kijlmpqhn,tE [uisujsulsumsupsuqsuhsuns]

]

≤
∑

i<j

∑

l<m

∑

p<q

∑

h<n

k̄ijlmpqhnE [uisujsulsumsupsuqsuhsuns]

Now, since E [uisujsulsumsupsuqsuhsuns] ≤ supt E
∣∣u8it
∣∣ ≤ ∆ < ∞ by repeated application of Cauchy-

Schwartz inequality and by Assumption B2(i)

E
[
H4
T (ut, us)

]
≤ 16K−4∆T−4N−4∑

i<j

∑

l<m

∑

p<q

∑

h<n

∣∣k̄ijlmpqhn
∣∣

= O
(
T−4

)

by Assumptions A4(iv) and B2(iv). For the second term in (23)

E
[
H2
T (ut, us)H

2
T (ut, ur)

]
≤

{
E
[
H4
T (ut, us)

]
E
[
H4
T (ut, ur)

]}1/2

= O
(
T−4

)

where the first line follows by Cauchy-Schwartz inequality and the second line by the previous result. By
Assumption A4(iv), the third term in (23) can be written further as

E [HT (ut, us)HT (ut, ur)HT (ut, us′)HT (ut, ur′)]

≤ 16K−4 1

T 4
1

N2 (N − 1)2
∑

i<j

∑

l<m

∑

p<q

∑

h<n

E [uitujtuisujsultumtulrumruptuqtups′uqs′uhtuntuhr′unr′ ]

≤ 16K−4 1

T 4
1

N2 (N − 1)2
∑

i<j

∑

l<m

∑

p<q

∑

h<n

∣∣k̄ijlmpqhn
∣∣E [uisujsulrumrups′uqs′uhr′unr′ ]

= 0

where the last line follows by Assumptions A4(i) and B2(v). Analogously, the fourth term is

E
[
H2
T (ut, us)HT (ut, ur)HT (ut, us′)

]

≤ 16K−4 1

T 4
1

N2 (N − 1)2
∑

i<j

∑

l<m

∑

p<q

∑

h<n

E [uitujtultumtuptuqtuhtuntuisujsulsumsupruqruhs′uns′ ]

= 16K−4 1

T 4
1

N2 (N − 1)2
∑

i<j

∑

l<m

∑

p<q

k̄ijlmpqhnE [uisujsulsumsupruqruhs′uns′ ]

= 0

where E [uisujsulsumsupruqruhs′uns′ ] = 0 by Assumption A4(i) when s < max(r, s′), whereas when s >
max (r, s′) and i = l < j = m 6= p < q the expectation is o

(
T−1

)
by Assumptions B2(ii) and Assumption

A4(i), otherwise the expectation is zero by Assumption A4(v). The last line then follows by Assumption
B2(iv). By Assumption A4(iv), the fifth term in (23) is

E
[
H3
T (ut, us)HT (ut, ur)

]

≤ 16K−4 1

T 4
1

N2 (N − 1)2
∑

i<j

∑

l<m

∑

p<q

∑

h<n

E [uitujtultumtuptuqtuhtuntuisujsulsumsupsuqsuhrunr]

= 16K−4 1

T 4
1

N2 (N − 1)2
∑

i<j

∑

l<m

∑

p<q

∑

h<n

k̄ijlmpqhnE [uisujsulsumsupsuqsuhrunr]

= O(T−4)
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where the third and last line yield by Assumption B2(i), (iv) for s > r since E [uisujsulsumsupsuqsuhsuns] ≤
supt,iE

∣∣u8it
∣∣ ≤ ∆ < ∞ by repeated application of Cauchy-Schwartz inequality, whereas for s < r,

E [uisujsulsumsupsuqsuhrunr] = 0 by Assumption A4(i). Thus,

E
[
W 4
Tt

]
= E

[
t−1∑

s=1

H4
T (ut, us)

]
+ 3

t−1∑

s=1

t−1∑

r=1,s 6=r
E
[
H2
T (ut, us)H

2
T (ut, ur)

]

+4

t−1∑

s=1

t−1∑

r=1,s 6=r
E
[
H3
T (ut, us)HT (ut, ur)

]

= O(T−2)

which yields that

(
s2T
)−2 T∑

t=2

E
[
W 4
Tt

]
= O

(
T−1

)

which establishes the result.
(iii) We have

VT =
T∑

t=2

E
[
W 2
Tt|FNT,t−1

]

=
T∑

t=2

E

[
t−1∑

s=1

t−1∑

r=1

HT (ut, us)HT (ut, ur) |FNT,t−1
]

=
4

N (N − 1)

N−1∑

i=1

N∑

j=i+1

1

ω2ij,T

1

T 2

T∑

t=2

t−1∑

s=1

t−1∑

r=1

uisujsuirujrE
[
u2itu

2
jt|FNT,t−1

]

and by the law of iterated expectations and results obtained in (i), E (VT ) = s
2
T . In addition, by moment

calculations we show that E
(
V 2
T

)
=
(
s2T
)2
+ o (1). Note that for s 6= r

sup
i6=j

E




 1

T 2

T∑

t=2

t−1∑

s 6=r
uisujsuirujrE

[
u2itu

2
jt|FNT,t−1

]


2


= sup
i6=j

1

T 4
E




T∑

t=2

t−1∑

s 6=r
uisujsuirujrτ

2
ijt

T∑

t′=2

t′−1∑

s′=1

t′−1∑

r′=1

uis′ujs′uir′ujr′τ
2
ijt′




= sup
i6=j

1

T 4

T∑

t=2

t−1∑

s 6=r

T∑

t′=2

t′−1∑

s′ 6=r′
cov

(
uisujsuirujrτ

2
ijt, uis′ujs′uir′ujr′τ

2
ijt′
)

+sup
i6=j

1

T 2

T∑

t=2

t−1∑

s 6=r
E
[
uisujsuirujrτ

2
ijt

] 1
T 2

T∑

t′=2

t′−1∑

s′ 6=r′
E
[
uis′ujs′uir′ujr′τ

2
ijt′
]

where

cov
(
uisujsuirujrτ

2
ijt, uis′ujs′uir′ujr′τ

2
ijt′
)

= E [uisujsuirujr]E [uis′ujs′uir′ujr′ ] cov
(
τ2ijt, τ

2
ijt′
)

+E [uisujsuirujr]E
[
τ2ijt′

]
cov

(
τ2ijt, uis′ujs′uir′ujr′

)

+E
[
τ2ijt
]
E [uis′ujs′uir′ujr′ ] cov

(
uisujsuirujr, τ

2
ijt′
)

+E
[
τ2ijt
]
E
[
τ2ijt′

]
cov (uisujsuirujr, uis′ujs′uir′ujr′)

+E
[
uisujsuirujr

(
τ2ijt − E

[
u2itu

2
jt

])
uis′ujs′uir′ujr′

(
τ2ijt′ − E

[
u2it′u

2
jt′
])]

+E [uisujsuirujr]E
[(
τ2ijt − E

[
u2itu

2
jt

])
uis′ujs′uir′ujr′

(
τ2ijt′ − E

[
u2it′u

2
jt′
])]

+E
[
τ2ijt − E

[
u2itu

2
jt

]]
E
[
uisujsuirujruis′ujs′uir′ujr′

(
τ2ijt′ − E

[
u2it′u

2
jt′
])]

+E
[
τ2ijt′ − E

[
u2it′u

2
jt′
]]
E
[
uisujsuirujruis′ujs′uir′ujr′

(
τ2ijt − E

[
u2itu

2
jt

])]

−cov
(
uisujsuirujr, τ

2
ijt

)
cov

(
uis′ujs′uir′ujr′ , τ

2
ijt′
)

= −cov
(
uisujsuirujr, τ

2
ijt

)
cov

(
uis′ujs′uir′ujr′ , τ

2
ijt′
)
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such that

sup
i6=j

1

T 4

T∑

t=2

t−1∑

s 6=r

T∑

t′=2

t′−1∑

s′ 6=r′
cov

(
uisujsuirujrτ

2
ijt, uis′ujs′uir′ujr′τ

2
ijt′
)

= − sup
i6=j

1

T 2

t−1∑

m

t′−1∑

m′

m−δ (m′)−δ

= o (1)

and

sup
i6=j

1

T 2

T∑

t=2

t−1∑

s 6=r
E
[
uisujsuirujrτ

2
ijt

]
= sup

i6=j

1

T 2

T∑

t=2

t−1∑

s 6=r
cov

(
uisujsuirujr, τ

2
ijt

)

+sup
i6=j

1

T 2

T∑

t=2

t−1∑

s 6=r
E [uisujsuirujr]E

[
τ2ijt
]

= sup
i6=j

1

T 2

T∑

t=2

t−1∑

s 6=r
(t− (s ∨ r))−(1+δ)

