University of Vork

This is a repository copy of A Heteroskedasticity Robust Breusch-Pagan Test for Contemporaneous Correlation in Dynamic Panel Data Models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/109556/
Version: Accepted Version

Article:

Halunga, Andreea, Orme, Chris and Yamagata, Takashi orcid.org/0000-0001-5949-8833 (2017) A Heteroskedasticity Robust Breusch-Pagan Test for Contemporaneous Correlation in Dynamic Panel Data Models. Journal of Econometrics. pp. 209-230. ISSN 0304-4076
https://doi.org/10.1016/j.jeconom.2016.12.005

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Heteroskedasticity Robust Breusch-Pagan Test for Contemporaneous Correlation in Dynamic Panel Data Models*

Andreea Halunga ${ }^{a}$, Chris D. Orme b, Takashi Yamagata ${ }^{c, \dagger}$
${ }^{a}$ Department Economics, University of Bath
${ }^{b}$ Economics, University of Manchester
${ }^{c}$ DERS, University of York \& ISER, Osaka University

June 16, 2016

Abstract

This paper proposes a heteroskedasticity-robust Breusch-Pagan test of the null hypothesis of zero cross-section (or contemporaneous) correlation in linear panel data models, without necessarily assuming independence of the cross-sections. The procedure allows for either fixed, strictly exogenous and/or lagged dependent regressor variables, as well as quite general forms of both non-normality and heteroskedasticity in the error distribution. The asymptotic validity of the test procedure is predicated on the number of time series observations, T, being large relative to the number of cross-section units, N, in that: either (i) N is fixed as $T \rightarrow \infty$; or, (ii) $N^{2} / T \rightarrow 0$ as both T and N diverge, jointly, to infinity. Given this, it is not expected that asymptotic theory would necessarily provide an adequate guide to finite sample performance when T / N is "small". Because of this we also propose, and establish asymptotic validity of, a number of wild bootstrap schemes designed to provide improved inference when T / N is small. Across a variety of experimental designs, a Monte Carlo study suggests that the predictions from asymptotic theory do, in fact, provide a good guide to the finite sample behaviour of the test when T is large relative to N. However, when T and N are of similar orders of magnitude, discrepancies between the nominal and empirical significance levels occur as predicted by the first-order asymptotic analysis. On the other hand, for all the experimental designs, the proposed wild bootstrap approximations do improve agreement between nominal and empirical significance levels, when T / N is small, with a recursive-design wild bootstrap scheme performing best, in general, and providing quite close agreement between the nominal and empirical significance levels of the test even when T and N are of similar size. Moreover, in comparison with the wild bootstrap "version" of the original Breusch-Pagan test (Godfrey and Yamagata, 2011) our experiments indicate that the corresponding version of the heteroskedasticity-robust Breusch-Pagan test appears reliable. As an illustration, the proposed tests are applied to a dynamic growth model for a panel of 20 OECD countries.

1 Introduction

In a linear panel data model, with exogenous regressors and Zellner's (1962) Seemingly Unrelated Regression Equation (SURE) structure, a Lagrange multiplier (LM) test to

[^0]detect cross-sectional dependence was proposed by Breusch and Pagan (1980) and is now a commonly employed diagnostic tool of applied workers. This test is based on the average of the squared pair-wise sample correlation coefficients of the residuals and is applicable when N is fixed and $T \rightarrow \infty$; i.e., when N is small relative to a large T. However, as pointed out in, for example, Pesaran (2004) and Pesaran, Ullah, and Yamagata (2008), the LM (henceforth, Breusch-Pagan) test based upon asymptotic critical values from the relevant χ^{2} distribution can suffer from serious size distortion when N / T is not small.

In view of this, one area of research has focused on cross-section dependence tests for large T and/or N panels. Frees (1995) has proposed a "distribution free" version of the Breusch-Pagan test based on squared pair-wise Spearman sample rank correlation coefficients of the regression residuals. Pesaran (2004) proposes a, so-called, CD test based on the average pair-wise sample correlations of residuals across the different cross-section units. The CD test statistic has very good finite sample performance under a wide class of panel data model designs. However, it will lack power when the population average pair-wise correlations is zero, even though underlying individual population pair-wise correlations are non-zero. Pesaran (2015) re-interprets the CD test as a test of weak cross-section dependence. Adopting a different strategy, Pesaran et al (2008) make use of analytical adjustments for each squared pair-wise sample correlation in order to correct the bias of the Breusch-Pagan statistic. These analytical adjustments are derived under the same assumptions as the original Breusch-Pagan test; i.e., normality, regressor exogeneity and homoskedasticity within cross-sections. In a similar vein, Baltagi, Feng, and Kao (2012) have proposed an (asymptotic) bias-correction of Breusch-Pagan test statistic, based on the $\sqrt{N T}$ consistent Fixed Effect estimator and present Monte Carlo results which suggest that their test behaves well even when T is smaller than N; Juhl (2011) considers a similar approach. Relaxing normality and regressor exogeneity, Sarafidis, Yamagata, and Robertson (2009) propose a test for cross-sectional dependence based on Sargan's difference test for over-identifying restrictions in a dynamic panel data model, but again assuming homoskedasticity within each cross section and under a slope homogeneity assumption. Relaxing the within cross-section homoskedasticity assumption, but still maintaining exogenous regressors, Godfrey and Yamagata (2011) recently advocated a wild bootstrap ${ }^{1}$ version of the original Breusch-Pagan test in order to address the large $N / T($ small $T / N)$ issue. The Monte Carlo evidence presented by Godfrey and Yamagata (2011) suggests that such a test can provide quite reliable inferences.

However, the slope homogeneity assumption of Sarafidis et al. (2009), Baltagi et al. (2010) and Juhl (2011) can be restrictive in macroeconometric applications: see Haque, Pesaran, and Sharma (1999), Bassanini and Scarpetta (2002), amongst others. For the case of a dynamic panel data model, Pesaran and Smith (1995) demonstrate that ignorance of the heterogeneity, in general, renders equation by equation OLS regression inconsistent when regressors are serially correlated, even when N and T are large. Therefore, it is important to allow slope heterogeneity in this type of models, unless there is evidence of slope homogeneity; see Swamy (1970), Pesaran and Yamagata (2008) for the slope heterogeneity tests that are valid under our null hypothesis of no cross-sectional correlation or Su and Chen (2013) that develop a slope homogeneity test that allows for factor structure in the error terms.

In some situations, the OLS estimator may not be consistent under cross-sectional correlation. Suppose that the cross section correlation is stemmed from error factor structure, such that $y_{i t}=\alpha_{i}+x_{i t}^{\prime} \beta_{i}+\lambda_{i} y_{i t-1}+u_{i t}, u_{i t}=\gamma_{i} f_{t}+\varepsilon_{i t}$, where $\varepsilon_{i t} \sim i . n$. d. $\left(0, \sigma_{t}^{2}\right)$,

[^1]so that $E\left(u_{i t} u_{j t}\right)=\gamma_{i} \gamma_{j} E\left(f_{t}^{2}\right)$. If $x_{i t}$ is a linear function of $f_{t}, x_{i t}$ can be correlated with $u_{i t}$. If f_{t} is serially correlated, it can be $E\left(y_{i t-1} u_{i t}\right) \neq 0$. Therefore, it is important to detect cross-sectional correlation. Even when the OLS estimator is consistent, under time-series heteroskedasticity, the relative efficiency of the conventional feasible generalized least square (FGLS) estimator (of the SUR approach) over the OLS estimator may not be guaranteed. Furthermore, under time-series heteroskedasticity, inference based on FGLS estimation may not be reliable. Therefore, under potential time-series heteroskedasticity, it would be recommended to use a robust cross section dependence test, which is proposed in this paper. To our knowledge there is no such test available in the literature to date. If the null is not rejected by the test, it would be more confidently concluded that the rejection is not due to the heteroskedasticity, and OLS estimation would be preferred. If the null is rejected, then a suitable estimation procedure should be pursued ${ }^{2}$.

This paper makes two contributions which are distinct from Godfrey and Yamagata (2011). First, it proposes new asymptotically pivotal heteroskedasticity robust BreuschPagan tests that allow for fixed, strictly exogenous and lagged dependent regressor variables as well as quite general forms of both non-normality and heteroskedasticity, in the linear model error distribution. (Juhl, 2011, proposes an alternative test which allows for cross-section heteroskedasticity, but requiring time-series homoskedasticity.) The last point is particularly pertinent because the modern approach in applied research is to implement inference by employing some heteroskedasticity robust variance-covariance estimator. It emerges from this analysis that the original Breusch-Pagan test and its standardised version suggested by Pesaran $(2004,2015)$ will asymptotically over reject, under the null, in the presence of heteroskedasticity, except when the squared errors are (asymptotically) contemporaneously uncorrelated. Our Monte Carlo study reveals rejection rates of 100%, under the null, even when T is large. The asymptotic distribution of the new statistic is first derived under the assumption that $T \rightarrow \infty$ with N fixed and, then, an asymptotically valid normalised statistic is also developed when both T and N jointly diverge to infinity, but requiring $N^{2} / T \rightarrow 0$ in order to eliminate an asymptotic bias in the resultant limiting distribution. However, as is well known, asymptotic theory can provide a poor approximation to actual finite sample behaviour; specifically in this case, and as noted previously, when N / T is not small, and our Monte Carlo study does indeed reveal severe size distortions when T and N are of comparable magnitude.

Second, this paper describes three asymptotically valid wild bootstrap procedure schemes which are employed in order to provide closer agreement between the desired nominal and the empirical significance level of a test procedure. For all experiments, the recursivedesign wild bootstrap performs the best among the bootstrap schemes even when T and N are of similar magnitude. Moreover, in comparison with the wild bootstrap "version" of the (normalised) original Breusch-Pagan test (Godfrey and Yamagata, 2011) the corresponding (normalised) version of the heteroskedasticity-robust Breusch-Pagan test is more reliable with this wild bootstrap scheme, performing the best under the null in all experiments. Note also that the recursive-design wild bootstrap, employed in this paper, is asymptotically justified under less restrictive assumptions than those imposed by Goncalves and Kilian (2004) and Godfrey and Tremayne (2005), which rule out certain asymmetric conditional heteroskedastic error processes. The reason is that Goncalves and Kilian (2004) wish to show that the recursive wild bootstrap provides consistent estimates of heteroskedasticity-robust standard errors. However, the additional restrictive assumption they employ is not required to directly prove the asymptotic validity of the recursive

[^2]design wild bootstrap when used in conjunction with heteroskedasticity-robust t-ratios (see Halunga (2005)). Thus, our assumptions still provide the basis for asymptotically valid inferences for regression parameters, by employing this wild bootstrap scheme, under zero cross section correlation.

Finally, it has been traditional when developing tests for cross-section dependence that the actual null hypothesis under test is one of zero contemporaneous correlation among cross sections (i.e., individuals, households, firms, countries, etc.) and the failure of which, of course, is consistent with contemporaneous dependence; see, for example, the survey by Moscone and Tosetti (2009). However, zero contemporaneous correlation does not, necessarily, imply contemporaneous independence. Nonetheless, virtually all previous tests of this null hypothesis that have been proposed in the literature have maintained the stronger assumption of independence. In this paper, such independence is not assumed.

The rest of the paper is organised as follows. Section 2 introduces the notation and assumptions which afford the subsequent asymptotic analysis. Section 3 establishes the limit distribution of the new test statistic when $T \rightarrow \infty$ and N is fixed and Section 4 establishes the limit distribution of the new statistic when both $(N, T) \rightarrow \infty$. Section 5 describes the wild bootstrap tests, which are applicable to both the new heteroskedasticity robust Breusch-Pagan test and the original version. Section 6 reports the results of a small Monte Carlo study designed to shed light on the finite sample reliability of the various test procedures and Section 7 provides a simple empirical application. Finally, Section 8 concludes. All proofs of the main results are relegated to the Appendix with the other results and technical details available in the Supplementary Appendix.

2 The Model, Notation \& Assumptions

In this paper, we allow for an Autoregressive Distributed Lag (ADL) heterogeneous panel data model structure. In particular, if i indexes the cross-section observations and t the time series observations, then the following model is assumed

$$
\begin{equation*}
\phi_{i}(L) y_{i t}=w_{i t}^{\prime} \theta_{i}+u_{i t}, \quad i=1, \ldots, N, t=1, \ldots, T, \tag{1}
\end{equation*}
$$

where $\left\{y_{i,-p+1}, \ldots, y_{i 0}, y_{i 1}, \ldots, y_{i T}, w_{i 1}, \ldots, w_{i T}\right\}, i=1, \ldots, N$, are the sample data and $\phi_{i}(L)=1-\phi_{i 1} L-\phi_{i 2} L^{2}-\ldots-\phi_{i p} L^{p}, \phi_{i p} \neq 0$, has all roots lying outside the unit circle, for all i, with p, the lag length, known, finite and common across i, and $\left\|\theta_{i}\right\|<\infty$. The M regressors, $w_{i t}^{\prime}=\left\{w_{i t l}\right\}, l=1, \ldots M$, are strictly exogenous, with $w_{i t 1}=1$, for all i and t; the errors, $u_{i t}$, have zero mean for all i and t; and, $\left\{w_{i t}^{\prime}, u_{i t}\right\}$ satisfy the regularity conditions discussed below.