= sup
i6=j

1

T

t−1∑

m=1

m−δ

= o(1)

by Assumptions A4(v) and B2(ii). Thus, it can be shown that E
(
V 2
T

)
= (s2T )

2 + o (1) which yields that
var(VT ) = o (1), and the result follows.
Proof of Lemma 2. Define

Ẑ†NT =
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
γ̂†2ij,T − 1

)

γ̂†ij,T =

1√
T

∑T
t=1 ûitûjt√
ωij,T

.

then we have
NRBPNT − ZNT = (Ẑ†NT − ZNT ) + (NRBPNT − Ẑ

†
NT )

and we show that:
(i)
∣∣∣Ẑ†NT − ZNT

∣∣∣ = op (1) as (N,T )→∞

(ii)
∣∣∣NRBPNT − Ẑ†NT

∣∣∣ = op (1) , as (N,T )→∞.
(i) Firstly, it can be noted that from Proof of Theorem 1

γ̂†ij,T = γij,T +
1√
ωij,T

1√
T
bij,T = γij,T + cij,T , say

where

bij,T = u
′
iHiHjuj − u′iHiuj − u′iHjuj =

3∑

k=1

aijk,T (24)

and Hi = Xi (X
′
iXi)

−1
X ′
i with analogous notation for Hj . Thus

Ẑ†NT − ZNT =
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
γ̂†2ij,T − γ

2
ij,T

)

=
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

c2ij,T +
2√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

γij,T cij,T

= A1,NT +A2,NT

Since infi,j ωij,T ≥ K > 0 for T sufficiently large by Assumption A4(iv),

|A1,NT | ≤ K−1

∣∣∣∣∣
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

1

T
b2ij,T

∣∣∣∣∣ (25)
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Consider now aij1,T = u
′
iHiHjuj and |aij1,T |2 ≤ ‖Hiui‖2 ‖Hjuj‖2, where ‖Hiui‖2 = |u′iHiui|. Note that

∣∣∣∣∣2
N−1∑

i=1

N∑

j=i+1

1

T
a2ij1,T

∣∣∣∣∣ =

∣∣∣∣∣∣

N∑

i=1

N∑

j=1,i6=j

1

T
a2ij1,T

∣∣∣∣∣∣

≤
(
1√
T

N∑

i=1

‖Hiui‖2
)2

Further

1√
NT

N∑

i=1

‖Hiui‖2 =
1√
NT

N∑

i=1

∣∣∣∣∣tr
(
u′iXi√
T

(
X ′
iXi

T

)−1
X ′
iui√
T

)∣∣∣∣∣

≤
[
min
1≤i≤N

µmin

(
X ′
iXi

T

)]−1
1√
NT

N∑

i=1

∣∣∣∣tr
(
u′iXi√
T

X ′
iui√
T

)∣∣∣∣

≤
[
min
1≤i≤N

µminE

(
X ′
iXi

T

)
+ op (1)

]−1
1√
NT

N∑

i=1

∣∣∣∣tr
(
u′iXi√
T

X ′
iui√
T

)∣∣∣∣

= Op (1)
1√
NT

N∑

i=1

∥∥∥∥
X ′
iui√
T

∥∥∥∥
2

= Op
(
N1/2T−1/2

)
(26)

where the second line follows given that tr (AB) ≤ µmax (A) tr (B); see Bernstein (2005), for any symmetric
matrix A and positive semi-definite matrix B. Further, the fourth line in (26) follows since from Lemma

S.3(b) E

(
X ′
iXi

T

)
is uniformly positive definite and thus min1≤i≤N µminE

(
X ′
iXi

T

)
≥ cX a.s. for some

cX > 0, and the last line yields since
1√
NT

∑N
i=1

∥∥∥∥
X ′
iui√
T

∥∥∥∥
2

= Op
(
N1/2T−1/2

)
by Markov’s inequality given

that E

∥∥∥∥
X ′
iui√
T

∥∥∥∥
2

≤ ∆ <∞ uniformly in i. Thus,

∣∣∣∣
1√

N(N−1)

∑N−1
i=1

∑N
j=i+1

1
T
a2ij1,T

∣∣∣∣ = Op
(
NT−1

)
. Similar

arguments hold for aij2,T and aij3,T .Thus, it is established that |A1,NT | = Op
(
NT−1

)
.

Now consider

|A2,NT | =

∣∣∣∣∣
2√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

γij,T cij,T

∣∣∣∣∣

≤ 2

√√√√ 1

N (N − 1)

N−1∑

i=1

N∑

j=i+1

γ2ij,T

N−1∑

i=1

N∑

j=i+1

c2ij,T

where 1
N(N−1)

∑N−1
i=1

∑N
j=i+1 γ

2
ij,T = Op (1) by Markov’s inequality since E

∣∣γ2ij,T
∣∣ ≤ ∆ <∞ uniformly in i

and j. Moreover, from the above,
∑N−1

i=1

∑N
j=i+1 c

2
ij,T = Op

(
N2T−1

)
. Therefore, |A2,NT | = Op

(
NT−1/2

)
.

Hence,
∣∣∣Ẑ†NT − ZNT

∣∣∣ = Op
(
NT−1/2

)
= op (1) by Assumption B1.

(ii) Defining ω̂ij,T =
1

T

∑T
t=1 û

2
itû

2
jt, we have

∣∣∣RBPNT − Ẑ†NT
∣∣∣ =

∣∣∣∣∣
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
γ̂2ij,T − γ̂†2ij,T

)∣∣∣∣∣

≤
∣∣∣∣∣

1√
N (N − 1)

N−1∑

i=1

N∑

j=i+1

γ̂2ij,T

(
1− ωij,T

ω̂ij,T

)∣∣∣∣∣

≤ K−1

√√√√ 1

N (N − 1)

N−1∑

i=1

N∑

j=i+1

γ̂4ij,T

N−1∑

i=1

N∑

j=i+1

(ω̂ij,T − ωij,T )2
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since for T sufficiently large inf ω̂ij,T ≥ K > 0 a.s. By Markov’s inequality and Corollary 1, 1
N(N−1)

∑N−1
i=1

∑N
j=i+1 γ̂

4
ij,T =

Op (1) . Moreover,

N−1∑

i=1

N∑

j=i+1

(ω̂ij,T − ωij,T )2 = N (N − 1)





1

N (N − 1)

N−1∑

i=1

N∑

j=i+1

[
1

T

T∑

t=1

(
û2itû

2
jt − u2itu2jt

)
]2

+
1

T

1

N (N − 1)

N−1∑

i=1

N∑

j=i+1

[
1√
T

T∑

t=1

(
u2itu

2
jt − ωij,T

)
]2


= O
(
N2) [B1,NT +B2,NT ]

By Markov’s inequality and Proposition S.1(c), B2,NT = Op
(
T−1

)
. Moreover, from the proof of Theorem

1, B1,NT can be written as

B1,NT =
1

N (N − 1)

N−1∑

i=1

N∑

j=i+1

[
8∑

q=1

RqijT

]2

≤ 8

8∑

q=1

{
1

N (N − 1)

N−1∑

i=1

N∑

j=i+1

R2qijT

}

= 8
8∑

q=1

Bq
1,NT

where the second line follows by the cr inequality, and RqijT for q = 1, .., 8 are defined in Theorem 1,
where, for example,

R1ijT = 4δ′i

(
1

T

T∑

t=1

uitujtxitx
′
jt

)
δj

= 4tr

(
δ′i

(
1

T

T∑

t=1

uitujtxitx
′
jt

)
δj

)

≤ 4 max
1≤i≤N

‖δi‖2
∥∥∥∥∥
1

T

T∑

t=1

uitujtxitx
′
jt

∥∥∥∥∥ .

Now

max
1≤i≤N

‖δi‖ ≤ T−1/2
[
min
1≤i≤N

µminE

(
X ′
iXi

T

)
+ op (1)

]−1
max
1≤i≤N

∥∥∥∥
X ′
iui√
T

∥∥∥∥

= op
(
N1/4T−1/2

)
(27)

where max1≤i≤N

∥∥∥X
′

i
ui√
T

∥∥∥ = op
(
N1/4

)
by Lemma S.7 since max1≤i≤N E

∥∥∥X
′

i
ui√
T

∥∥∥
4

≤ ∆ <∞. Thus

B1
1,NT =

1

N (N − 1)

N−1∑

i=1

N∑

j=i+1

R21ijT

≤ 16 max
1≤i≤N

‖δi‖4
1

N (N − 1)

N−1∑

i=1

N∑

j=i+1

∥∥∥∥∥
1

T

T∑

t=1

uitujtxitx
′
jt

∥∥∥∥∥

2

= op
(
NT−2

)
Op
(
T−1

)

= op
(
NT−3

)

since E

[(
1
T

∑T
t=1 uitujtxitlxjtm

)2]
= O

(
T−1

)
by our Assumptions and applying Markov’s inequality

yields 1
N(N−1)

∑N−1
i=1

∑N
j=i+1

∥∥∥ 1T
∑T

t=1 uitujtxitx
′
jt

∥∥∥
2

= Op
(
T−1

)
. For the second term in B1,NT , we have
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that

B2
1,NT ≤ 4 max

1≤i≤N
‖δi‖2

1

N (N − 1)

N−1∑

i=1

N∑

j=i+1

∥∥∥∥∥
1

T

T∑

t=1

u2jtuitxit

∥∥∥∥∥

2

= op
(
N1/2T−1

)
Op
(
T−1

)

= op
(
N1/2T−2

)

where 1
N(N−1)

∑N−1
i=1

∑N
j=i+1

∥∥∥ 1T
∑T

t=1 u
2
jtuitxit

∥∥∥
2

= Op
(
T−1

)
by Markov’s inequality since E

∥∥∥ 1T
∑T

t=1 u
2
jtuitxit

∥∥∥
2

=

O
(
T−1

)
by Assumptions B2(iii), B2(i) and A2(iv). Similarly, B3

1,NT = op
(
N1/2T−2

)
. By our Assump-

tions, Bq
1,NT = op

(
NT−2

)
for q = 4, 5; B6

1,NT = op
(
N2T−4

)
and Bq

1,NT = op
(
N3/2T−4

)
for q = 7, 8.

Thus, B1,NT = op(NT
−2) and it follows that

∣∣∣RBPNT − Ẑ†NT
∣∣∣ = Op

(
N
√
max(NT−2, T−1)

)
= op (1) by

Assumption B1.

Asymptotic Validity of the Wild Bootstrap

We verify this for the recursive wild bootstrap scheme (WB1) only and, following Davidson and Flachaire
(2008), with u∗it = εitûit where the εit are i.i.d for all i and t taking the discrete values ±1 with an equal
probability of 0.5. With slight amendments, the proofs remain valid for any εit which are i.i.d mean zero
and unit variance and the derivations for the other two bootstrap schemes are straightforward.

The proof of the asymptotic validity for the wild bootstrap procedures for the heteroskedasticity robust
statistic NRBPNT in Theorem 3 is based on the following lemmas, since NRBPNT has an asymptotic
standard normal distribution as established in Theorem 2.

Lemma 3 Under Assumptions A1-A4(i) and (iv) combined with/or strengthened by Assumptions B2(i)

and B3 as (N,T )
j→∞
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where
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jt = 1
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∑T
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2
itû

2
jt by construction of the wild bootstrap errors using the

Rademacher distribution and notice that E∗ [γ∗2ij,T − 1
]
= 0.

Lemma 4 Under Assumptions A1-A4 combined with Assumption B1

NRBP ∗NT = Z
∗
NT + op∗ (1)

as (N,T ) → ∞, N2/T → 0 for the wild bootstrap designs WB1 and WB2. For the wild bootstrap design
WB3, the limiting distribution of NRBP ∗NT follows directly from Lemma 3 since NRBP ∗NT = Z

∗
NT .

Corresponding results apply for the wild bootstrap procedure based on the statistic NBPNT . Specifi-

cally, ρ̂ij =
√
vijT γ̂ij,T + op(1) where (the scalar)
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1
T

∑T
t=1 E[u

2
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2
jt]

1
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= O(1)

and is strictly positive for T sufficiently large, by Assumptions A3(ii) and A4(iv). Furthermore, for
ρ̂∗ij defined at (10), and by Lemma S.9 (c) in the Suppplementary Appendix, it is also true that ρ̂

∗
ij =
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√
vijT γ

∗
ij + op∗(1), in probability, since by the Davidson and Flachaire (2008) wild bootstrap scheme,

u∗2it = û
2
it. Therefore, the result for NBP

∗
NT in Theorem 3 follows from the following analysis for NRBP

∗
NT .

In what follows, let F∗
NT,t be the sigma field generated by current and lagged values of εit in the

bootstrap sample (i.e., {εi,t−p} , i = 1, ..., N, p = 0, 1, 2, ..., t− 1 ).
Proof of Lemma 3. Firstly write

Z∗NT = 2
1

T

1√
N (N − 1)

N−1∑

i=1

N∑

j=i+1

T∑

t=2

t−1∑

s=1

u∗itu
∗
jtu

∗
isu

∗
js

ω∗ij,T

+
1√

N (N − 1)

N−1∑

i=1

N∑

j=i+1

(
1
T

∑T
t=1 u

∗2
it u

∗2
jt

ω∗ij,T
− 1
)

= Z∗1,NT + Z
∗
2,NT

For the second term, using the Rademacher distribution for generating the bootstrap errors, 1
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2
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Consider now the first term
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Note that E∗ [W ∗
Tt|F∗

NT,t−1
]
= E∗ [W ∗

Tt] = 0 due to (conditional) independence where E∗[·] denotes the
expectation induced by the wild bootstrap conditional on the sample data. Therefore, we apply the CLT
theorem for U -statistic for (conditionally) independent but heterogenous data, for which it suffices to check
as (T,N)→∞:
(i) s∗2T → 1, where
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where the second and third lines follow by m.d.s. and conditional independence of the bootstrap and the
last line follows since
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and for s 6= r
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û2itû
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The first term in (29) is
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The other terms in (29) are zero by the conditional independence and construction of the bootstrap errors.
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2
jtû
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juwhere the second line follows by the Cauchy-Schwartz inequality. Therefore, condition (ii) holds as
(N,T )→∞.
Proof of Lemma 4. Secondly, for the wild bootstrap designs WB1 and WB2 in order to establish that

NRBP ∗NT = Z
∗
NT + op (1)
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as (N,T )→∞, N2/T → 0 for, we show that
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Table 1: Rejection frequencies of the asymptotic and various Wild Bootstrap RBP and
BP tests in panel ADL(1,0) models under homoskedastic errors (HET0).

H0 : E [uitujt] = 0 HA : E [uitujt] = 0.2

SN χ26 SN χ26

N 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100

Asymptotic critical values Asymptotic critical values
T RBPT RBPT
25 3.3 5.6 12.2 27.2 76.7 3.5 4.5 9.7 23.0 69.0 6.2 11.1 30.5 69.3 98.1 4.4 8.4 26.9 58.9 92.2
50 4.4 5.6 7.4 13.4 30.3 3.9 4.4 7.0 12.0 32.5 9.1 18.0 54.8 88.8 99.6 8.1 15.6 43.7 76.1 97.0
100 4.9 5.6 6.4 8.4 12.6 4.3 5.3 7.0 9.8 19.3 17.9 40.3 87.6 99.7 100.0 14.1 33.7 79.6 98.5 99.9
200 4.6 5.1 4.5 6.4 8.2 5.9 4.2 7.0 8.1 12.7 35.9 76.0 99.8 100.0 100.0 33.8 70.2 99.1 100.0 100.0

BPT BPT
25 5.0 8.5 14.8 36.6 86.8 5.7 7.1 15.6 38.5 86.3 7.9 14.4 39.0 78.2 99.3 8.0 15.6 41.6 77.1 98.8
50 4.8 5.9 8.4 16.3 36.1 5.7 6.3 8.5 15.3 36.3 9.9 21.2 60.3 91.0 99.9 12.1 23.9 59.0 89.3 99.6
100 5.0 6.0 6.1 8.6 14.1 4.8 6.0 7.3 8.7 15.0 19.3 42.4 89.4 99.8 100.0 20.3 43.3 88.0 99.8 100.0
200 5.0 5.3 4.7 6.7 8.4 5.5 4.7 6.7 7.2 8.8 37.3 77.2 99.9 100.0 100.0 37.4 76.4 99.7 100.0 100.0
T NRBPNT NRBPNT
25 5.0 6.8 13.4 27.9 77.0 4.8 5.9 10.5 23.7 69.4 8.0 12.8 31.7 69.7 98.2 6.7 10.6 28.2 59.5 92.3
50 6.1 6.6 8.3 13.9 30.9 5.3 5.3 7.7 12.7 32.9 11.2 20.3 56.6 89.1 99.6 10.4 17.1 44.9 76.7 97.1
100 6.3 6.5 6.7 8.6 12.9 6.4 6.5 7.8 10.2 19.6 21.0 43.4 88.2 99.8 100.0 18.1 36.4 80.2 98.5 99.9
200 6.4 6.1 5.0 6.8 8.6 7.7 5.1 7.2 8.7 13.0 41.2 78.3 99.8 100.0 100.0 37.7 72.8 99.1 100.0 100.0