Stacking the observations, $t=1, \ldots, T$, per cross-section we write (1) as

$$
\begin{equation*}
y_{i}=X_{i} \beta_{i}+u_{i} \tag{2}
\end{equation*}
$$

$\beta_{i}^{\prime}=\left(\theta_{i}^{\prime}, \phi_{i}^{\prime}\right), \phi_{i}^{\prime}=\left(\phi_{i 1}, \ldots, \phi_{i p}\right)$, where $y_{i}=\left\{y_{i t}\right\},(T \times 1), X_{i}=\left(W_{i}, Y_{i}\right)$ is $(T \times M+p)$ and has rows $x_{i t}^{\prime}, W_{i}$ has rows $w_{i t}^{\prime}=\left\{w_{i t l}\right\}, Y_{i}$ has rows $Y_{i, t-1}^{\prime}=\left\{y_{i, t-q}\right\}, q=1, \ldots, p$, and $u_{i}=\left\{u_{i t}\right\},(T \times 1)$. The Ordinary Least Squares estimator of β_{i}, in (2), is given by

$$
\hat{\beta}_{i}=\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime} y_{i}, \quad i=1, \ldots, N
$$

with residuals $\hat{u}_{i}=\left\{\hat{u}_{i t}\right\}, \hat{u}_{i t}=y_{i t}-x_{i t}^{\prime} \hat{\beta}_{i}$.
Zero contemporaneous (or cross-section) correlation is equivalent to the null hypothesis of $H_{0}: E\left[u_{i} u_{j}^{\prime}\right]=0$, for all $i \neq j$, or $H_{0}: E\left[u_{i t} u_{j t}\right]=0$ for all $t=1, \ldots, T$ and all $i \neq j$. It is
common practice, in the literature, for tests of $H_{0}: E\left[u_{i t} u_{j t}\right]=0$ to be constructed under the stronger assumption of contemporaneous independence. The asymptotic validity of the test procedure proposed in this paper does not rely on such a strong assumption. Rather, a weaker set of conditions are invoked which specify various quantities of interest to be martingale differences.

The following assumptions are made in which $\mathcal{F}_{N T, t-1}$ is the sigma field generated by: (i) lagged values of $y_{i t}$ (i.e., $\left\{y_{i, t-k}\right\}, i=1, \ldots, N, k=1,2, \ldots$); and, (ii) current and lagged values of any strictly exogenous variables, $i=1, \ldots, N$, including $w_{i, t-k}, k=0,1,2, \ldots$, and possibly other strictly exogenous variables as well; see, for example, White (2001, p.59).

Uniformly over $i=1, \ldots, N$, the following hold:
Assumption A1: $\left\{w_{i t}^{\prime}\right\}$ is a mixing sequence, with either ϕ of size $-\eta /(2 \eta-1), \eta \geq 1$, or α of size $-\eta /(\eta-1), \eta>1$.

Assumption A2:

(i) $E\left[u_{i t} w_{i, t+k} \mid \mathcal{F}_{N T, t-1}\right]=0$, almost surely, for any $k \geq 0$ and all t;
(ii) $E\left[u_{i t}^{2} \mid \mathcal{F}_{N T, t-1}\right]=\sigma_{i t}^{2}$, almost surely, for all t;
(iii) $\operatorname{plim}_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T}\left\{\sigma_{i t}^{2}-E\left[u_{i t}^{2}\right]\right\}=0$;
(iv) $E\left|w_{i t l}\right|^{2 \kappa+\delta} \leq \Delta<\infty$, where $\kappa=\max [2, \eta]$, for some $\delta>0$, and all $t=1, \ldots, T$, $l=1, \ldots, M$;
(v) $E\left|u_{i t}\right|^{4+\delta} \leq \Delta<\infty$ for some $\delta>0$, and all $t=1, \ldots, T$.

Assumption A3:

(i) $E\left(W_{i}^{\prime} W_{i} / T\right)=\frac{1}{T} \sum_{t=1}^{T} E\left[w_{i t} w_{i t}^{\prime}\right]$ is uniformly positive definite (i.e., positive definite for all T sufficiently large).
(ii) $E\left(u_{i}^{\prime} u_{i} / T\right)=\frac{1}{T} \sum_{t=1}^{T} E\left[u_{i t}^{2}\right]$ is uniformly positive.

For all $1 \leq i<j=2, \ldots, N$ the following holds:

Assumption A4:

(i) $E\left[u_{i t} u_{j t} \mid \mathcal{F}_{N T, t-1}\right]=0$, almost surely, for all t;
(ii) $E\left[u_{i t}^{2} u_{j t}^{2} \mid \mathcal{F}_{N T, t-1}\right]=\tau_{i j t}^{2}$, almost surely, for all t;
(iii) $\operatorname{plim}_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T}\left\{\tau_{i j t}^{2}-E\left[u_{i t}^{2} u_{j t}^{2}\right]\right\}=0$;
(iv) $\omega_{i j, T}=\frac{1}{T} \sum_{t=1}^{T} E\left[u_{i t}^{2} u_{j t}^{2}\right]$ is uniformly positive, such that for T sufficiently large $\inf _{i, j} \omega_{i j, T}>K>0 ;$
(v) $E\left[u_{i t} u_{j t} u_{h t} u_{k t} \mid \mathcal{F}_{N T, t-1}\right]=0$, almost surely, for $i<j<k, i \leq h<k$, and for all t.

Note that the above entail uniform bounds (in both i and t) on certain moments of $u_{i t}$ and $w_{i t}$. In addition, Assumption A1 allows $w_{i t}$ to contain fixed or random (but strictly exogenous) regressors. Assumption A2 is somewhat weaker than allowing the errors to be serially independent (although they are still uncorrelated). Assumption A2(i) follows from the strict exogeneity assumption on $w_{i t}$ and, together with Assumption A2(v) and the
fact that $w_{i t 1}=1$ for all t, it implies that $\left\{u_{i t}, \mathcal{F}_{N T, t}\right\}$ is a martingale difference sequence (m.d.s). ${ }^{3}$ Assumptions A2(ii) and (iii) also allow for general (conditional or unconditional) heteroskedasticity (with $\sigma_{i t}^{2}$ possibly varying across cross-sections and through time). A wide class of models for the variance are allowed that include cross-sectional heterogeneity, volatility that evolves over time such as GARCH type models, trending volatility, break and smooth transition shifts in variance. Notice, that we do not need asymptotic normality of $\sqrt{T}\left(\hat{\beta}_{i}-\beta_{i}\right)$ in order to justify the asymptotic validity of the test procedure in this paper; in contrast to the assumption of Godfrey and Yamagata (2011). Assumption A4 permits the derivation of the robust test procedure for cross-section correlation (Lemma 1 and Theorem 1 below). Assumption A4(i) states that $u_{i t}$ and $u_{j t}$ are uncorrelated, $i \neq j$, whilst $\mathrm{A} 4(\mathrm{v})$ requires that all distinct pairs $\left\{u_{i t} u_{j t}\right\}$ and $\left\{u_{h t} u_{k t}\right\}$ are uncorrelated, $i \neq j$ and $h \neq k$. These two assumptions could be replaced by the much stronger assumption that the $\left\{u_{i t}\right\}$ are independent, which we wish to resist.

3 Test Statistics and Limit Distributions: $T \rightarrow \infty$, fixed N

The commonly used Breusch-Pagan test statistic is

$$
\begin{equation*}
B P_{T}=\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\rho}_{i j, T}^{2} \tag{3}
\end{equation*}
$$

where

$$
\hat{\rho}_{i j, T}=\frac{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \hat{u}_{i t} \hat{u}_{j t}}{\sqrt{\left\{\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{2}\right\}\left\{\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{j t}^{2}\right\}}}
$$

As noted, for example, by Moscone and Tosetti (2009), under (1), cross-section independence, but homoskedasticity across the time dimension, it can be shown that $B P_{T} \xrightarrow{d} \chi_{v}^{2}$, for fixed N, as $T \rightarrow \infty$, where $v=\frac{1}{2} N(N-1)$. Given Theorem 1, below, and under Assumption A4(i) and (v), rather than full independence, this remains true. However, this will not be the case, in general, when there is heteroskedasticity across the time dimension. In these circumstances, the use of $B P_{T}$ could lead to asymptotically invalid inferences. (This was also recently pointed out by Godfrey and Yamagata (2011), but in the context of a static heterogeneous panel.) Therefore the availability of a test procedure that is robust to more general heteroskedasticity would appear desirable. Such a robust statistic is defined as

$$
\begin{equation*}
R B P_{T}=\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\gamma}_{i j, T}^{2} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\gamma}_{i j, T}=\frac{\sum_{t=1}^{T} \hat{u}_{i t} \hat{u}_{j t}}{\sqrt{\sum_{t=1}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2}}}=\frac{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \hat{u}_{i t} \hat{u}_{j t}}{\sqrt{\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2}}} \tag{5}
\end{equation*}
$$

Allowing for heteroskedasticity across both the cross-section and time dimension, Assumption A4(iv) and a straightforward application of White (2001, Corollary 5.26, p.135), yields

$$
\gamma_{i j, T}=\frac{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{i t} u_{j t}}{\sqrt{\frac{1}{T} \sum_{t=1}^{T} E\left[u_{i t}^{2} u_{j t}^{2}\right]}} \stackrel{d}{\rightarrow} N(0,1),
$$

[^3]a result which motivates the construction of (robust test statistic) $R B P_{T}$ given in (4).
We are now in a position to establish the following Theorem, which justifies the construction of a robust version of $B P_{T}$, as detailed in the subsequent Corollary.

Theorem 1 Under Assumptions A1-A4, we have, for all $i \neq j$, and as $T \rightarrow \infty$, and fixed $N, \hat{\gamma}_{i j, T}-\gamma_{i j, T}=o_{p}(1)$, so that

$$
\hat{\gamma}_{i j, T} \xrightarrow{d} N(0,1)
$$

Corollary 1 Under Assumptions A1-A4, and as $T \rightarrow \infty$, and fixed N,

$$
R B P_{T}=\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\gamma}_{i j, T}^{2} \xrightarrow{d} \chi_{v}^{2}, \quad v=\frac{1}{2} N(N-1)
$$

From Theorem 1 the asymptotic behaviour of $B P_{T}$ can be inferred, under certain forms of heteroskedasticity. In particular, under cross-sectional heteroskedasticity only, it is easily verified that $\hat{\rho}_{i j, T}-\hat{\gamma}_{i j, T}=o_{p}(1)$, so that $B P_{T}$ remains asymptotically valid, as noted earlier. However, in general, we have (under our assumptions)

$$
\begin{aligned}
\hat{\rho}_{i j, T} & =\left\{\sqrt{\left.\frac{\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2}}{\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{2} \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{j t}^{2}}\right\} \hat{\gamma}_{i j, T}}\right. \\
& =\left\{\sqrt{\frac{\frac{1}{T} \sum_{t=1}^{T} E\left[u_{i t}^{2} u_{j t}^{2}\right]}{\frac{1}{T} \sum_{t=1}^{T} E\left[u_{i t}^{2}\right] \frac{1}{T} \sum_{t=1}^{T} E\left[u_{j t}^{2}\right]}}\right\} \hat{\gamma}_{i j, T}+o_{p}(1),
\end{aligned}
$$

so that, asymptotically at least, $\hat{\rho}_{i j, T}-\hat{\gamma}_{i j, T}=o_{p}(1)$ if and only if $u_{i t}^{2}$ and $u_{j t}^{2}$ are (asymptotically) contemporaneously uncorrelated. For illustrative purposes, suppose $u_{i t}=\sigma_{i t} \varepsilon_{i t}$, where the $\varepsilon_{i t}$ are zero mean and unit variance, independently and identically distributed (i.i.d.), random variables. In this context, for example, with a one-break-in-volatility model which specifies $\sigma_{i t}^{2}=\sigma_{i 1}^{2}$ for $t=1, \ldots, T_{1}<T$ and $\sigma_{i t}^{2}=\sigma_{i 2}^{2}>\sigma_{i 1}^{2}$ for $t=T_{1}+1, \ldots, T$, $u_{i t}^{2}$ and $u_{j t}^{2}$ will be (asymptotically), positively contemporaneously correlated, so that $\hat{\rho}_{i j}>\hat{\gamma}_{i j, T}$, in probability. Under the null hypothesis of $H_{0}: E\left[u_{i t} u_{j t}\right]=0$, this will lead to over-rejection, asymptotically, for a test procedure which employs $B P_{T}$ in conjunction with χ_{v}^{2} critical values. A qualitatively similar conclusion emerges for a trending volatility model ("Model 2" in Cavaliere and Taylor, 2008), where $\sigma_{i t}=\sigma_{i 0}-\left(\sigma_{i 1}-\sigma_{i 0}\right)\left(\frac{t-1}{T-1}\right)$, $\sigma_{i 1}>\sigma_{i 0}$, since, again, $u_{i t}^{2}$ and $u_{j t}^{2}$ will be (asymptotically), positively contemporaneously correlated. However, for conditional heteroskedasticity in which $\sigma_{i t}^{2}=E\left[u_{i t}^{2} \mid \mathcal{F}_{N T, t-1}\right]$ is a stationary process (for example, a GARCH error process) then, due to the independence of the $\varepsilon_{i t}, u_{i t}^{2}$ and $u_{j t}^{2}$ are (asymptotically) contemporaneously uncorrelated so that the use of $B P_{T}$ with χ_{v}^{2} critical values is asymptotically valid. The tests designed by Juhl (2011), Baltagi, Feng and Kao (2011) and Pesaran, Ullah and Yamagata (2008) might lead to missleading inference in a similar fashion as $B P_{T}$.