NBPNT NBPNT
25 6.7 9.4 16.3 37.4 87.1 7.4 8.6 16.6 39.5 86.5 10.1 16.2 39.9 78.5 99.3 10.1 17.3 43.1 77.5 98.8
50 6.4 7.3 9.0 16.5 36.5 6.7 7.5 9.0 16.0 36.8 12.5 24.0 61.2 91.0 99.9 14.5 26.0 60.2 89.5 99.6
100 6.7 7.0 6.7 8.8 14.2 6.8 6.9 8.0 9.0 15.3 22.5 44.9 90.1 99.8 100.0 24.6 45.7 88.6 99.8 100.0
200 7.0 6.6 5.1 7.0 8.4 7.4 5.6 7.0 7.5 9.2 42.0 79.7 100.0 100.0 100.0 41.0 78.6 99.7 100.0 100.0

WB 1: Recursive resampling WB 1: Recursive resampling
T NRBP ∗NT NRBP ∗NT
25 5.0 5.1 5.6 5.3 6.7 4.5 5.1 4.2 5.2 5.1 5.5 9.9 21.1 40.6 70.6 6.3 9.4 17.6 33.8 54.4
50 4.4 4.8 4.8 5.9 4.7 5.6 4.9 4.8 6.1 6.8 9.4 18.1 46.4 81.5 98.0 8.4 16.0 40.6 67.8 91.1
100 4.9 4.5 5.2 5.2 5.8 4.6 5.1 6.6 6.4 8.0 15.8 38.7 86.4 99.5 100.0 17.2 32.5 78.4 96.7 99.9
200 5.9 5.0 6.0 4.9 5.5 4.1 5.0 5.2 6.5 8.3 35.6 72.9 99.9 100.0 100.0 32.5 68.8 98.7 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.4 5.0 4.8 4.9 5.7 4.4 4.8 4.3 5.7 5.9 6.4 9.4 22.0 40.8 70.7 6.7 10.6 23.7 44.8 69.8
50 4.8 4.8 4.8 5.5 4.6 5.5 4.5 4.3 4.7 5.5 9.8 19.3 47.2 82.3 98.2 10.8 19.4 50.0 80.7 96.8
100 5.1 4.8 4.5 5.4 5.8 4.9 5.1 5.7 4.5 5.2 16.4 39.2 86.9 99.6 100.0 18.8 39.2 85.6 99.3 100.0
200 5.8 4.9 5.7 4.5 5.6 4.3 4.4 4.6 4.7 5.1 35.5 73.2 99.9 100.0 100.0 34.9 73.7 99.4 100.0 100.0

WB 2: Fixed-design resampling WB 2: Fixed-design resampling
T NRBP ∗NT NRBP ∗NT
25 5.0 5.3 6.1 6.5 10.6 4.7 5.3 4.9 6.7 7.9 5.9 9.8 21.8 43.8 74.6 6.6 9.7 18.9 36.0 58.9
50 4.9 5.0 4.9 6.3 5.8 5.5 4.7 5.1 6.6 7.6 9.0 18.0 46.8 81.8 98.0 9.0 16.1 40.6 68.7 91.7
100 5.0 4.3 5.0 5.5 6.0 4.5 5.3 6.5 6.3 9.2 15.6 38.0 86.8 99.5 100.0 17.1 32.5 78.3 96.8 99.9
200 6.0 5.2 5.8 4.7 5.8 4.2 4.9 5.2 6.4 8.5 35.6 73.3 99.9 100.0 100.0 32.7 69.0 98.7 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.8 5.1 5.6 6.6 9.6 4.4 5.0 5.1 7.3 9.0 6.7 10.0 22.8 44.9 74.6 7.1 11.3 25.3 48.1 73.6
50 4.9 4.9 5.0 6.4 5.1 5.7 4.4 4.8 5.4 6.6 9.4 19.2 47.7 82.9 98.4 11.1 19.9 50.6 81.6 97.1
100 5.0 4.8 4.9 5.4 5.8 4.7 5.5 5.9 4.4 5.4 16.1 38.2 86.9 99.4 100.0 18.5 39.1 85.6 99.2 100.0
200 6.0 5.0 5.7 4.8 5.6 4.3 4.4 4.4 4.5 5.2 36.1 72.9 99.9 100.0 100.0 35.3 74.5 99.4 100.0 100.0

WB 3: Direct resampling WB 3: Direct resampling
T NRBP ∗NT NRBP ∗NT
25 4.9 5.7 6.9 9.2 16.4 4.5 5.6 5.3 8.5 12.2 5.8 10.6 24.0 47.5 80.3 6.7 10.1 20.8 40.1 64.6
50 4.5 5.0 5.2 7.2 8.0 5.7 4.8 5.3 7.2 10.9 9.1 18.5 48.6 83.4 98.4 8.8 16.9 42.0 70.4 92.7
100 4.9 5.0 5.5 5.9 7.0 4.4 5.3 7.1 6.9 10.1 15.7 38.3 86.9 99.5 100.0 17.1 33.8 79.0 97.0 99.9
200 6.1 5.1 6.2 5.1 6.4 4.3 5.1 5.2 6.4 8.9 36.0 73.3 99.9 100.0 100.0 32.4 69.2 98.7 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.7 5.5 6.7 9.4 17.3 4.6 5.8 6.3 9.8 16.9 6.7 9.8 25.5 50.7 82.1 7.2 11.8 27.5 53.4 81.7
50 4.9 4.9 5.9 7.3 7.9 5.3 5.1 5.6 6.8 9.2 9.7 19.6 49.5 84.2 98.7 11.2 20.2 51.4 83.1 97.9
100 5.2 4.7 5.1 5.9 7.1 4.6 5.4 5.9 4.9 6.7 16.3 39.0 87.5 99.6 100.0 19.0 39.3 85.9 99.3 100.0
200 5.9 4.9 5.8 4.9 6.0 4.7 4.6 4.9 4.9 5.7 36.3 72.9 99.9 100.0 100.0 34.9 74.3 99.4 100.0 100.0

Notes: The data generating process considered is yit = θi1 + θi2zit + φiyi,t−1 + uit, i = 1, 2, ..., N and t =
−49,−48, ..., T.with θi1 ∼ i.i.d. N(0, 1), θi2 = 1 − φi, φi ∼ i.i.d. Uniform[0.4, 0.6], and the zit are generated for
(N = 5, T = 25) as independent random draws from the standard lognormal distribution. This block of regressor
values is then reused as necessary to build up data for the other combinations (N,T ). yi,−49 = 0, and first 49 values
are discarded. The error term is written as uit = σitεit, i = 1, 2, ..., N and t = 1, 2, ..., T . There is homoskedasticity
under scheme HET0, with σit = 1 for all t. The term εit is generated as εit =

√
1− ρ2ξit + ρζtwhere ξit ∼ i.i.d.
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Table 2: Rejection frequencies of the asymptotic and various Wild-Bootstrap RBP and
BP tests in panel ADL(1,0) models under one-break-in-volatility heteroskedastic scheme
(HET1).

H0 : E [uitujt] = 0 HA : E [uitujt] = 0.2

SN χ26 SN χ26

N 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100

Asymptotic critical values Asymptotic critical values
T RBPT RBPT
25 3.5 5.4 12.6 29.3 82.8 3.3 4.6 9.9 25.2 72.9 5.8 9.8 29.5 69.3 98.3 4.0 8.2 26.7 59.0 93.9
50 4.5 5.2 8.2 14.0 34.3 3.6 4.5 6.3 12.7 32.9 8.2 15.9 50.0 85.9 99.3 6.9 14.4 40.5 74.2 96.4
100 5.3 5.5 5.7 8.4 15.2 4.4 5.0 6.8 8.7 18.0 15.9 35.9 82.6 99.4 100.0 13.1 29.8 75.8 96.9 99.9
200 4.7 5.5 4.9 6.6 10.1 5.2 4.7 6.4 8.0 12.8 31.9 68.7 99.5 100.0 100.0 29.5 63.2 98.3 100.0 100.0

BPT BPT
25 8.1 18.1 57.0 96.2 100.0 8.7 16.6 53.7 95.6 100.0 11.5 26.1 75.9 99.4 100.0 11.7 25.1 74.1 99.2 100.0
50 9.5 18.6 53.6 96.8 100.0 9.4 17.8 50.9 94.1 100.0 15.5 37.1 87.9 99.9 100.0 16.5 37.6 86.8 99.9 100.0
100 10.2 18.7 51.1 96.0 100.0 10.2 16.9 52.4 95.3 100.0 25.7 60.4 98.8 100.0 100.0 25.6 57.8 98.1 100.0 100.0
200 9.5 17.5 54.0 95.3 100.0 9.5 15.9 53.6 96.2 100.0 44.4 85.9 100.0 100.0 100.0 42.6 84.5 100.0 100.0 100.0
T NRBPNT NRBPNT
25 5.5 7.0 13.2 30.1 83.4 4.7 5.2 10.7 26.0 73.1 8.1 11.6 31.3 70.3 98.3 5.9 10.2 27.8 60.1 93.9
50 6.3 6.4 8.5 14.6 34.8 5.2 6.0 7.0 13.3 33.4 10.6 18.4 51.1 86.3 99.3 8.7 16.8 41.9 74.8 96.4
100 7.1 6.5 6.3 8.7 15.4 6.1 5.8 7.5 9.0 18.4 19.5 38.3 83.8 99.4 100.0 16.5 32.6 76.8 97.1 99.9
200 6.0 6.7 5.5 7.0 10.3 6.3 5.8 6.9 8.3 13.0 35.9 71.6 99.5 100.0 100.0 34.0 65.9 98.4 100.0 100.0