Thus, there will be situations in which $B P_{T}$ remains asymptotically robust. In general, though, it seems prudent to use a procedure based on a statistic, such as $R B P_{T}$, that is robust under quite general forms of (unknown) heteroskedasticity.

4 Test Statistic and Limit Distributions: $(N, T) \rightarrow \infty$

Pesaran $(2004,2015)$ proposed a standardised version of the $B P_{T}$ test as

$$
\begin{equation*}
N B P_{N T}=\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\rho}_{i j}^{2}-1\right) \tag{6}
\end{equation*}
$$

and under (1), cross-section independence but homoskedasticity across the time dimension, $N B P_{N T} \xrightarrow{d} N(0,1)$ as $T \rightarrow \infty$ first, followed by $N \rightarrow \infty$.

Allowing for heteroskedasticity across both the cross-section and time dimension, a standardised version of $R B T_{T}$ proposed in the previous section is defined as

$$
\begin{equation*}
N R B P_{N T}=\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\gamma}_{i j, T}^{2}-1\right) . \tag{7}
\end{equation*}
$$

The limiting distribution of the test defined in (7) is obtained by still maintaining zero cross-section correlation under the null rather than the stronger assumption of crosssection independence as it is commonly assumed in the current literature. Specifically, the following assumptions are in addition to/or strengthen the previous Assumption A, and are made in order to derive the $O(1)$ limiting distribution of the new statistic in (7):

Assumption B1: $(N, T) \rightarrow \infty$ jointly, such that $N^{2} / T \rightarrow 0$.
Assumption B2: For some $\delta>0$,
(i) $\sup _{t, i} E\left|u_{i t}\right|^{8+\delta} \leq \Delta<\infty$;
(ii) there exists $C>0$ such that $\sup _{i \neq j}\left|\operatorname{cov}\left(\tau_{i j t}^{2}, u_{i s} u_{j s} u_{i r} u_{j r}\right)\right| \leq C(t-(s \vee r))^{-(1+\delta)}$ for $t>(s \vee r)$;
(iii) $\sup _{i \neq j} \frac{1}{T} \sum_{t \neq s}^{T}\left|\operatorname{cov}\left(u_{i t}^{2} u_{j t}^{2}, u_{i s}^{2} u_{j s}^{2}\right)\right| \leq \Delta<\infty$;
(iv) $E\left[u_{i t} u_{j t} u_{l t} u_{m t} u_{p t} u_{q t} u_{h t} u_{n t} \mid \mathcal{F}_{N T, t-1}\right]=k_{i j l m p q h n, t}$ and $\left|k_{i j l m p q h n, t}\right| \leq \bar{k}_{i j l m p q h n}$ for all t such that $N^{-4} \sum_{i<j} \sum_{l<m} \sum_{p<q} \sum_{h<n}\left|\bar{k}_{i j l m p q h n}\right| \leq \Delta<\infty ;$
(v) $E\left[u_{j t}^{2} u_{i t} \mid \mathcal{F}_{N T, t-1}\right]=0$.

Assumption B1 ensures that an asymptotic bias in the limiting distribution of $N R B P_{N T}$ in (7) disappears as T and N diverge jointly to infinity. A CLT for martingale difference arrays of Hall and Heyde (1980, Corollary 3.1) applies under Assumption B2. Assumptions B2(ii), (iii), (iv) and (v) restrict the cross-section dependence and resemble similar assumptions as in Bai (2009) with Assumption B2(ii) and (iii) being employed to establish that the asymptotic variance of $N R B P_{N T}$ is one.

Theorem 2 Under Assumptions A1-A4 combined with Assumptions B1-B2

$$
N R B P_{N T}=\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\gamma}_{i j, T}^{2}-1\right) \xrightarrow{d} N(0,1)
$$

The method of proof is in two stages. The first stage requires the following Central Limit Theorem:

Lemma 1 Under Assumptions A2(v), A4(i), (iv) and (v) combined with/or strengthened by Assumptions B1-B2

$$
Z_{N T}=\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\gamma_{i j, T}^{2}-1\right) \xrightarrow{d} N(0,1),
$$

where

$$
\gamma_{i j, T}=\frac{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{i t} u_{j t}}{\sqrt{\omega_{i j, T}}}
$$

and $\omega_{i j, T}=\frac{1}{T} \sum_{t=1}^{T} E\left[u_{i t}^{2} u_{j t}^{2}\right]$.
In the second stage, Lemma 2, below, establishes that the asymptotic bias which appears in the limiting distribution of $N R B P_{N T}$ disappears as $N^{2} / T \rightarrow 0$. This implies that the standard normal limiting distribution approximates the limiting distribution of the statistic $N R B P_{N T}$ when T is large relative to N. Thus, in the case when $(N, T) \rightarrow \infty$ jointly, the chi-square version of the test $R B P_{T}$ should do as well as its standardised version, $N R B P_{N T}$.

Lemma 2 Under Assumptions A1-A4 combined with/or strengthened by Assumptions B1, B2(i), (iii), (v)

$$
N R B P_{N T}=Z_{N T}+o_{p}(1)
$$

Armed with Lemmas 1 and 2, Theorem 2 follows immediately. ${ }^{4}$
Although, Theorem 1 and Theorem 2 show that the chi-square version of the new statistic, $R B P_{T}$, and its standardised version, $N R B P_{N T}$, are asymptotically robust to general forms of heteroskedasticity, it might be anticipated that improved sampling behaviour, in finite samples, will be afforded by employing a wild bootstrap scheme. Indeed, Godfrey and Yamagata (2011) proposed the use of a wild bootstrap scheme in order to control the significance levels of the $B P_{T}$ test procedure, in the presence of non-normality and unknown heteroskedasticity, under both large T and large N asymptotics. Their analysis, however, is limited to the static heterogeneous panel data model and is not based on an asymptotic pivot. In the next section, asymptotic validity of three wild bootstrap schemes is established in a dynamic heterogenous panel data model under non-normality and unknown heteroskedasticity.

5 Wild Bootstrap Procedures

The wild bootstrap tests based on either the chi-square version of $R B P_{T}$ (resp., $B P_{T}$) for fixed N or the standardised version of $N R B P_{N T}$ (resp., $N B P_{N T}$), proposed as (N, T) diverge jointly to infinity, will deliver the same empirical size and power results, since it does not matter which asymptotic distribution is employed for the bootstrap. As a consequence, the wild bootstrap procedures considered in this section are based only on the standardised normal statistics, i.e. $N R B P_{N T}$ and $N B P_{N T}$, respectively.

We consider three wild bootstrap procedures, as follows.

[^4]
5.1 Wild Bootstrap 1 (WB1)

This is a recursive design wild bootstrap scheme, implemented using the following steps:

1. Estimate the model by OLS to get $\hat{u}_{i t}, i=1, \ldots, N$, and construct test statistics $N R B P_{N T}$ and $N B P_{N T}$.
2. (which is repeated B times)
(a) Generate $u_{i t}^{*}=\varepsilon_{i t} \hat{u}_{i t}$, where the $\varepsilon_{i t}$ are i.i.d., over i and t, with zero mean and unit variance.
(b) Construct

$$
\begin{equation*}
y_{i t}^{*}=\hat{\beta}_{i}^{\prime} x_{i t}^{*}+u_{i t}^{*} . \tag{8}
\end{equation*}
$$

Here, $x_{i t}^{*}$ is generated recursively, from (8), given initial values $y_{i t}^{*}, t \leq 0$ for any regressors which are lagged dependent variables (these could be zero or sample values). Sample values of the regressors are employed in this wild bootstrap scheme for any strictly exogenous variables. Thus, for example, if $x_{i t}^{\prime}=\left(w_{i t}^{\prime}, y_{i, t-1}\right)$, where $w_{i t}$ is strictly exogenous, then $w_{i t}^{*}=w_{i t}$, for all i and $t, \beta_{i}^{\prime}=\left(\theta_{i}^{\prime}, \phi_{i}\right)$ and choosing $y_{i 0}^{*}=y_{i 0}$ bootstrap data are generated according to

$$
\begin{aligned}
y_{i 1}^{*} & =\hat{\theta}_{i}^{\prime} w_{i 1}+\hat{\phi}_{i} y_{i 0}+u_{i 1}^{*} \\
y_{i t}^{*} & =\hat{\theta}_{i}^{\prime} w_{i t}+\hat{\phi}_{i} y_{i, t-1}^{*}+u_{i t}^{*}, t=2, \ldots, T .
\end{aligned}
$$

(c) Construct the bootstrap test statistics (B simulations)

$$
\begin{align*}
& N R B P_{N T}^{*}=\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\gamma}_{i j, T}^{* 2}-1\right), \quad \hat{\gamma}_{i j, T}^{*}=\frac{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \hat{u}_{i t}^{*} \hat{u}_{j t}^{*}}{\sqrt{\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{*} \hat{u}_{j t}^{* 2}}} \tag{9}\\
& N B P_{N T}^{*}=\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\rho}_{i j, T}^{* 2}-1\right), \hat{\rho}_{i j, T}^{*}=\frac{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \hat{u}_{i t}^{*} \hat{u}_{j t}^{*}}{\sqrt{\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{* 2} \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{j t}^{* 2}}} \tag{10}
\end{align*}
$$

where $\hat{u}_{i t}^{*}=y_{i t}^{*}-x_{i t}^{*} \hat{\beta}_{i}^{*}$ is the OLS residual from (8).
3. Calculate the proportion of bootstrap test statistics, $N R B P_{N T}^{*}$ (resp., $N B P_{N T}^{*}$), from the B repetitions of Step 2c that are at least as large as the actual value of $N R B P_{N T}$ (resp., $N B P_{N T}$). Let this proportion be denoted by \hat{p} and the desired significance level be denoted by α. The asymptotically valid rejection rule is that H_{0} is rejected if $\hat{p} \leq \alpha$.

5.2 Wild Bootstrap 2 (WB2)

This is a fixed design wild bootstrap scheme which replaces (8) in the recursive design scheme with

$$
y_{i t}^{*}=\hat{\beta}_{i}^{\prime} x_{i t}+u_{i t}^{*}
$$

at stage 2 b .

5.3 Wild Bootstrap 3 (WB3)

Note, from Theorem 1, $\hat{\gamma}_{i j, T}-\gamma_{i j}=o_{p}(1)$; i.e., $\hat{\gamma}_{i j, T}$ has the same limit distribution as it would have if β_{i} were known. This suggests that the following wild bootstrap procedure should work (asymptotically) at least.

1. As for WB1.
2. (which is repeated B times)
(a) Generate $u_{i t}^{*}=\varepsilon_{i t} \hat{u}_{i t}$, as in WB1(but omit step 2b in WB1).
(b) Construct the bootstrap test statistics

$$
\begin{aligned}
N R B P_{N T}^{*} & =\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\tilde{\gamma}_{i j, T}^{* 2}-1\right), \quad \tilde{\gamma}_{i j, T}^{*}=\frac{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{i t}^{*} u_{j t}^{*}}{\sqrt{\frac{1}{T} \sum_{t=1}^{T} u_{i t}^{* 2} u_{j t}^{*}}}, \\
N B P_{N T}^{*} & =\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\tilde{\rho}_{i j}^{* 2}-1\right), \tilde{\rho}_{i j, T}^{*}=\frac{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{i t}^{*} u_{j t}^{*}}{\sqrt{\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{j t}^{* 2} \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{j t}^{* 2}}}
\end{aligned}
$$

3. Calculate the proportion of bootstrap test statistics, $N R B P_{N T}^{*}$ (resp., $N B P_{N T}^{*}$), from the B repetitions of Step 2 b that are at least as large as the actual value of $N R B P_{N T}$ (resp., $N B P_{N T}$). Let this proportion be denoted by \tilde{p} and the desired significance level be denoted by α. The asymptotically valid rejection rule is that H_{0} is rejected if $\tilde{p} \leq \alpha$.

The asymptotic validity of these wild bootstrap schemes is established in the theorem below ${ }^{5}$ under the strengthened assumption:

Assumption B3 $E\left\|w_{i t}\right\|^{4 \kappa+\delta} \leq \Delta<\infty$ where $\kappa=\max [2, \eta]$, for some $\delta>0$, and all $i=1, \ldots, N, t=1, \ldots, T$ and $l=1, \ldots, M$;

Theorem 3 Under Assumptions A1-A4 combined with/or strengthened by Assumptions B1-B3 ${ }^{6}$, and for all three wild bootstrap designs, WB1, WB2 and WB3,

$$
\begin{aligned}
& \sup _{x}\left|P^{*}\left(N R B P_{N T}^{*} \leq x\right)-P\left(N R B P_{N T} \leq x\right)\right| \xrightarrow{p} 0 \\
& \sup _{x}\left|P^{*}\left(N B P_{N T}^{*} \leq x\right)-P\left(N B P_{N T} \leq x\right)\right| \xrightarrow{p} 0
\end{aligned}
$$

where P^{*} is the probability measure induced by the wild bootstrap conditional on the sample data.