NBPNT NBPNT
25 11.2 20.7 58.8 96.4 100.0 11.1 19.0 55.4 95.6 100.0 14.1 28.8 77.3 99.4 100.0 14.3 27.3 75.4 99.3 100.0
50 12.2 20.4 55.3 96.9 100.0 11.2 20.2 52.4 94.5 100.0 18.5 40.4 88.3 99.9 100.0 20.2 40.2 87.6 100.0 100.0
100 12.5 21.7 53.3 96.1 100.0 12.9 19.3 54.3 95.5 100.0 29.5 62.5 98.8 100.0 100.0 29.4 60.7 98.1 100.0 100.0
200 12.3 19.9 55.7 95.5 100.0 12.1 17.6 55.1 96.4 100.0 48.7 87.3 100.0 100.0 100.0 47.8 85.8 100.0 100.0 100.0

WB 1: Recursive resampling WB 1: Recursive resampling
T NRBP ∗NT NRBP ∗NT
25 4.8 5.2 5.7 5.2 6.9 3.9 4.5 4.1 4.0 4.5 5.7 8.3 18.1 36.0 66.3 6.0 8.8 17.6 31.2 51.2
50 4.9 4.5 4.4 5.8 5.2 4.9 4.8 4.7 4.8 5.6 8.2 16.7 41.3 76.3 97.0 8.7 14.6 36.5 64.5 88.3
100 4.9 4.8 4.5 5.2 7.0 4.6 5.0 6.1 5.6 6.8 15.0 33.1 81.2 98.8 100.0 15.0 29.6 72.2 94.8 99.8
200 4.5 4.7 5.9 4.9 5.7 4.9 5.2 5.3 5.9 7.6 31.6 65.9 99.4 100.0 100.0 28.8 62.5 97.6 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.5 5.7 6.6 9.6 20.1 4.2 5.6 6.6 8.8 18.3 6.7 9.5 22.1 48.0 79.3 7.0 12.1 26.5 50.6 79.5
50 4.6 4.7 6.1 9.5 14.1 5.9 5.1 6.0 8.2 13.9 8.6 17.9 46.9 81.9 98.3 10.8 18.5 48.9 81.4 98.0
100 5.2 5.3 6.0 7.5 11.7 4.6 5.8 6.8 6.6 10.6 16.0 34.2 83.5 99.4 100.0 18.1 35.3 81.9 98.5 100.0
200 5.1 5.2 6.2 5.7 7.7 4.8 4.8 5.6 5.2 7.3 32.4 66.5 99.5 100.0 100.0 31.0 68.1 98.7 100.0 100.0

WB 2: Fixed-design resampling WB 2: Fixed-design resampling
T NRBP ∗NT NRBP ∗NT
25 5.5 5.5 6.0 6.3 10.7 4.5 5.4 4.8 5.3 7.0 6.1 9.1 19.6 39.0 71.2 6.6 9.4 18.8 33.9 56.1
50 4.6 4.7 5.1 6.3 6.1 5.1 4.6 4.8 5.0 6.4 8.4 16.1 42.4 76.8 97.3 8.9 15.0 37.2 65.5 89.1
100 4.7 4.7 4.9 5.4 6.7 4.7 4.7 6.4 5.6 7.2 14.6 33.0 81.3 98.9 100.0 15.1 30.0 72.2 94.8 99.8
200 4.8 5.0 5.9 5.1 5.7 4.8 5.6 5.8 6.0 7.7 31.7 65.6 99.5 100.0 100.0 28.4 63.0 97.7 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.9 5.9 8.4 13.1 31.8 4.4 6.1 8.3 11.8 29.3 6.5 10.0 24.1 53.7 84.6 7.3 12.7 28.5 55.0 84.8
50 4.6 4.9 6.5 10.7 16.3 5.6 5.2 6.6 9.0 15.4 8.5 18.2 47.8 82.5 98.6 10.8 19.1 49.4 82.1 98.2
100 4.9 5.4 6.3 7.9 12.0 4.9 5.9 6.9 6.3 11.4 15.4 33.6 83.4 99.4 100.0 18.3 35.4 81.8 98.8 100.0
200 5.1 5.0 6.4 5.7 7.7 4.8 5.1 5.7 5.6 7.3 32.4 66.6 99.6 100.0 100.0 30.8 68.7 98.7 100.0 100.0

WB 3: Direct resampling WB 3: Direct resampling
T NRBP ∗NT NRBP ∗NT
25 5.2 5.7 7.2 8.3 17.3 4.1 5.4 5.6 7.2 10.8 5.9 9.2 21.0 43.8 77.0 6.6 9.7 20.3 38.4 62.9
50 4.7 5.0 5.5 7.3 8.5 4.9 4.8 5.2 6.3 9.4 8.7 16.2 42.7 79.0 97.6 9.6 15.5 37.9 66.8 91.0
100 4.8 4.6 4.6 5.9 8.4 4.8 5.0 6.7 6.5 8.5 15.2 33.2 82.0 99.0 100.0 15.5 30.3 73.0 95.4 99.9
200 4.7 4.7 5.9 5.2 6.3 4.7 5.1 5.6 6.1 8.9 31.7 65.6 99.5 100.0 100.0 28.9 62.5 97.5 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.5 5.9 8.3 13.3 30.9 4.2 6.6 8.6 12.3 29.8 7.2 10.2 24.0 52.5 85.2 7.4 12.6 28.8 55.6 85.2
50 4.4 5.0 6.0 9.1 13.0 5.8 5.1 6.1 7.9 13.4 8.4 17.6 46.5 81.1 98.4 10.6 18.6 48.1 81.2 97.9
100 5.2 5.1 5.6 7.0 10.0 4.9 5.6 6.3 5.8 9.1 14.9 33.9 82.8 99.1 100.0 17.9 35.2 81.2 98.4 100.0
200 5.3 4.9 6.3 5.1 6.9 4.9 4.5 5.1 5.3 6.4 31.9 66.4 99.5 100.0 100.0 30.6 68.3 98.7 100.0 100.0

Notes: The data generating process is identical to those used for Table 1 except that σit = 0.8 for t = 1, 2, ...,m =
bT/2c and σit = 1.2 for t = m,m+ 1, ..., T , where bAc is the largest integer part of A.
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Table 3: Rejection frequencies of the asymptotic and various wild-bootstrap RBP and BP
tests in panel ADL(1,0) models under trending volatility heteroskedastic scheme (HET2).

H0 : E [uitujt] = 0 HA : E [uitujt] = 0.2

SN χ26 SN χ26

N 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100

Asymptotic critical values Asymptotic critical values
T RBPT RBPT
25 3.4 5.2 12.1 27.0 78.6 3.5 4.1 9.6 24.7 70.7 5.6 10.1 30.1 69.8 98.1 4.3 8.1 26.8 59.2 92.7
50 4.3 5.3 8.0 13.6 32.1 3.7 4.6 6.8 12.7 33.2 8.5 17.3 52.7 87.8 99.4 7.5 15.0 43.0 75.5 96.6
100 5.1 5.1 6.2 9.0 13.1 4.3 5.0 7.1 9.2 18.0 17.0 38.2 85.5 99.6 100.0 14.1 32.2 78.7 97.9 100.0
200 4.4 5.6 5.1 6.8 9.0 5.3 4.5 6.1 8.0 13.2 35.0 73.7 99.7 100.0 100.0 31.4 68.0 98.7 100.0 100.0

BPT BPT
25 6.4 10.8 28.1 68.5 99.5 6.0 9.5 27.6 68.2 99.3 9.4 17.6 52.3 92.4 100.0 9.3 18.5 53.9 90.7 100.0
50 6.4 10.1 21.2 52.4 95.3 6.7 10.5 20.3 48.9 94.2 12.1 26.7 71.9 98.1 100.0 13.7 28.7 70.9 96.9 100.0
100 6.8 9.1 17.0 43.2 89.7 6.5 8.4 19.3 41.6 88.5 21.4 48.0 93.9 100.0 100.0 22.8 48.3 93.0 99.9 100.0
200 6.6 8.7 16.7 39.5 85.8 7.0 8.2 17.2 39.3 83.6 39.2 81.2 99.9 100.0 100.0 38.6 79.4 100.0 100.0 100.0
T NRBPNT NRBPNT
25 5.0 6.4 13.1 28.0 79.1 4.6 5.1 10.7 25.1 71.1 8.1 12.0 31.7 70.5 98.1 6.1 10.0 28.0 60.1 92.8
50 6.1 6.6 8.3 14.1 32.6 5.1 5.9 7.3 13.4 33.7 11.0 20.4 53.7 88.1 99.4 9.7 17.6 43.8 76.1 96.7
100 7.1 6.1 6.6 9.3 13.3 5.7 5.9 7.8 9.5 18.5 20.7 42.3 86.6 99.6 100.0 17.1 34.4 79.4 97.9 100.0
200 6.5 6.5 5.6 7.0 9.2 7.5 5.4 6.8 8.3 13.3 39.5 75.9 99.7 100.0 100.0 35.9 70.5 98.7 100.0 100.0

NBPNT NBPNT
25 8.2 12.4 29.5 69.1 99.5 8.0 10.9 28.7 68.9 99.5 11.4 20.0 53.8 92.7 100.0 12.1 20.4 55.0 91.1 100.0
50 8.4 11.7 22.1 53.0 95.5 8.6 11.7 21.2 49.7 94.2 14.6 28.9 73.0 98.1 100.0 16.7 31.9 72.3 96.9 100.0
100 8.6 10.9 18.0 44.4 89.7 8.9 9.8 20.5 42.5 88.7 25.4 51.4 94.4 100.0 100.0 26.3 51.0 93.3 99.9 100.0
200 8.3 10.1 17.7 40.1 86.1 9.3 9.4 18.8 40.5 83.8 45.7 82.8 99.9 100.0 100.0 42.9 81.3 100.0 100.0 100.0

WB 1: Recursive resampling WB 1: Recursive resampling
T NRBP ∗NT NRBP ∗NT
25 5.3 5.7 5.3 5.7 7.0 4.9 5.1 5.3 4.9 5.1 7.1 9.4 21.6 40.0 67.7 6.6 9.4 17.3 32.1 53.7
50 3.6 4.5 5.0 5.7 6.2 4.2 4.8 4.9 5.5 6.1 8.3 16.9 45.7 79.9 96.8 9.6 15.3 37.7 68.3 88.8
100 5.0 5.6 6.0 4.1 5.3 5.1 4.4 6.5 5.9 7.5 16.8 37.5 85.6 99.5 100.0 16.1 31.9 77.5 96.6 99.9
200 4.4 5.0 4.7 5.3 4.8 4.5 6.5 5.1 5.7 7.4 32.2 71.9 99.9 100.0 100.0 30.4 67.4 98.3 100.0 100.0

NBP ∗NT NBP ∗NT
25 5.1 5.2 6.5 7.2 11.1 4.7 4.8 5.5 6.7 11.2 6.3 9.9 23.5 46.0 76.6 6.6 10.6 24.3 45.7 75.7
50 4.0 4.7 5.1 6.5 9.8 4.5 4.5 5.2 5.4 8.1 8.8 17.3 48.1 82.6 97.9 11.3 19.1 49.6 81.1 97.6
100 4.5 5.9 6.1 4.9 7.3 5.3 4.9 6.6 5.0 6.2 16.4 38.7 86.5 99.6 100.0 17.3 37.8 86.5 99.0 100.0
200 4.8 5.2 4.6 6.0 6.1 4.0 5.8 5.2 4.5 5.5 32.5 71.7 99.9 100.0 100.0 33.1 72.6 99.1 100.0 100.0

WB 2: Fixed-design resampling WB 2: Fixed-design resampling
T NRBP ∗NT NRBP ∗NT
25 5.0 5.3 6.1 6.1 10.3 4.4 4.7 4.6 6.1 7.4 6.1 9.2 21.3 41.1 72.4 6.6 9.4 18.5 34.9 56.9
50 4.7 5.0 4.7 6.2 5.3 5.2 4.9 4.9 6.0 6.9 8.9 18.1 45.5 80.0 97.6 9.2 15.8 39.6 68.0 90.5
100 5.2 4.8 4.6 5.5 6.3 4.9 5.2 6.9 5.9 7.8 15.9 35.3 85.4 99.3 100.0 16.1 31.8 77.0 96.0 99.8
200 5.2 4.7 6.1 4.8 6.1 4.5 5.1 5.4 6.0 8.0 34.0 70.4 99.8 100.0 100.0 30.8 66.3 98.1 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.8 5.4 6.4 8.3 15.0 4.6 5.0 6.0 8.2 14.7 6.6 9.9 23.4 46.0 78.3 7.4 11.1 26.1 50.3 77.8
50 4.3 5.0 5.3 7.5 8.1 5.4 4.5 5.3 5.9 8.8 9.4 18.3 48.7 82.5 98.5 11.4 19.2 50.3 81.4 97.5
100 5.1 5.4 4.8 5.8 8.3 4.4 5.5 6.6 5.2 7.6 16.0 36.8 86.2 99.4 100.0 17.9 38.0 84.0 98.9 100.0
200 5.9 4.7 6.4 5.1 6.5 4.4 4.9 5.1 5.2 6.2 34.2 71.3 99.8 100.0 100.0 33.9 72.0 99.1 100.0 100.0

WB 3: Direct resampling WB 3: Direct resampling
T NRBP ∗NT NRBP ∗NT
25 5.3 5.5 7.0 8.6 16.5 4.5 4.7 5.2 8.1 11.6 6.1 9.6 22.7 45.9 79.1 6.7 10.0 20.3 38.3 63.5
50 4.8 5.2 5.3 6.8 8.3 4.9 4.8 5.1 7.2 9.8 9.2 18.0 47.0 81.5 98.1 9.1 16.3 40.5 69.7 92.0
100 5.3 4.8 4.9 5.9 7.2 4.7 5.7 6.7 6.8 9.6 15.9 35.9 85.5 99.4 100.0 16.1 32.1 77.5 96.5 99.9
200 5.7 4.5 6.6 5.0 6.3 4.5 5.1 5.6 6.3 8.7 34.4 70.5 99.9 100.0 100.0 30.4 66.5 98.3 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.5 5.7 7.1 9.7 21.9 4.4 6.2 7.0 9.8 21.3 6.7 10.8 24.6 50.8 83.1 7.4 11.8 28.2 54.5 82.5
50 4.4 5.1 5.7 8.3 9.8 5.6 5.1 5.7 7.2 10.4 9.1 18.8 49.0 83.1 98.5 11.0 19.2 50.6 82.3 97.8
100 4.7 5.4 5.2 5.7 8.3 4.8 5.3 6.6 5.4 7.6 16.0 36.8 85.9 99.5 100.0 17.9 37.3 84.0 99.1 100.0
200 5.9 4.6 6.6 4.9 6.6 4.8 4.9 4.9 5.2 6.1 34.4 71.7 99.8 100.0 100.0 33.9 71.7 99.1 100.0 100.0

Notes: The data generating process is identical to those used for Table 1 except that σit = σ0 − (σ1 − σ0)
(
t−1
T−1

)

with σ0 = 0.8 and σ1 = 1.2.
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Table 4: Rejection frequencies of the asymptotic and various Wild Bootstrap RBP and
BP tests in panel ADL(1,0) models under conditional heteroskedasticity depending on a
regressor (HET3).

H0 : E [uitujt] = 0 HA : E [uitujt] = 0.2

SN χ26 SN χ26

N 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100

Asymptotic critical values Asymptotic critical values
T RBPT RBPT
25 4.0 5.7 13.4 35.9 88.1 3.1 5.2 11.1 29.9 80.1 5.5 10.5 33.7 75.1 99.1 5.1 9.4 28.9 63.7 95.8
50 4.1 4.9 9.2 20.8 53.5 4.1 4.8 7.9 18.8 51.6 8.3 18.5 53.7 90.4 99.9 7.3 15.5 47.2 79.6 98.2
100 3.9 4.8 7.4 12.8 23.3 3.6 5.2 7.0 9.7 25.0 14.9 35.1 86.6 99.7 100.0 14.3 30.1 78.3 97.5 100.0
200 5.0 5.0 7.2 7.1 13.7 4.2 4.8 5.6 8.7 15.5 33.3 68.9 99.6 100.0 100.0 29.3 63.8 98.7 100.0 100.0