Note that, even when allowing for conditional heteroskedasticity, we do not require the restrictive Assumption A' (iv') of Goncalves and Kilian (2004) to justify the recursivedesign WB1, since our test criteria are asymptotically independent of $\hat{\beta}_{i}$. Specifically, the class of conditionally heteroskedastic autoregressive models is not restricted to the symmetric ones as in Goncalves and Kilian (2004).

[^5]Henceforth, a test procedure which employs $N R B P_{N T}$ (resp., $N B P_{N T}$) in conjunction with asymptotic critical values will be called an "asymptotic test", whilst the one that employs either of WB1, WB2 or WB3 will be referred to as a "bootstrap test". In order to shed light on the relevance of the preceding asymptotic analysis as an approximation to actual finite sample behaviour, the next section describes, and reports the results of, a small Monte Carlo study which investigates the sampling behaviour of the test statistics considered above under a variety of heteroskedastic error distributions, and (N, T) combinations.

6 Monte Carlo Study

Three data generating processes (DGPs) are considered: Panel autoregressive and distributed lag (ADL) models, with strictly exogenous regressors, and pure panel autoregressive (AR) models.

6.1 Monte Carlo Design

6.1.1 DGP1

The first data generating process considered is a dynamic panel $A D L(1,0)$ model, which is specified by

$$
\begin{align*}
y_{i t} & =\theta_{i 1}+\theta_{i 2} z_{i t}+\phi_{i} y_{i, t-1}+u_{i t} \\
& =\theta_{i}^{\prime} w_{i t}+\phi_{i} y_{i, t-1}+u_{i t}, \quad i=1,2, \ldots, N \text { and } t=-49,-48, \ldots, T \tag{11}
\end{align*}
$$

with $\theta_{i 1} \sim$ i.i.d. $N(0,1), \theta_{i 2}=1-\phi_{i}, \phi_{i} \sim$ i.i.d. Uniform[0.4, 0.6], and the $z_{i t}$ are generated for $(N=5, T=25)$ as independent random draws from the standard lognormal distribution. This block of regressor values is then reused as necessary to build up data for the other combinations of $(N, T) . y_{i,-50}=0$, and first 49 values are discarded. The error term is generated as

$$
\begin{equation*}
u_{i t}=\sigma_{i t} \varepsilon_{i t}, i=1,2, \ldots, N \text { and } t=-49,-48, \ldots, T \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{i t}=\sqrt{1-\rho^{2}} \xi_{i t}+\rho \zeta_{t} \tag{13}
\end{equation*}
$$

where $\xi_{i t} \sim$ i.i.d. $(0,1)$ independently of $\zeta_{t} \sim$ i.i.d. $(0,1)$. Thus, $\operatorname{corr}\left(u_{i t}, u_{j t}\right)=\rho$, a constant in this case. For estimating significance levels, the value of ρ is set to zero, whilst power is investigated using $\rho=0.2$, which provides a useful range of experimental results. Two distributions are used to obtain the i.i.d. standardised errors for $\xi_{i t}$ and ζ_{t} : the standard normal distribution and the chi-square distribution with six degrees of freedom $\left(\chi_{6}^{2}\right)$, with the latter being employed to provide evidence on the effects of skewness. In particular, with a coefficient of skewness greater than 1, it is heavily skewed, according to the arguments of Ramberg, Tadikamalla, Dudewicz, and Mykytka (1979).

Five models for $\sigma_{i t}$ are considered, all of which satisfy, in particular, Assumption A2(v). First, there is homoskedasticity, denoted HET0, with $\sigma_{i t}=1$ for all t. Second, a one-break-in-volatility model, henceforth HET1, is employed with $\sigma_{i t}=0.8$ for $t=$ $1,2, \ldots, m=\lfloor T / 2\rfloor$ and $\sigma_{i t}=1.2$ for $t=m, m+1, \ldots, T$, where $\lfloor A\rfloor$ is the largest integer part of A. Third, HET2 is a trending volatility model, with $\sigma_{i t}=\sigma_{0}-\left(\sigma_{1}-\sigma_{0}\right)\left(\frac{t-1}{T-1}\right)$; see "Model 2" in Cavaliere and Taylor (2008), where $\sigma_{0}=0.8$ and $\sigma_{1}=1.2$. Fourth, HET3 is a conditional heteroskedasticity scheme, with $\sigma_{i t}=\sqrt{\exp \left(c z_{i t}\right)}, t=1, \ldots, T$; this sort of
skedastic function is discussed in Lima, Souza, Cribari-Neto, and Fernandes (2009). The value of c in HET3 is chosen to be 0.4 ; so that $\max \left(\sigma_{i t}^{2}\right) / \min \left(\sigma_{i t}^{2}\right)$, which is a well-known measure of the strength of heteroskedasticity, remains 7.9 across the different combinations of (N, T). For HET0-HET3, $\sigma_{i t}=1$ for $t=-49, \ldots, 0$. Finally, we consider a generalized autoregressive conditional heteroskedasticity, $\operatorname{GARCH}(1,1)$ model, denoted HET4, where

$$
\begin{equation*}
\sigma_{i t}^{2}=\delta+\alpha_{1} u_{i, t-1}^{2}+\alpha_{2} \sigma_{i, t-1}^{2}, t=-49,-48, \ldots, T . \tag{14}
\end{equation*}
$$

Following Godfrey and Tremayne (2005), the value of parameters are chosen to be $\delta=1$, $\alpha_{1}=0.1$ and $\alpha_{2}=0.8$.

6.1.2 DGP2

The second data generating process considered is a model with strictly exogenous regressors, specified by

$$
\begin{align*}
y_{i t} & =\beta_{i 1}+\beta_{i 2} z_{i t}+u_{i t} \tag{15}\\
& =\beta_{i}^{\prime} w_{i t}+u_{i t}, i=1,2, \ldots, N \text { and } t=1,2, \ldots, T, \tag{16}
\end{align*}
$$

where $\beta_{i 1} \sim$ i.i.d. $N(0,1), \beta_{i 2} \sim$ i.i.d. Uniform[0.9, 1.1] and the $z_{i t}$ are generated for ($N=5, T=25$) as independent random draws from the standard lognormal distribution. Again, this block of regressor values is then reused as necessary to build up data for the other combinations (N, T).

The error term in (15) is written as

$$
\begin{equation*}
u_{i t}=\sigma_{i t} \varepsilon_{i t}, i=1,2, \ldots, N \text { and } t=1,2, \ldots, T . \tag{17}
\end{equation*}
$$

The three distributions of $\varepsilon_{i t}$ and the five models for $\sigma_{i t}$ are considered as before.

6.1.3 DGP3

The third data generating process considered is a dynamic panel $A R(1)$ model, which is specified by

$$
\begin{equation*}
y_{i t}=\theta_{i}\left(1-\phi_{i}\right)+\phi_{i} y_{i t-1}+u_{i t}, i=1,2, \ldots, N \text { and } t=-49,-48, \ldots, T . \tag{18}
\end{equation*}
$$

with $\theta_{i} \sim$ i.i.d. $N(0,1), \phi_{i} \sim$ i.i.d. Uniform[0.4, 0.6], $y_{i,-49}=0$, and first 49 values are discarded. The error term is written as

$$
\begin{equation*}
u_{i t}=\sqrt{1-\phi_{i}^{2}} \sigma_{i t} \varepsilon_{i t}, i=1,2, \ldots, N \text { and } t=-49,-48, \ldots, T . \tag{19}
\end{equation*}
$$

The three distributions of $\varepsilon_{i t}$ and the five models for $\sigma_{i t}$ are considered as before.
All combinations of $N=5,10,25,50,100$ and $T=25,50,100,200$ are considered. The sampling behaviour of the tests are investigated using 2000 replications of sample data and 200 bootstrap samples, employing a nominal 5% significance level.

6.2 Monte Carlo Results

Before looking at the results from the Monte Carlo study, it is important to define criteria to evaluate the performance of the different tests considered. Given the large number of replications performed, the standard asymptotic test for proportions can be used to test the null hypotheses that the true significance level is equal to its nominal value. In these experiments, this null hypothesis is accepted (at the 5% level) for estimated rejection
frequencies in the range 4% to 6%. In practice, however, what is important is not that the significance level of the test is identical to the chosen nominal level, but rather that the true and nominal rejection frequencies stay reasonably close, even when the test is only approximately valid. Following Cochran's (1952) suggestion, we shall regard a test as being robust, relative to a nominal value of 5%, if its actual significance level is between 4.5% and 5.5%. Considering the number of replications used in these experiments, estimated rejection frequencies within the range 3.6% to 6.5% are viewed as providing evidence consistent with the robustness of the test, according to this definition.

To economize on space, and as the results for three DGPs are qualitatively similar, the discussion below focuses on the results in the case of dynamic $A D L(1,0)$ model (DGP1), since this nests the other two models and can thus be regarded as the most general one. The experimental results, in this case, under the various heteroskedastic schemes and error distributions are reported in Tables 1 to 5 . We summarise, first, the finite sample behaviour of the asymptotic tests before reporting that of the bootstrap tests.

[INSERT Table 1 HERE]

Under the null, with homoskedastic errors (reported in Table 1, $H_{0}: E\left[u_{i t} u_{j t}\right]=0$), the rejection frequencies of the asymptotic $R B P_{T}$ and $B P_{T}$ tests and the normalised versions, $N R B P_{N T}$ and $N B P_{N T}$, respectively, are in the main close to the nominal significance level of 5% when N / T is "small", less than 0.5 , although $B P_{T}$ and $N B P_{N T}$ are slightly oversized when $N=10$ and $T=25$. Under standard normal errors, with the exception of the case when the empirical size of $R B P_{T}$ is 3.3% for $N=5$ and $T=25, R B P_{T}$ performs slightly better than the normalised test $N R B P_{N T}$. It can also be noted that the $B P_{T}$ chi-square test performs better than its standardised version $N B P_{N T}$ under both types of errors. When $N / T=0.5$, slight over-rejections occur for all tests with the empirical sizes being in the range $7.4 \%-9 \%$. However, when N / T is not "small", being greater than 0.5 , severe distortions can occur. For example, when $N=100, B P_{T}$ rejection rates are 86.8% and 36.1% for $T=25$ and $T=50$, respectively. The possibility of such size distortions, when N / T is not "small", has been pointed out by Pesaran et al (2008). Even the normalised tests, $N B P_{N T}$ and $N R B P_{N T}$, do suffer from such distortions since these tests require that $N^{2} / T \rightarrow 0$ in order for an asymptotic bias in their limiting distribution to disappear. Similar patterns are revealed under asymmetric errors as well. A comparison of their rejection frequencies under $H_{A}: E\left[u_{i t} u_{j t}\right]=0.2$, reveals similar power properties under homoskedastic normal and χ_{6}^{2} errors. However, the power of the asymptotic $R B P_{T}$ and $N R B P_{N T}$ tests is slightly lower than that of the corresponding asymptotic $B P_{T}$ and $N B P_{N T}$ tests under χ_{6}^{2} errors. For example, with $N=5$ (resp., $N=10$) and $T=100$, the empirical power of $N R B P_{N T}$ is 18.1% (resp., 36.4%) compared with 24.6% (resp., 45.7%) for $N B P_{N T}$.

[INSERT Tables 2-5 ABOUT HERE]

The results obtained when the errors are heteroskedastic (Tables 2-5), show that the asymptotic $R B P_{T}$ and $N R B P_{N T}$ tests again exhibit close agreement, between nominal and empirical significance levels across both error distributions, when N / T is small. The chisquare test $R B P_{T}$ performs in general better than $N R B P_{N T}$ when N / T is small, except for the case when $N=5$ and $T=25$, when $R B P_{T}$ is slightly undersized. In fact, the results are qualitatively similar to those obtained with homoskedastic errors, with severe distortions apparent when N / T is not small. By contrast, and consistent with the analyses in Sections 3 and 4, the asymptotic $B P_{T}$ and $N B P_{N T}$ tests tend to over-reject the null hypothesis
significantly even when N / T is small, except for GARCH errors (Table 5). Moreover, for all results in Tables 2-5, the rejection rates for $B P_{T}$ are less than those for $N B P_{N T}$. For example, when $T=200$, and under the one-break-in-volatility heteroskedastic scheme (HET1, reported in Table 2) the rejection frequencies for the asymptotic $N B P_{N T}$ (resp., $\left.B P_{T}\right)$ tests, under normal errors, range from $12.1 \%-100 \%(9.5 \%-100 \%)$ whereas for the $N R B P_{N T}$ (resp., $R B P_{T}$) range from $6.0 \%-10.3 \%(4.7 \%-10.1 \%)$. Similar pattern across the tests is revealed for the χ_{6}^{2} errors. For the trending volatility model, Table 3, the corresponding ranges are: $8.3 \%-86.1 \%$ (resp., $6.6 \%-85.8 \%$) for $N B P_{N T}$ (resp., $B P_{T}$) and $6.5 \%-7.5 \%$ (resp., $4.4 \%-9 \%$) for $N R B P_{N T}$ (resp., $R B P_{T}$). For the HET3 scheme (Table 4), these ranges are $7.5 \%-86.8 \%$ (resp., $5.3 \%-86.3 \%$) and $6.8 \%-13.8 \%$ (resp., $5.0 \%-13.7 \%$), for $N B P_{N T}$ (resp., $B P_{T}$) and $N R B P_{N T}$ (resp., $R B P_{T}$), respectively. There is significantly less over-rejection in the latter when N / T is small, where $\sigma_{i t}^{2}=\exp \left(c z_{i t}\right)$, since the $z_{i t}$ are generated as i.i.d. random variables but held fixed in repeated samples, yielding a low (but positive) contemporaneous correlation measure between the squared errors. Under $\operatorname{GARCH}(1,1)$ errors, where $\sigma_{i t}^{2}$ is a stationary process, $B P_{T}$ (resp., $N B P_{N T}$) remains asymptotically justified and exhibits close agreement, in general, between nominal and empirical significance levels across all error distributions, when N / T is small, although with more pronounced distortions, than that of $R B P_{T} .{ }^{7}$

Turning our attention to the wild bootstrap tests, both procedures, employing $N R B P_{N T}^{*}$ and $N B P_{N T}^{*}$, control the significance levels much better than their asymptotic counterparts, across all models and wild bootstrap schemes. Under $H_{0}: E\left[u_{i t} u_{j t}\right]=0$ and over the 135 different models investigated, the recursive-design wild bootstrap scheme WB1 performs the best among all bootstrap schemes and across all models. Specifically, when $N=5$ and 10 , there is not much to choose between the bootstrap schemes but when N increases, WB1 clearly dominates the other bootstrap schemes WB2 and WB3. Under homoskedasticity and employing WB1, $N B P_{N T}^{*}$ performs slightly better than $N R B P_{N T}^{*}$ under χ_{6}^{2} errors when N and T are large, as $N B P_{N T}^{*}$ is more efficient. Nevertheless, under heteroskedasticity, the bootstrap heteroskedasticity-robust test $N R B P_{N T}^{*}$ performs better than $N B P_{N T}^{*}$ across all bootstrap schemes and across all models, except for GARCH errors (Table 5) when both $N R B P_{N T}^{*}$ and $N B P_{N T}^{*}$ are comparable. In particular, empirical size distortions occur for $N B P_{N T}^{*}$ when N is large and T is small. For example, for HET1 and WB1, there is hardly any evidence of distortion in the empirical significance level, with two cases, for $N R B P_{N T}^{*}$ across both error distributions, whereas there are thirteen times when empirical rejections of the non-robust test $N B P_{N T}^{*}$ fall outside the acceptable interval of $[3.6 \%, 6.5 \%]$. For WB2 under normal errors, only once does the empirical rejection rate fall outside the acceptable interval for $N R B P_{N T}^{*}$ given HET1 and HET2, whereas for $N B P_{N T}^{*}$ eight times for HET1 and five times for HET2. Under HET2 with normal errors, the rejection rate for $N R B P_{N T}^{*}$ is 7% when $N=100$ and $T=25$, whereas rejection rate for $N B P_{N T}^{*}$ is 11.1% for this combination of N and T. Higher rejection rates are revealed under HET3, i.e. the rejection rate for $N R B P_{N T}^{*}$ is 9.7% when $N=100$ and $T=50$, whereas the rejection rate for $N B P_{N T}^{*}$ is 26.8%. Such results for $N B P_{N T}^{*}$ are consistent with those found by Godfrey and Yamagata (2011), although their experiments only considered a static (not dynamic) heterogeneous panel data model. Thus, the bootstrap test $N R B P_{N T}^{*}$, employing WB1, exhibits good agreement between nominal and empirical significance levels and appears more reliable than $N B P_{N T}^{*}$. With

[^6]regard to power comparisons, for WB1, between $N R B P_{N T}^{*}$ and $N B P_{N T}^{*}$, there is not a significant difference, except that $N B P_{N T}^{*}$ appears consistently more powerful under χ_{6}^{2} errors. Note that these are not size-adjusted power results and $N B P_{N T}^{*}$ has revealed higher distortions under the null. Qualitatively, the results are similar across all schemes but, as an illustration, under one-break-in-volatility model with correlated errors (Table 2), under χ_{6}^{2} errors and for $N=25$, the rejection rates for $N B P_{N T}^{*}$ are approximately $26 \%, 49 \%, 82 \%$ and 99%, respectively for $T=25,50,100$ and 200 , for the recursive-design resampling scheme (WB1), whilst those of $N R B P_{N T}^{*}$ are $18 \%, 36 \%, 72 \%$ and 98%.

7 An empirical application

In this section we examine error cross section correlation in a dynamic growth equation following Bond et al. (2010). Two variables, real GDP per worker and the share of total gross investment in GDP are obtained from Penn World Table Version 7.0 (PWT 7.0). Our sample consists of 20 OECD countries $(N=20)$ with annual data covering the period 1955-2004 (50 data points). ${ }^{8}$ In order to factor out common trending components, we transformed the \log of output per worker $\left(l g d p w_{i t}\right)$ and the \log of the investment share $\left(l k_{i t}\right)$ to the deviations from the cross section mean: namely, $\widetilde{\lg } \mathrm{lpw}_{i t}=l g d p w_{i t}-$ $N^{-1} \sum_{i=1}^{N} l g d p w_{i t}$ and $\widetilde{l k}_{i t}=l k_{i t}-N^{-1} \sum_{i=1}^{N} l k_{i t}$. We statistically checked the order of integration of these variables, and the evidence suggests that $\widetilde{l g d p w}_{i t} l g d p w_{i t}$ are $I(1)$ but $\widetilde{l k}_{i t}$ are $I(0)$, which is consistent with the results given by Bond et al (2010, Table I(b)). ${ }^{9}$

Allowing the slope coefficients to differ across countries, the dynamic specification of the growth equation is adopted from Bond et al. (equation 10):
$\Delta \widetilde{l g d p w}_{i t}=\theta_{1 i}+\theta_{2 i} \widetilde{l k}_{i t}+\theta_{3 i} \Delta \widetilde{l}_{i t}+\theta_{4 i} \Delta \widetilde{l}_{i t-1}+\phi_{1 i} \Delta{\widetilde{l g d p w_{i, t-1}}}_{i}+\phi_{2 i} \Delta{\widetilde{l g d p w_{i, t-2}}}_{i}+u_{i t}$,
$i=1,2, \ldots, N=20$ and $t=1,2, \ldots, T=47$. In line with our notation, this model can be written as $y_{i t}=x_{i t}^{\prime} \beta_{i}+u_{i t}$, where $y_{i t}=\Delta \widetilde{l g d p w}_{i t}, x_{i t}^{\prime}=\left(y_{i t-1}, y_{i t-2}, w_{i t}^{\prime}\right)$ with $w_{i t}^{\prime}=\left(1, \widetilde{l k}_{i t}, \Delta \widetilde{l k}_{i t}, \Delta \widetilde{l k}_{i t-1}\right)$, and $\beta_{i}=\left(\theta_{1 i}, \theta_{2 i}, \theta_{3 i}, \theta_{4 i}, \phi_{1 i}, \phi_{2 i}\right)^{\prime}$.

Firstly, we applied a (time-varying) heteroskedasticity-robust version of Lagrange multiplier (LM) test for error serial correlation for each country regression, as discussed in Godfrey and Tremayne (2005). The test statistic for $m^{t h}$-order serial correlation is defined by

$$
\begin{equation*}
R L M_{T, i}=\hat{u}_{i}^{\prime} \hat{U}_{i}\left(\hat{U}_{i}^{\prime} M_{x i} \hat{\Lambda}_{i} M_{i x} \hat{U}_{i}\right)^{-1} \hat{U}_{i}^{\prime} \hat{u}_{i} \tag{21}
\end{equation*}
$$

where $\hat{u}_{i}=\left(\hat{u}_{i 1}, \hat{u}_{i 2}, \ldots, \hat{u}_{i T}\right)^{\prime}$ is a $(T \times 1)$ residual vector, $\hat{U}_{i}=\left(\hat{u}_{i,-1}, \hat{u}_{i,-2}, \ldots, \hat{u}_{i,-m}\right)$ which is a $(T \times m)$ matrix with $\hat{u}_{i,-\ell}=\left(\hat{u}_{i, 1-\ell}, \hat{u}_{i, 2-\ell}, \ldots, \hat{u}_{i, T-\ell}\right)^{\prime}$ being a $(T \times 1)$ vector but $\hat{u}_{i, t-\ell} \equiv 0$ for $t-\ell<1, \ell=1,2, \ldots, m, M_{i x}=I_{T}-X_{i}\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime}$ with $t^{\text {th }}$ row vector of X_{i} being $x_{i t}^{\prime}$, and $\hat{\Lambda}_{i}=\operatorname{diag}\left(\hat{u}_{i t}^{2}\right)$. Under the null hypothesis of no error serial correlation, $R L M_{T, i}$ is asymptotically distributed as χ_{m}^{2}. The finite sample experimental results in Godfrey and Tremayne (2005) show that the use of asymptotic critical value can

[^7]be unreliable but that recursive resampling wild bootstrap (our WB1) approach is reliable with good control over finite sample significance levels. ${ }^{10}$

We have applied the WB1 bootstrap $R L M_{T, i}$ test for second-order serial correlation ($m=2$) to the model (20) and the results show that the null hypothesis of no error serial correlation cannot be rejected at the 5% significance level for all 20 OECD countries. Therefore, there is no strong evidence against a claim of no error serial correlation for all 20 OECD countries. ${ }^{11}$

[INSERT Table 6 HERE]

Now let us turn our attention to error cross section correlation tests. Table 6 reports the asymptotic and various bootstrap p-values of the tests. As can be seen, the asymptotic $N B P_{N T}$ test rejects the null hypothesis at the 5% level, but our asymptotic $N R B P_{N T}$ test does not. When the bootstrap methods are applied to these tests, both have similar p-values, ranging between 10.7% to 12.8%. Therefore, based on our proposed testing approach, there is no strong evidence of contemporaneous error cross section correlation.

8 Conclusion

The paper has developed heteroskedasticity robust Breusch-Pagan tests for the null hypothesis of zero-cross section correlation in dynamic panel data models under the assumption that the number of time series observations, T, is large relative to the number of cross sections, N, with either N fixed or both N and T large; but not under an assumption cross section independence. The procedures can be employed with fixed, strictly exogenous and/or lagged dependent regressors and are (asymptotically) robust to quite general forms of non-normality and heteroskedasticity, in the error distribution, across both time and cross-section. However, when N / T is not small, the asymptotic tests reveal severe size distortions in line with the qualitative predictions from first order asymptotic theory. Wild bootstrap schemes can be used to improve the finite sample behaviour of the tests, with the recursive-design wild bootstrap scheme performing the best among the bootstrap procedures employed in our Monte Carlo study. By allowing conditional heteroskedasticity with asymmetric errors, these wild bootstrap schemes are all asymptotically valid under less restrictive assumptions than those imposed by, say, Goncalves and Kilian (2004). Across all combinations of error distributions and types of heteroskedasticity, considered in our study, the recursive-design wild bootstrap version of the new robust standardised Breusch-Pagan test ($N R B P_{N T}^{*}$) provides quite reliable finite sample inferences, even when N / T is not small, as hoped would be the case. Furthermore, the $N R B P_{N T}^{*}$ seems to be as powerful as its asymptotic counterpart $N R B P_{N T}$ (except when T is small and N is large, but $N R B P_{N T}$ is severely oversized in this case) under homoskedasticity and therefore there appears to be no penalty attached to using these wild bootstrap schemes even if the errors are homoskedastic. An intetesting feature, perhaps, is that the Breusch-Pagan wild

[^8]bootstrap tests also provide significant improvements over first-order asymptotic theory but appeared less reliable than $N R B P_{N T}^{*}$. Thus the use $N R B P_{T}^{*}$ in conjunction with a recursive-design bootstrap scheme recommends itself as an additional useful test procedure for applied workers.

References

Bai, J. (2009). 'Panel data models with interactive fixed effects', Econometrica, 77(4): 1229-1279.

Baltagi, B., Feng, Q., and Kao, C. (2012). 'A Lagrange multiplier test for cross-sectional dependence in Fixed Effects panel data models', Journal of Econometrics, 170: 164-177.

Bassanini, A., and Scarpetta, S. (2002). 'Does human capital matter for growth in OECD countries? A pooled mean-group approach', Economics Letters, 74(3): 399-405.

Bernstein, D. (2005). Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press.

Bond, S., Leblebicioglu, A., and Schiantarelli, F. (2010). 'Capital accumulation and growth: a new look at the empirical evidence', Journal of Applied Econometrics, 25(7): 10731099.

Breusch, T., and Pagan, A. (1980). 'The Lagrange multiplier test and its applications to model specification in econometrics', The Review of Economic Studies, 47(1): 239-253.

Bühlmann, P. (1995). 'Moving-average representation of autoregressive approximations', Stochastic processes and their applications, 60(2): 331-342.

Cavaliere, G., and Taylor, A. (2008). 'Testing for a change in persistence in the presence of non-stationary volatility', Journal of Econometrics, 147(1): 84-98.

Chudik, A., and Pesaran, M. H. (2015). 'Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors', Journal of Econometrics, 188: 393-420.