BPT BPT
25 5.4 8.3 20.0 51.4 96.6 5.1 8.2 21.0 51.5 95.7 7.4 13.5 45.0 85.7 99.8 8.6 16.1 46.9 84.5 99.6
50 4.5 7.1 17.9 43.2 87.9 5.1 7.4 15.8 41.0 86.3 9.5 23.5 65.9 96.1 100.0 12.4 24.4 66.0 95.1 100.0
100 4.9 7.3 16.9 42.0 85.9 4.5 7.9 16.1 36.4 82.4 15.4 40.6 92.0 100.0 100.0 18.0 40.8 89.9 99.9 100.0
200 5.3 7.1 16.1 38.7 86.6 4.5 6.8 14.8 36.4 84.8 33.1 72.2 100.0 100.0 100.0 33.7 72.2 99.5 100.0 100.0
T NRBPNT NRBPNT
25 6.1 6.8 14.4 37.3 88.2 5.1 6.4 12.0 30.8 80.3 7.4 12.1 35.1 75.9 99.1 7.0 11.2 30.3 64.2 95.8
50 5.2 6.6 10.2 21.6 53.7 5.6 5.5 8.8 19.4 51.9 10.9 20.6 55.4 90.6 99.9 9.6 17.3 48.4 80.0 98.2
100 5.9 6.0 8.0 13.2 23.6 5.4 6.4 7.3 10.2 25.4 17.7 38.2 87.2 99.7 100.0 18.0 32.9 79.0 97.6 100.0
200 6.8 6.3 7.9 7.4 13.8 5.9 5.7 5.9 8.9 15.7 38.3 71.3 99.6 100.0 100.0 33.4 67.0 98.8 100.0 100.0

NBPNT NBPNT
25 7.4 9.5 21.6 52.4 96.7 7.2 9.2 22.2 52.0 95.8 10.3 15.7 46.6 86.2 99.8 11.0 18.3 48.4 84.6 99.6
50 5.9 8.2 19.2 43.7 88.1 6.9 8.7 16.9 41.9 86.5 12.2 25.7 67.0 96.4 100.0 14.9 26.5 67.1 95.3 100.0
100 6.3 8.3 17.9 42.8 86.2 6.4 9.1 16.9 37.1 82.7 18.4 43.5 92.4 100.0 100.0 21.6 43.8 90.5 99.9 100.0
200 7.5 8.2 17.1 39.7 86.8 5.9 8.4 16.1 36.8 85.1 37.9 74.6 100.0 100.0 100.0 38.4 74.9 99.6 100.0 100.0

WB 1: Recursive resampling WB 1: Recursive resampling
T NRBP ∗NT NRBP ∗NT
25 5.2 5.3 5.8 6.4 10.4 4.2 5.2 4.1 6.3 7.3 6.6 9.6 21.4 42.0 72.3 6.3 8.7 18.4 34.4 57.5
50 4.3 5.1 5.3 7.8 9.7 4.8 5.1 5.2 6.7 10.0 8.9 17.5 46.0 81.0 98.1 8.5 16.1 41.4 68.8 91.2
100 4.4 4.3 5.8 6.1 6.3 4.8 5.6 5.9 5.6 8.7 15.3 34.8 83.5 99.4 100.0 15.8 30.0 74.7 95.7 99.9
200 5.7 4.7 6.1 4.5 6.1 4.4 5.0 5.2 6.2 7.7 33.1 69.0 99.6 100.0 100.0 30.6 63.8 98.2 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.5 5.0 6.0 8.1 12.1 4.9 5.0 5.7 8.2 12.1 6.9 9.0 22.7 44.9 77.2 6.8 10.1 25.2 47.3 74.6
50 3.9 5.6 8.1 13.8 26.8 5.0 5.1 6.3 12.6 25.2 8.7 18.6 50.5 86.7 99.1 10.3 18.9 52.7 84.6 98.8
100 4.2 5.4 7.7 11.0 19.8 4.7 5.8 6.5 8.3 18.3 14.8 35.2 85.5 99.6 100.0 17.3 35.7 85.1 99.2 100.0
200 5.6 5.3 7.5 6.9 13.2 4.5 5.3 5.2 6.9 10.6 33.6 67.7 99.6 100.0 100.0 33.0 68.5 99.1 100.0 100.0

WB 2: Fixed-design resampling WB 2: Fixed-design resampling
T NRBP ∗NT NRBP ∗NT
25 5.5 5.3 6.7 8.1 14.4 4.4 5.6 5.1 8.0 11.0 6.3 9.8 22.7 44.6 76.8 6.5 9.6 20.4 37.7 61.3
50 4.1 4.8 5.3 8.3 10.6 5.1 4.8 5.5 7.4 11.8 9.0 18.0 46.3 81.4 98.3 8.3 15.4 41.6 69.6 91.7
100 4.3 4.7 5.7 6.4 6.7 4.1 5.6 5.8 5.5 8.6 14.9 34.7 83.7 99.4 100.0 15.6 30.8 75.0 95.8 99.9
200 5.7 4.9 6.3 4.9 6.4 4.5 5.1 5.1 6.3 7.9 33.8 68.7 99.5 100.0 100.0 30.5 64.0 98.3 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.4 5.2 6.2 9.8 17.5 5.0 5.2 6.6 9.9 19.0 7.1 9.5 23.7 48.3 80.4 7.0 10.6 26.8 50.0 79.0
50 4.3 5.7 8.0 14.9 29.6 4.9 4.7 6.8 12.7 27.7 8.6 19.3 51.4 86.7 99.3 10.4 19.3 53.1 85.4 98.9
100 4.1 5.5 8.1 11.4 20.4 4.2 5.5 6.8 8.5 19.3 14.4 34.9 85.2 99.6 100.0 17.5 35.3 85.2 99.2 100.0
200 5.8 5.1 7.8 7.0 13.4 4.8 5.2 5.3 7.5 10.5 33.0 68.0 99.7 100.0 100.0 32.5 68.6 99.2 100.0 100.0

WB 3: Direct resampling WB 3: Direct resampling
T NRBP ∗NT NRBP ∗NT
25 5.2 5.4 7.5 11.7 26.8 4.7 5.6 6.4 11.7 21.4 6.6 10.2 25.6 50.6 85.3 6.5 9.6 22.5 43.3 71.5
50 4.5 5.5 7.4 11.5 21.1 4.7 5.0 7.0 10.9 22.2 9.2 18.6 48.8 85.1 99.0 8.6 16.3 43.7 73.7 95.0
100 4.1 4.5 6.7 8.3 11.8 4.7 5.2 6.7 7.9 15.0 15.3 35.3 85.1 99.5 100.0 15.5 31.8 76.9 96.9 100.0
200 5.5 5.0 6.8 6.0 9.6 4.5 5.2 5.7 7.9 11.2 33.6 68.8 99.6 100.0 100.0 30.8 64.5 98.3 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.8 5.6 7.9 13.7 31.4 5.1 6.0 8.5 14.4 32.9 7.2 10.3 26.9 55.1 88.0 7.1 11.3 29.4 57.3 86.8
50 4.3 5.7 8.8 16.2 34.9 5.3 4.9 7.5 15.4 34.3 8.7 19.5 51.8 89.1 99.5 10.8 20.1 54.5 87.3 99.3
100 4.5 5.2 7.6 11.6 20.9 4.9 5.9 7.1 9.0 20.6 15.5 35.7 85.4 99.6 100.0 17.7 35.9 85.3 99.2 100.0
200 5.8 5.1 8.0 7.0 13.2 5.1 5.3 5.0 7.4 10.8 33.5 68.1 99.6 100.0 100.0 32.7 68.6 99.2 100.0 100.0

Notes: The data generating process is identical to those used for Table 1 except that σit =
√
exp {czit}, t = 1, ..., T .
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Table 5: Rejection frequencies of the asymptotic and various Wild-Bootstrap RBP and
BP tests in panel ADL(1,0) models under conditional heteroskedasticity, GARCH(1,1)
(HET4).

H0 : E [uitujt] = 0 HA : E [uitujt] = 0.2

SN χ26 SN χ26

N 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100

Asymptotic critical values Asymptotic critical values
T RBPT RBPT
25 4.5 5.8 12.5 31.6 83.2 3.3 5.8 10.9 27.7 76.5 5.1 10.9 33.9 73.6 98.7 5.1 10.2 29.4 63.4 94.4
50 4.0 5.1 7.5 14.9 33.1 4.9 4.7 7.5 13.6 32.6 8.8 19.0 53.2 89.3 99.6 8.0 16.0 45.5 78.0 97.2
100 4.5 4.6 6.5 8.8 14.4 3.9 5.0 7.2 8.5 17.5 15.9 38.7 88.0 99.6 100.0 15.8 31.9 80.9 97.9 100.0
200 5.6 5.2 6.7 5.8 9.3 4.1 4.3 5.6 7.6 11.6 35.5 73.0 100.0 100.0 100.0 30.6 68.1 98.9 100.0 100.0