Cochran, W. (1952). 'The chisquare test of goodness of fit', Annals of Mathematical Statistics, 23(3): 315-345.

Davidson, R., and Flachaire, E. (2008). 'The wild bootstrap, tamed at last', Journal of Econometrics, 146(1): 162-169.

Frees, E. (1995). 'Assessing cross-sectional correlation in panel data', Journal of Econometrics, 69(2): 393-414.

Godfrey, L., and Tremayne, A. (2005). 'The wild bootstrap and heteroskedasticity-robust tests for serial correlation in dynamic regression models', Computational statistics \mathcal{E} data analysis, 49(2): 377-395.

Godfrey, L., and Yamagata, T. (2011). 'A note on a robust test for error cross-section correlation in panel data models', Mimeo. University of York.

Goncalves, S., and Kilian, L. (2004). 'Bootstrapping autoregressions with conditional heteroskedasticity of unknown form', Journal of Econometrics, 123(1): 89-120.

Hall, P., and Heyde, C. (1980). Martingale limit theory and its application. Academic Press.
Halunga, A. (2005). Misspecification testing when modelling financial time series. PhD thesis, University of Manchester.

Haque, N., Pesaran, M., and Sharma, S. (1999). ‘Neglected heterogeneity and dynamics in cross-country savings regressions', IMF Working paper, WP/99/128.

Im, K., Pesaran, M., and Shin, Y. (2003). 'Testing for unit roots in heterogenous panels', Journal of Econometrics, 115: 53-74.

Juhl, T. (2011). 'A direct test for cross-sectional correlation in panel data models', Mimeo. University of Kansas.

Kuersteiner, G. (2001). 'Optimal instrumental variables estimation for ARMA models', Journal of Econometrics, 104(2): 359-405.

Lima, V., Souza, T., Cribari-Neto, F., and Fernandes, G. (2009). 'HeteroskedasticityRobust Inference in Linear Regressions', Communications in Statistics-Simulation and Computation, 39(1): 194-206.

Liu, R. (1988). 'Bootstrap procedures under some non-iid models', The Annals of Statistics, 16(4): 1696-1708.

Magnus, J., and Neudecker, H. (1999). Matrix differential calculus with applications in statistics and econometrics. Revised edition. Wiley, Chichester, England.

Mammen, E. (1993). 'Bootstrap and wild bootstrap for high dimensional linear models', The Annals of Statistics, 21(1): 255-285.

Moscone, F., and Tosetti, E. (2009). 'A Review and Comparison of Tests of Cross-Section Independence in Panels', Journal of Economic Surveys, 23(3): 528-561.

Pesaran, M. (2004). 'General diagnostic tests for cross section dependence in panels', CESifo Working Paper Series No. 1229; IZA Discussion Paper No. 1240.
(2015). 'Testing weak cross-sectional dependence in large panels', Econometric Reviews, 34: 6-10.

Pesaran, M., and Smith, R. (1995). 'Estimating long-run relationships from dynamic heterogenous panels', Journal of Econometrics, 68: 79-113.

Pesaran, M., Ullah, A., and Yamagata, T. (2008). 'A bias-adjusted LM test of error cross section independence', Econometrics Journal, 11(1): 105-127.

Pesaran, M., and Yamagata, T. (2008). 'Testing slope homogeneity in large panels', Journal of Econometrics, 142: 50-93.

Ramberg, J., Tadikamalla, P., Dudewicz, E., and Mykytka, E. (1979). 'A probability distribution and its uses in fitting data', Technometrics, 21(2): 201-214.

Sarafidis, V., Yamagata, T., and Robertson, D. (2009). 'A test of cross section dependence for a linear dynamic panel model with regressors', Journal of Econometrics, 148(2): 149-161.

Su, L., and Chen, Q. (2013). 'Testing Homogeneity in Panel Data Models with Interactive Fixed Effects', Econometric Theory, 29: 1079-1135.

Swamy, P. (1970). 'Efficient inference in a random coefficient regression model', Econometrica, 38: 311-323.

Weiss, A. (1986). 'Asymptotic theory for ARCH models: estimation and testing', Econometric theory, pp. 107-131.

White, H. (2001). Asymptotic Theory for Econometricians. Academic Press Orlando, Florida.

Wu, C. (1986). 'Jackknife, bootstrap and other resampling methods in regression analysis', The Annals of Statistics, 14(4): 1261-1295.

Zellner, A. (1962). 'An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias', Journal of the American statistical Association, 57(298): 348-368.

Appendix A

In what follows $\|A\|=\sqrt{\sum_{i} \sum_{j} a_{i j}^{2}}$ denotes the Euclidean norm of a matrix $A=\left\{a_{i j}\right\}, \mathbb{N}$ the set of positive integers and $\mu_{\max }(A)\left(\right.$ or $\left.\mu_{\min }(A)\right)$ denotes the largest (or smallest) eigenvalue of a real symmetric matrix A.

Asymptotic Validity of $R B P_{T}$

Proof of Theorem 1. It is shown that $\hat{\gamma}_{i j, T}-\gamma_{i j, T}=o_{p}(1)$ and the result follows.

1. First, define $H_{i}=X_{i}\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime}$. Then,

$$
\sum_{t=1}^{T} \hat{u}_{i t} \hat{u}_{j t}=\sum_{t=1}^{T} u_{i t} u_{j t}-u_{i}^{\prime} H_{i} u_{j}-u_{i}^{\prime} H_{j} u_{j}+u_{i}^{\prime} H_{i} H_{j} u_{j}
$$

It follows from Lemma S. 3 that $u_{i}^{\prime} H_{i} u_{j}, u_{i}^{\prime} H_{j} u_{j}$ and $u_{i}^{\prime} H_{i} H_{j} u_{j}$ are all $O_{p}(1)$ with $T^{-1} X_{i}^{\prime} X_{i}$, in particular, being uniformly positive definite with probability one. Thus $T^{-1 / 2} \sum_{t=1}^{T} \hat{u}_{i t} \hat{u}_{j t}=T^{-1 / 2} \sum_{t=1}^{T} u_{i t} u_{j t}+$ $O_{p}\left(T^{-1 / 2}\right)$.
2. We now show that $\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2}-\frac{1}{T} \sum_{t=1}^{T} u_{i t}^{2} u_{j t}^{2}=o_{p}(1)$, and the result follows. Making the substitution $\hat{u}_{i t}=u_{i t}-x_{i t}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right)$ we get

$$
\hat{u}_{i t}^{2}=u_{i t}^{2}-2 u_{i t} x_{i t}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right)+\left(\hat{\beta}_{i}-\beta_{i}\right)^{\prime} x_{i t} x_{i t}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right),
$$

so that, writing $\delta_{i}=\hat{\beta}_{i}-\beta_{i}=O_{p}\left(T^{-1 / 2}\right)$,

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2}-\frac{1}{T} \sum_{t=1}^{T} u_{i t}^{2} u_{j t}^{2}= & 4 \delta_{i}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} u_{i t} u_{j t} x_{i t} x_{j t}^{\prime}\right) \delta_{j} \\
& -2 \delta_{i}^{\prime} \frac{1}{T} \sum_{t=1}^{T} u_{j t}^{2} u_{i t} x_{i t}-2 \delta_{j}^{\prime} \frac{1}{T} \sum_{t=1}^{T} u_{i t}^{2} u_{j t} x_{j t} \\
& +\delta_{i}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} u_{j t}^{2} x_{i t} x_{i t}^{\prime}\right) \delta_{i}+\delta_{j}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} u_{i t}^{2} x_{j t} x_{j t}^{\prime}\right) \delta_{j} \\
& +\delta_{i}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} x_{i t} x_{i t}^{\prime} \delta_{i} \delta_{j}^{\prime} x_{j t} x_{j t}^{\prime}\right) \delta_{j} \\
& -2 \delta_{i}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} u_{j t} x_{j t}^{\prime} \delta_{j} x_{i t} x_{i t}^{\prime}\right) \delta_{i} \\
& -2 \delta_{j}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} u_{i t} x_{i t}^{\prime} \delta_{i} x_{j t} x_{j t}^{\prime}\right) \delta_{j} \\
= & \sum_{q=1}^{8} R_{q T}, \text { say. }
\end{aligned}
$$

By Markov's inequality, Assumption A2(v), Proposition S.1(a) and repeated application of Cauchy-Schwartz, it can be shown that $R_{q T}=o_{p}(1), q=1, \ldots, 8$, and the result follows.
For example, consider $R_{1 T}=4 \delta_{i}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} u_{i t} u_{j t} x_{i t} x_{j t}^{\prime}\right) \delta_{j}$. By Cauchy-Schwartz

$$
E\left|u_{i t} u_{j t} x_{i t l} x_{j t m}\right| \leq \sqrt{E\left|u_{i t} x_{i t l}\right|^{2} E\left|u_{j t} x_{j t m}\right|^{2}} \leq \Delta<\infty
$$

and $E\left|u_{i t} x_{i t l}\right|^{2} \leq E\left|u_{i t}\right|^{4} E\left|x_{i t l}\right|^{4} \leq \Delta<\infty$, by Assumption A2(v) and Proposition S.1(a). Thus, by Markov's equality, $R_{1 T}=O_{p}\left(T^{-1}\right)$. Similar reasoning gives $R_{q T}=O_{p}\left(T^{-1 / 2}\right), q=2,3$, and $R_{q T}=$ $O_{p}\left(T^{-1}\right)$, for $q=4,5$.
For $R_{6 T}=\delta_{i}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} x_{i t} x_{i t}^{\prime} \delta_{i} \delta_{j}^{\prime} x_{j t} x_{j t}^{\prime}\right) \delta_{j}$, note that $\operatorname{vec}(A B C)=\left(C^{\prime} \otimes A\right) \operatorname{vec}(B)$, yielding

$$
v e c\left(\frac{1}{T} \sum_{t=1}^{T} x_{i t} x_{i t}^{\prime} \delta_{i} \delta_{j}^{\prime} x_{j t} x_{j t}^{\prime}\right)=\frac{1}{T} \sum_{t=1}^{T}\left(x_{j t} x_{j t}^{\prime} \otimes x_{i t} x_{i t}^{\prime}\right) \operatorname{vec}\left(\delta_{i} \delta_{j}^{\prime}\right)
$$

where elements of $\left(x_{j t} x_{j t}^{\prime} \otimes x_{i t} x_{i t}^{\prime}\right)$ are $x_{j t h} x_{j t l} x_{i t m} x_{i t n}$, with

$$
E\left|x_{j t h} x_{j t l} x_{i t m} x_{i t n}\right| \leq \sqrt{E\left|x_{j t h} x_{j t l}\right|^{2} E\left|x_{i t m} x_{i t n}\right|^{2}} \leq \Delta^{2}<\infty
$$

implying that $R_{6 T}=O_{p}\left(T^{-2}\right)$. Again, similar reasoning gives $R_{q T}=O_{p}\left(T^{-3 / 2}\right), q=7,8$, and this completes the proof.
3. We show that $\operatorname{plim}_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T}\left\{u_{i t}^{2} u_{j t}^{2}-E\left[u_{i t}^{2} u_{j t}^{2}\right]\right\}=0$. Note that, with $\tau_{i j t}^{2}=E\left[u_{i t}^{2} u_{j t}^{2} \mid \mathcal{F}_{N T, t-1}\right]$

$$
\frac{1}{T} \sum_{t=1}^{T}\left\{u_{i t}^{2} u_{j t}^{2}-E\left[u_{i t}^{2} u_{j t}^{2}\right]\right\}=\frac{1}{T} \sum_{t=1}^{T}\left\{u_{i t}^{2} u_{j t}^{2}-\tau_{i j t}^{2}\right\}+\frac{1}{T} \sum_{t=1}^{T}\left\{\tau_{i j t}^{2}-E\left[u_{i t}^{2} u_{j t}^{2}\right]\right\}
$$

where the second term is $o_{p}(1)$ by Assumption A4(iii). The first term is $o_{p}(1)$ by a Law of Large Numbers for the heterogeneous m.d.s., $\left\{u_{i t}^{2} u_{j t}^{2}-\tau_{i j t}^{2}, \mathcal{F}_{N T, t}\right\}$, since $E\left|u_{i t}^{2} u_{j t}^{2}\right|^{1+\delta}<\infty$.
Proof of Corollary 1. Since $\hat{\gamma}_{i j, T}-\gamma_{i j, T}=o_{p}(1)$ and $\gamma_{i j, T} \xrightarrow{d} N(0,1), \hat{\gamma}_{i j, T}^{2} \xrightarrow{d} \chi_{1}^{2}$. Furthermore, by asymptotic normality of $\gamma_{i j, T}$, verifying that $E\left[u_{i t} u_{j t} u_{k s} u_{m s}\right]=0$, for pairs $(i, j) \neq(k, m)$ and all t, s establishes the asymptotic independence of the $\hat{\gamma}_{i j, T}$ and the result follows. Firstly, note by Assumption A4(i), $E\left[u_{i t} u_{j t} \mid \mathcal{F}_{N T, t-1}\right]=0$ so we need only consider $t=s$. Now, without loss of generality, we can assume $i<j$ and $k<m$, with $i \leq k<m$ so that $E\left[u_{i t} u_{j t} u_{k t} u_{m t}\right]$ gives the covariance between all possible distinct products $\left\{u_{i t} u_{j t}\right\}, i<j$, and $\left\{u_{k t} u_{m t}\right\}, k<m$. But this is zero by Assumption A4(v) and we are done.

Proof of Lemma 1. Firstly, write

$$
\begin{aligned}
Z_{N T}= & \frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\frac{\frac{1}{T}\left(\sum_{t=1}^{T} u_{i t} u_{j t}\right)^{2}-\frac{1}{T} \sum_{t=1}^{T} u_{i t}^{2} u_{j t}^{2}}{\omega_{i j, T}}\right) \\
& +\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\frac{\frac{1}{T} \sum_{t=1}^{T}\left(u_{i t}^{2} u_{j t}^{2}-E\left[u_{i t}^{2} u_{j t}^{2}\right]\right)}{\omega_{i j, T}}\right) \\
= & 2 \sum_{t=2}^{T} \sum_{s=1}^{t-1} \frac{1}{T} \frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{u_{i t} u_{j t} u_{i s} u_{j s}}{\omega_{i j, T}} \\
& +\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\frac{\frac{1}{T} \sum_{t=1}^{T}\left(u_{i t}^{2} u_{j t}^{2}-E\left[u_{i t}^{2} u_{j t}^{2}\right]\right)}{\omega_{i j, T}}\right) \\
= & Z_{1, N T}+Z_{2, N T}
\end{aligned}
$$

and $Z_{2, N T}=o_{p}(1)$ by Chebyshev's inequality, Proposition S.1(c), Assumptions A4(iv) and B1 because (for T sufficiently large)

$$
\begin{aligned}
\left|Z_{2, N T}\right| & \leq K^{-1} \sqrt{\frac{N(N-1)}{T}} \frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left(u_{i t}^{2} u_{j t}^{2}-E\left[u_{i t}^{2} u_{j t}^{2}\right]\right)\right| \\
& \leq K^{-1} \sqrt{\frac{N(N-1)}{T}} O_{p}(1) \rightarrow 0 .
\end{aligned}
$$

Now, for the first term, $Z_{1, N T}$, we have

$$
Z_{1, N T}=\sum_{t=2}^{T} \sum_{s=1}^{t-1} H_{T}\left(\underline{u}_{t}, \underline{u}_{s}\right)
$$

where $\underline{u}_{t}=\left(u_{1 t}, . ., u_{N t}\right)^{\prime}$ and

$$
H_{T}\left(\underline{u}_{t}, \underline{u}_{s}\right)=2 \frac{1}{T} \frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{u_{i t} u_{j t} u_{i s} u_{j s}}{\omega_{i j, T}}
$$

Let $W_{T t}=\sum_{s=1}^{t-1} H_{T}\left(\underline{u}_{t}, \underline{u}_{s}\right)$ so that

$$
E\left[W_{T t} \mid \mathcal{F}_{N T, t-1}\right]=0 \text { a.s. }
$$

by Assumption A4(i) and thus $W_{T t}$ is a mds array with respect to $\mathcal{F}_{N T, t-1}$.
Therefore, we can apply the CLT martingale difference arrays of Hall and Heyde (1980, Corollary 3.1), where $T=g(N)$ and $(N, T) \rightarrow \infty$. The following conditions for CLT for mds have to be satisfied as $(T, N) \rightarrow \infty$:
(i) $s_{T}^{2} \rightarrow 1$
where

$$
s_{T}^{2}=E\left[\left(\sum_{t=2}^{T} W_{T t}\right)^{2}\right]
$$

(ii) $\left(s_{T}^{2}\right)^{-1} \sum_{t=2}^{T} E\left[W_{T t}^{2} 1\left(\left|W_{T t}\right|>\alpha s_{T}\right) \mid \mathcal{F}_{N T, t-1}\right] \rightarrow 0$ all $\alpha>0$
(iii) $\left(s_{T}^{2}\right)^{-1} V_{T} \rightarrow 1$, where $V_{T}=\sum_{t=2}^{T} E\left[W_{T t}^{2} \mid \mathcal{F}_{N T, t-1}\right]$

Then

$$
Z_{1, N T}=\sum_{t=2}^{T} W_{T t} \xrightarrow{d} N(0,1)
$$

as $(T, N) \rightarrow \infty$.

For (i),

$$
\begin{aligned}
s_{T}^{2} & =E\left[\sum_{t=2}^{T} \sum_{t^{\prime}=2}^{T} W_{T t} W_{T t^{\prime}}\right] \\
& =E\left[\sum_{t=2}^{T} W_{T t}^{2}\right] \\
& =\sum_{t=2}^{T} E\left[\sum_{s=1}^{t-1} \sum_{r=1}^{t-1} H_{T}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r}\right)\right] \\
& =\sum_{t=2}^{T} \sum_{s=1}^{t-1} E\left[H_{T}^{2}\left(\underline{u}_{t}, \underline{u}_{s}\right)\right]+o\left(T^{-1}\right)
\end{aligned}
$$

where the second line follows by the m.d.s. property of $W_{T t}$ and the last line follows since

$$
E\left[H_{T}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r}\right)\right]=\frac{4}{T^{2} N(N-1)} E\left[\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sum_{l=1}^{N-1} \sum_{m=l+1}^{N} \frac{u_{i t} u_{j} t u_{i s} u_{j s}}{\omega_{i j, T}} \frac{u_{l t} u_{m t} u_{l r} u_{m r}}{\omega_{l m, T}}\right]
$$

and for $s \neq r$

$$
\begin{aligned}
E\left[\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sum_{l=1}^{N-1} \sum_{m=l+1}^{N} u_{i t} u_{j t} u_{i s} u_{j s} u_{l t} u_{m t} u_{l r} u_{m r}\right]= & \sum_{i<j} E\left[u_{i t}^{2} u_{j t}^{2} u_{i s} u_{j s} u_{i r} u_{j r}\right] \\
& +\sum_{i<j \neq l<m} E\left[u_{i t} u_{j t} u_{i s} u_{j s} u_{l t} u_{m t} u_{l r} u_{m r}\right] \\
& +3 \sum_{i<j<m} E\left[u_{i t} u_{j t}^{2} u_{i s} u_{j s} u_{m t} u_{j r} u_{m r}\right]
\end{aligned}
$$

where the last two terms are zero by Assumption A4(v), whereas for the first term we can write

$$
\begin{aligned}
& \frac{4}{T^{2} N(N-1)} \sum_{i<j} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} E\left[u_{i t}^{2} u_{j t}^{2} u_{i s} u_{j s} u_{i r} u_{j r}\right] \\
= & \frac{4}{T^{2} N(N-1)} \sum_{i<j} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} E\left[\tau_{i j t}^{2} u_{i s} u_{j s} u_{i r} u_{j r}\right] \\
= & \frac{4}{T^{2} N(N-1)} \sum_{i<j} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} \operatorname{cov}\left(\tau_{i j t}^{2}, u_{i s} u_{j s} u_{i r} u_{j r}\right) \\
& +\frac{4}{T^{2} N(N-1)} \sum_{i<j} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} E\left[\tau_{i j t}^{2}\right] E\left[u_{i s} u_{j s} u_{i r} u_{j r}\right] \\
= & o\left(T^{-1}\right)
\end{aligned}
$$

since for the first term

$$
\begin{aligned}
\left|\frac{1}{N(N-1)} \sum_{i<j} \frac{1}{T} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} \operatorname{cov}\left(\tau_{i j t}^{2}, u_{i s} u_{j s} u_{i r} u_{j r}\right)\right| & \leq C \frac{1}{T} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1}(t-(s \vee r))^{-(1+\delta)} \\
& =C \sum_{m=1}^{t-1} m^{-\delta} \\
& =o(1)
\end{aligned}
$$

by Assumption B2(ii) since $\sum_{m=1}^{\infty} m^{-\delta}<\infty$, whereas for the second term $E\left[u_{i s} u_{j s} u_{i r} u_{j r}\right]=0$ by As-
sumption A4(i) for $s \neq r$ and $i \neq j$. Moreover,

$$
\begin{aligned}
2 \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s=1}^{t-1} E\left[u_{i t}^{2} u_{j t}^{2} u_{i s}^{2} u_{j s}^{2}\right] & =\frac{1}{T^{2}} \sum_{t \neq s} E\left[u_{i t}^{2} u_{j t}^{2} u_{i s}^{2} u_{j s}^{2}\right] \\
& =\frac{1}{T^{2}} \sum_{t \neq s} \operatorname{cov}\left(u_{i t}^{2} u_{j t}^{2}, u_{i s}^{2} u_{j s}^{2}\right)+\frac{1}{T^{2}} \sum_{t \neq s} E\left[u_{i t}^{2} u_{j t}^{2}\right] E\left[u_{i s}^{2} u_{j s}^{2}\right] \\
& =\frac{1}{T^{2}} \sum_{t \neq s} E\left[u_{i t}^{2} u_{j t}^{2}\right] E\left[u_{i s}^{2} u_{j s}^{2}\right]+O\left(T^{-1}\right) \\
& =\omega_{i j T}^{2}+O\left(T^{-1}\right)
\end{aligned}
$$

where the third line follows by Assumption B2(iii) and the last line follows by Assumption A4(iv) and the fact that $T^{-2} \sum_{t=1}^{T}\left(E\left[u_{i t}^{2} u_{j t}^{2}\right]\right)^{2}=O\left(T^{-1}\right)$ by Cauchy-Schwartz inequality and Assumption B2(i). Thus

$$
\begin{aligned}
s_{T}^{2} & =2 \frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\omega_{i j T}^{2}}{\omega_{i j T}^{T}}+O\left(T^{-1}\right) \\
& =1+O\left(T^{-1}\right)
\end{aligned}
$$

To establish (ii) it is sufficient to show that

$$
\begin{equation*}
\left(s_{T}^{2}\right)^{-1-\delta} \sum_{t=2}^{T} E\left|W_{T t}\right|^{2+\delta} \rightarrow 0 \text { as }(T, N) \rightarrow \infty \text { for some } \delta>0 \tag{22}
\end{equation*}
$$

Since $s_{T}^{2}=O(1),(22)$ is established for $\delta=2$ if

$$
\sum_{t=2}^{T} E\left[W_{T t}^{4}\right] \rightarrow 0 \text { as }(T, N) \rightarrow \infty
$$

where

$$
\begin{align*}
E\left[W_{T t}^{4}\right]= & E\left[\left(\sum_{s=1}^{t-1} H_{T}\left(\underline{u}_{t}, \underline{u}_{s}\right)\right)^{4}\right] \\
= & \sum_{s=1}^{t-1} E\left[H_{T}^{4}\left(\underline{u}_{t}, \underline{u}_{s}\right)\right]+3 \sum_{s \neq r}^{t-1} \sum^{t-1} E\left[H_{T}^{2}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}^{2}\left(\underline{u}_{t}, \underline{u}_{r}\right)\right] \\
& +\sum_{s \neq r \neq s^{\prime} \neq r^{\prime}}^{t-1} \sum^{t-1} \sum^{t-1} E\left[H_{T}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{s^{\prime}}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r^{\prime}}\right)\right] \\
& +6 \sum_{s \neq r \neq s^{\prime}}^{t-1} \sum^{t-1} \sum^{t-1} E\left[H_{T}^{2}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{s^{\prime}}\right)\right] \\
& +4 \sum_{s \neq r}^{t-1} \sum^{t-1} E\left[H_{T}^{3}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r}\right)\right] \tag{23}
\end{align*}
$$

The first term in (23) is

$$
\begin{aligned}
E\left[H_{T}^{4}\left(\underline{u}_{t}, \underline{u}_{s}\right)\right] & =16 T^{-4}[(N(N-1))]^{-2} E\left[\left(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{u_{i t} u_{j t} u_{i s} u_{j s}}{\omega_{i j, T}}\right)^{4}\right] \\
& \leq 16 K^{-4} T^{-4}[(N(N-1))]^{-2} E\left[\left(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} u_{i t} u_{j t} u_{i s} u_{j s}\right)^{4}\right]
\end{aligned}
$$

by Assumption A4(iv) and where

$$
\begin{aligned}
& E\left[\left(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} u_{i t} u_{j t} u_{i s} u_{j s}\right)^{4}\right] \\
= & E\left[\sum_{i<j} \sum_{l<m} \sum_{p<q} \sum_{h<n} u_{i t} u_{j t} u_{i s} u_{j s} u_{l t} u_{m t} u_{l s} u_{m s} u_{p t} u_{q t} u_{p s} u_{q s} u_{h t} u_{n t} u_{h s} u_{n s}\right] \\
= & E\left[\sum_{i<j} \sum_{l<m} \sum_{p<q} \sum_{h<n} k_{i j l m p q h n, t} E\left[u_{i s} u_{j s} u_{l s} u_{m s} u_{p s} u_{q s} u_{h s} u_{n s}\right]\right] \\
\leq & \sum_{i<j} \sum_{l<m} \sum_{p<q} \sum_{h<n} \bar{k}_{i j l m p q h n} E\left[u_{i s} u_{j s} u_{l s} u_{m s} u_{p s} u_{q s} u_{h s} u_{n s}\right]
\end{aligned}
$$