BPT BPT
25 5.1 7.6 16.6 40.8 91.3 5.8 8.4 17.6 42.5 91.0 7.7 14.6 40.9 80.9 99.5 8.6 16.2 44.2 81.3 99.4
50 5.2 5.7 9.5 17.7 37.9 6.0 5.7 9.0 16.8 38.8 10.0 21.4 58.0 91.5 99.8 12.4 23.5 60.1 89.8 99.7
100 5.5 5.3 7.3 9.5 16.6 4.8 6.0 8.2 8.9 15.5 17.1 40.3 88.9 99.9 100.0 20.1 41.0 87.6 99.4 100.0
200 5.7 5.1 6.6 5.9 9.9 4.7 4.7 5.5 6.8 9.4 36.5 74.4 99.9 100.0 100.0 35.4 73.7 99.4 100.0 100.0
T NRBPNT NRBPNT
25 6.1 7.0 13.2 32.3 83.6 5.4 7.0 11.7 28.5 77.0 7.1 12.7 34.8 74.2 98.8 7.1 12.5 30.3 64.1 94.5
50 5.3 6.1 8.2 15.4 33.7 6.4 5.6 8.0 14.2 33.1 11.5 21.0 54.9 89.6 99.6 10.5 18.1 46.9 78.8 97.2
100 5.9 5.6 7.0 9.1 14.8 5.5 6.1 7.4 8.9 18.0 19.3 41.1 88.5 99.7 100.0 19.2 34.9 81.5 98.0 100.0
200 6.9 5.9 7.1 6.3 9.5 5.5 5.5 5.9 8.1 11.7 40.1 74.8 100.0 100.0 100.0 35.2 70.4 98.9 100.0 100.0

NBPNT NBPNT
25 7.7 8.8 17.2 41.7 91.5 7.4 9.8 18.6 43.4 91.2 9.9 16.4 42.2 81.2 99.5 11.5 18.5 46.2 81.7 99.4
50 6.1 7.3 10.2 18.4 38.3 7.9 7.0 9.9 17.5 39.2 12.8 23.5 59.7 91.6 99.8 15.3 25.9 61.4 90.2 99.7
100 7.0 6.3 7.7 9.7 16.7 6.7 7.4 8.7 9.2 15.6 20.6 43.1 89.2 99.9 100.0 23.4 43.8 88.3 99.4 100.0
200 7.5 6.3 7.0 6.4 10.0 6.2 5.9 5.8 7.1 9.5 40.7 76.0 100.0 100.0 100.0 39.0 76.0 99.4 100.0 100.0

WB 1: Recursive resampling WB 1: Recursive resampling
T NRBP ∗NT NRBP ∗NT
25 5.0 4.7 5.8 5.6 6.8 4.5 5.7 4.5 5.7 6.5 6.1 9.9 20.5 40.0 71.0 6.3 9.5 18.8 35.0 55.8
50 4.4 4.8 5.5 5.8 4.7 5.6 4.8 5.1 5.9 6.4 9.0 18.4 46.6 81.1 97.6 8.9 16.5 41.5 68.8 91.3
100 4.8 4.4 5.4 5.3 5.5 4.7 4.7 6.4 5.8 6.9 16.6 37.8 86.5 99.3 100.0 16.7 32.7 78.6 97.0 99.9
200 5.7 4.7 5.5 4.9 5.3 4.4 4.6 5.2 6.4 7.6 35.9 72.6 99.9 100.0 100.0 31.7 67.8 98.7 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.4 5.1 4.6 5.5 6.0 4.4 4.9 4.9 5.9 6.6 6.4 10.3 21.4 40.6 71.0 7.2 11.2 24.2 45.6 70.7
50 4.5 5.0 5.0 5.8 4.3 5.7 4.5 4.9 4.9 6.1 9.5 18.4 47.7 81.7 98.1 10.6 19.2 49.9 81.1 96.9
100 5.1 4.4 5.3 5.1 5.9 5.2 5.7 6.0 4.5 5.3 16.7 38.0 86.8 99.4 100.0 19.0 38.9 85.4 99.1 100.0
200 5.7 4.6 5.8 4.7 5.2 4.7 4.3 4.5 5.2 4.9 36.1 72.8 100.0 100.0 100.0 34.5 73.7 99.4 100.0 100.0

WB 2: Fixed-design resampling WB 2: Fixed-design resampling
T NRBP ∗NT NRBP ∗NT
25 5.1 5.1 6.7 7.6 12.6 4.8 6.3 5.3 7.7 10.2 5.9 10.5 22.6 44.4 76.6 6.8 10.2 20.9 39.5 62.0
50 4.5 4.8 5.6 7.4 5.9 5.5 4.9 5.7 6.9 8.4 9.3 18.1 47.2 81.7 98.1 9.0 16.3 42.0 70.1 92.2
100 5.2 4.5 5.5 5.2 5.9 4.7 5.3 6.4 5.9 7.8 16.3 37.9 86.6 99.3 100.0 17.1 32.7 78.8 97.1 99.9
200 5.9 4.9 5.9 4.7 5.4 4.2 4.5 4.9 6.0 7.9 35.4 72.4 99.9 100.0 100.0 31.7 67.7 98.7 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.9 4.9 5.8 7.3 11.3 4.8 6.0 6.0 8.3 11.7 6.5 11.0 23.5 46.2 77.9 7.0 11.7 25.9 50.4 76.9
50 4.8 5.0 5.3 6.9 5.6 5.9 4.4 5.3 5.6 7.0 9.4 18.7 48.3 82.5 98.4 10.9 19.7 50.6 82.1 97.3
100 4.8 4.8 5.2 5.1 6.0 5.4 5.5 6.0 4.7 6.0 16.5 37.8 86.6 99.4 100.0 18.8 39.1 85.7 99.2 100.0
200 6.1 4.7 5.9 4.8 5.3 4.5 4.3 4.4 5.1 5.0 35.2 72.9 99.9 100.0 100.0 34.2 73.8 99.3 100.0 100.0

WB 3: Direct resampling WB 3: Direct resampling
T NRBP ∗NT NRBP ∗NT
25 5.0 5.3 7.4 9.9 19.8 4.9 6.4 6.0 10.2 14.7 6.0 10.5 25.2 48.3 82.0 6.6 10.7 21.6 42.3 68.4
50 4.3 5.0 6.0 7.9 8.4 5.4 4.9 6.0 7.8 10.9 9.4 18.7 48.1 83.0 98.6 9.2 17.1 42.6 71.2 93.0
100 5.1 4.7 5.7 5.9 7.2 4.9 5.3 6.7 6.3 8.9 16.4 38.0 86.7 99.3 100.0 17.2 32.9 79.2 97.2 99.9
200 5.8 4.8 5.9 5.0 5.9 4.4 4.6 5.1 6.4 8.5 35.4 72.8 100.0 100.0 100.0 31.8 68.2 98.7 100.0 100.0

NBP ∗NT NBP ∗NT
25 4.7 5.4 6.8 10.1 20.4 4.7 6.3 7.6 11.1 20.6 6.8 11.1 25.3 52.2 84.2 7.4 12.3 28.7 55.1 83.5
50 4.8 4.9 6.0 8.1 8.6 5.7 4.5 5.8 7.0 9.8 9.8 19.4 49.9 83.8 98.6 11.0 19.8 51.8 83.8 97.9
100 4.8 4.8 5.8 5.7 7.3 5.2 5.6 6.3 5.2 7.2 16.6 37.7 87.3 99.5 100.0 18.7 38.7 86.2 99.2 100.0
200 5.9 4.5 5.8 4.6 6.1 4.7 4.4 4.8 5.2 5.8 35.5 72.2 99.9 100.0 100.0 34.1 73.7 99.2 100.0 100.0

Notes: The data generating process is identical to those used for Table 1 except that σ2it = δ+α1u
2
i,t−1+α2σ

2
i,t−1,

t = −49,−48, ..., T . The value of parameters are chosen to be δ = 1, α1 = 0.1 and α2 = 0.8.
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Table 6: p-values of cross section correlation tests in dynamic empirical growth models,
20 OECD countries, annual data 1955-2004

p-values NRBPNT NBPNT
asymptotic 0.089 0.017*
wild bootstrap 1 0.118 0.115
wild bootstrap 2 0.112 0.107
wild bootstrap 3 0.108 0.128

Note: The dynamic model estimated is ∆l̃gdpwit = θ1i + θ2i l̃kit + θ3i∆l̃kit + θ4i∆l̃kit−1 + φ1i∆l̃gdpwi,t−1 +

φ2i∆l̃gdpwi,t−2 + uit, , i = 1, 2, ..., 20 and t = 1, 2, ..., 47, where l̃gdpwit is cross section demeaned log of output

per worker and l̃kit is cross section demeaned log of the investment share. "*" signifies the null hypothesis being
rejected at the 5% level. Asymptotic p-values are obtained referring the value of the statistics to standard normal
distribution (one-sided). Bootstrap p-values are based on 5000 bootstrap resampling. Three wild bootstrap schemes

are explained in the previous section. For the wild bootstrap scheme 1, l̃kit, ∆l̃kit and ∆l̃kit−1 are treated as fixed.

40