Now, since $E\left[u_{i s} u_{j s} u_{l s} u_{m s} u_{p s} u_{q s} u_{h s} u_{n s}\right] \leq \sup _{t} E\left|u_{i t}^{8}\right| \leq \Delta<\infty$ by repeated application of CauchySchwartz inequality and by Assumption B2(i)

$$
\begin{aligned}
E\left[H_{T}^{4}\left(\underline{u}_{t}, \underline{u}_{s}\right)\right] & \leq 16 K^{-4} \Delta T^{-4} N^{-4} \sum_{i<j} \sum_{l<m} \sum_{p<q} \sum_{h<n}\left|\bar{k}_{i j l m p q h n}\right| \\
& =O\left(T^{-4}\right)
\end{aligned}
$$

by Assumptions A4(iv) and B2(iv). For the second term in (23)

$$
\begin{aligned}
E\left[H_{T}^{2}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}^{2}\left(\underline{u}_{t}, \underline{u}_{r}\right)\right] & \leq\left\{E\left[H_{T}^{4}\left(\underline{u}_{t}, \underline{u}_{s}\right)\right] E\left[H_{T}^{4}\left(\underline{u}_{t}, \underline{u}_{r}\right)\right]\right\}^{1 / 2} \\
& =O\left(T^{-4}\right)
\end{aligned}
$$

where the first line follows by Cauchy-Schwartz inequality and the second line by the previous result. By Assumption A4(iv), the third term in (23) can be written further as

$$
\begin{aligned}
& E\left[H_{T}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{s^{\prime}}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r^{\prime}}\right)\right] \\
\leq & 16 K^{-4} \frac{1}{T^{4}} \frac{1}{N^{2}(N-1)^{2}} \sum_{i<j} \sum_{l<m} \sum_{p<q} \sum_{h<n} E\left[u_{i t} u_{j t} u_{i s} u_{j s} u_{l t} u_{m t} u_{l r} u_{m r} u_{p t} u_{q t} u_{p s^{\prime}} u_{q s^{\prime}} u_{h t} u_{n t} u_{h r^{\prime}} u_{n r^{\prime}}\right] \\
\leq & 16 K^{-4} \frac{1}{T^{4}} \frac{1}{N^{2}(N-1)^{2}} \sum_{i<j} \sum_{l<m} \sum_{p<q} \sum_{h<n}\left|\bar{k}_{i j l m p q h n}\right| E\left[u_{i s} u_{j s} u_{l r} u_{m r} u_{p s^{\prime}} u_{q s^{\prime}} u_{h r^{\prime}} u_{n r^{\prime}}\right] \\
= & 0
\end{aligned}
$$

where the last line follows by Assumptions A4(i) and B2(v). Analogously, the fourth term is

$$
\begin{aligned}
& E\left[H_{T}^{2}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{s^{\prime}}\right)\right] \\
\leq & 16 K^{-4} \frac{1}{T^{4}} \frac{1}{N^{2}(N-1)^{2}} \sum_{i<j} \sum_{l<m} \sum_{p<q} \sum_{h<n} E\left[u_{i t} u_{j t} u_{l t} u_{m t} u_{p t} u_{q t} u_{h t} u_{n t} u_{i s} u_{j s} u_{l s} u_{m s} u_{p r} u_{q r} u_{h s^{\prime}} u_{n s^{\prime}}\right] \\
= & 16 K^{-4} \frac{1}{T^{4}} \frac{1}{N^{2}(N-1)^{2}} \sum_{i<j} \sum_{l<m} \sum_{p<q} \bar{k}_{i j l m p q h n} E\left[u_{i s} u_{j s} u_{l s} u_{m s} u_{p r} u_{q r} u_{h s^{\prime}} u_{n s^{\prime}}\right] \\
= & 0
\end{aligned}
$$

where $E\left[u_{i s} u_{j s} u_{l s} u_{m s} u_{p r} u_{q r} u_{h s^{\prime}} u_{n s^{\prime}}\right]=0$ by Assumption A4(i) when $s<\max \left(r, s^{\prime}\right)$, whereas when $s>$ $\max \left(r, s^{\prime}\right)$ and $i=l<j=m \neq p<q$ the expectation is $o\left(T^{-1}\right)$ by Assumptions B2(ii) and Assumption A4(i), otherwise the expectation is zero by Assumption A4(v). The last line then follows by Assumption B2(iv). By Assumption A4(iv), the fifth term in (23) is

$$
\begin{aligned}
& E\left[H_{T}^{3}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r}\right)\right] \\
\leq & 16 K^{-4} \frac{1}{T^{4}} \frac{1}{N^{2}(N-1)^{2}} \sum_{i<j} \sum_{l<m} \sum_{p<q} \sum_{h<n} E\left[u_{i t} u_{j t} u_{l t} u_{m t} u_{p t} u_{q t} u_{h t} u_{n t} u_{i s} u_{j s} u_{l s} u_{m s} u_{p s} u_{q s} u_{h r} u_{n r}\right] \\
= & 16 K^{-4} \frac{1}{T^{4}} \frac{1}{N^{2}(N-1)^{2}} \sum_{i<j} \sum_{l<m} \sum_{p<q} \sum_{h<n} \bar{k}_{i j l m p q h n} E\left[u_{i s} u_{j s} u_{l s} u_{m s} u_{p s} u_{q s} u_{h r} u_{n r}\right] \\
= & O\left(T^{-4}\right)
\end{aligned}
$$

where the third and last line yield by Assumption B2(i), (iv) for $s>r$ since $E\left[u_{i s} u_{j s} u_{l s} u_{m s} u_{p s} u_{q s} u_{h s} u_{n s}\right] \leq$ $\sup _{t, i} E\left|u_{i t}^{8}\right| \leq \Delta<\infty$ by repeated application of Cauchy-Schwartz inequality, whereas for $s<r$, $E\left[u_{i s} u_{j s} u_{l s} u_{m s} u_{p s} u_{q s} u_{h r} u_{n r}\right]=0$ by Assumption A4(i). Thus,

$$
\begin{aligned}
E\left[W_{T t}^{4}\right]= & E\left[\sum_{s=1}^{t-1} H_{T}^{4}\left(\underline{u}_{t}, \underline{u}_{s}\right)\right]+3 \sum_{s=1}^{t-1} \sum_{r=1, s \neq r}^{t-1} E\left[H_{T}^{2}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}^{2}\left(\underline{u}_{t}, \underline{u}_{r}\right)\right] \\
& +4 \sum_{s=1}^{t-1} \sum_{r=1, s \neq r}^{t-1} E\left[H_{T}^{3}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r}\right)\right] \\
= & O\left(T^{-2}\right)
\end{aligned}
$$

which yields that

$$
\left(s_{T}^{2}\right)^{-2} \sum_{t=2}^{T} E\left[W_{T t}^{4}\right]=O\left(T^{-1}\right)
$$

which establishes the result.
(iii) We have

$$
\begin{aligned}
V_{T} & =\sum_{t=2}^{T} E\left[W_{T t}^{2} \mid \mathcal{F}_{N T, t-1}\right] \\
& =\sum_{t=2}^{T} E\left[\sum_{s=1}^{t-1} \sum_{r=1}^{t-1} H_{T}\left(\underline{u}_{t}, \underline{u}_{s}\right) H_{T}\left(\underline{u}_{t}, \underline{u}_{r}\right) \mid \mathcal{F}_{N T, t-1}\right] \\
& =\frac{4}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{\omega_{i j, T}^{2}} \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \sum_{r=1}^{t-1} u_{i s} u_{j s} u_{i r} u_{j r} E\left[u_{i t}^{2} u_{j t}^{2} \mid \mathcal{F}_{N T, t-1}\right]
\end{aligned}
$$

and by the law of iterated expectations and results obtained in (i), $E\left(V_{T}\right)=s_{T}^{2}$. In addition, by moment calculations we show that $E\left(V_{T}^{2}\right)=\left(s_{T}^{2}\right)^{2}+o(1)$. Note that for $s \neq r$

$$
\begin{aligned}
& \sup _{i \neq j} E\left[\left(\frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} u_{i s} u_{j s} u_{i r} u_{j r} E\left[u_{i t}^{2} u_{j t}^{2} \mid \mathcal{F}_{N T, t-1}\right]\right)^{2}\right] \\
= & \sup _{i \neq j} \frac{1}{T^{4}} E\left[\sum_{t=2}^{T} \sum_{s \neq r}^{t-1} u_{i s} u_{j s} u_{i r} u_{j r} \tau_{i j t}^{2} \sum_{t^{\prime}=2}^{T} \sum_{s^{\prime}=1}^{t^{\prime}-1} \sum_{r^{\prime}=1}^{t^{\prime}-1} u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}} \tau_{i j t^{\prime}}^{2}\right] \\
= & \sup _{i \neq j} \frac{1}{T^{4}} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} \sum_{t^{\prime}=2}^{T} \sum_{s^{\prime} \neq r^{\prime}}^{t^{\prime}-1} \operatorname{cov}\left(u_{i s} u_{j s} u_{i r} u_{j r} \tau_{i j t}^{2}, u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}} \tau_{i j t^{\prime}}^{2}\right) \\
& +\sup _{i \neq j} \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} E\left[u_{i s} u_{j s} u_{i r} u_{j r} \tau_{i j t}^{2}\right] \frac{1}{T^{2}} \sum_{t^{\prime}=2}^{T} \sum_{s^{\prime} \neq r^{\prime}}^{t^{\prime}-1} E\left[u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}} \tau_{i j t^{\prime}}^{2}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{cov}\left(u_{i s} u_{j s} u_{i r} u_{j r} \tau_{i j t}^{2}, u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}} \tau_{i j t^{\prime}}^{2}\right)= & E\left[u_{i s} u_{j s} u_{i r} u_{j r}\right] E\left[u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}}\right] \operatorname{cov}\left(\tau_{i j t}^{2}, \tau_{i j t^{\prime}}^{2}\right) \\
& +E\left[u_{i s} u_{j s} u_{i r} u_{j r}\right] E\left[\tau_{i j t^{\prime}}^{2}\right] \operatorname{cov}\left(\tau_{i j t}^{2}, u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}}\right) \\
& +E\left[\tau_{i j t}^{2}\right] E\left[u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}}\right] \operatorname{cov}\left(u_{i s} u_{j s} u_{i r} u_{j r}, \tau_{i j t^{\prime}}^{2}\right) \\
& +E\left[\tau_{i j t}^{2}\right] E\left[\tau_{i j t^{\prime}}^{2}\right] \operatorname{cov}\left(u_{i s} u_{j s} u_{i r} u_{j r}, u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}}\right) \\
& +E\left[u_{i s} u_{j s} u_{i r} u_{j r}\left(\tau_{i j t}^{2}-E\left[u_{i t}^{2} u_{j t}^{2}\right]\right) u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}}\left(\tau_{i j t^{\prime}}^{2}-E\left[u_{i t^{\prime}}^{2} u_{j t^{\prime}}^{2}\right]\right)\right] \\
& +E\left[u_{i s} u_{j s} u_{i r} u_{j r}\right] E\left[\left(\tau_{i j t}^{2}-E\left[u_{i t}^{2} u_{j t}^{2}\right]\right) u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}}\left(\tau_{i j t^{\prime}}^{2}-E\left[u_{i t^{\prime}}^{2} u_{j t^{\prime}}^{2}\right]\right)\right] \\
& +E\left[\tau_{i j t}^{2}-E\left[u_{i t}^{2} u_{j t}^{2}\right]\right] E\left[u_{i s} u_{j s} u_{i r} u_{j r} u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}}\left(\tau_{i j t^{\prime}}^{2}-E\left[u_{i t^{\prime}}^{2} u_{j t^{\prime}}^{2}\right]\right)\right] \\
& +E\left[\tau_{i j t^{\prime}}^{2}-E\left[u_{i t^{\prime}}^{2} u_{j t^{\prime}}^{2}\right]\right] E\left[u_{i s} u_{j s} u_{i r} u_{j r} u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}}\left(\tau_{i j t}^{2}-E\left[u_{i t}^{2} u_{j t}^{2}\right]\right)\right] \\
& -\operatorname{cov}\left(u_{i s} u_{j s} u_{i r} u_{j r}, \tau_{i j t}^{2}\right) \operatorname{cov}\left(u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}}, \tau_{i j t^{\prime}}^{2}\right) \\
= & -\operatorname{cov}\left(u_{i s} u_{j s} u_{i r} u_{j r}, \tau_{i j t}^{2}\right) \operatorname{cov}\left(u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}}, \tau_{i j t^{\prime}}^{2}\right)
\end{aligned}
$$

such that

$$
\begin{aligned}
\sup _{i \neq j} \frac{1}{T^{4}} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} \sum_{t^{\prime}=2}^{T} \sum_{s^{\prime} \neq r^{\prime}}^{t^{\prime}-1} \operatorname{cov}\left(u_{i s} u_{j s} u_{i r} u_{j r} \tau_{i j t}^{2}, u_{i s^{\prime}} u_{j s^{\prime}} u_{i r^{\prime}} u_{j r^{\prime}} \tau_{i j t^{\prime}}^{2}\right) & =-\sup _{i \neq j} \frac{1}{T^{2}} \sum_{m}^{t-1} \sum_{m^{\prime}}^{t^{\prime}-1} m^{-\delta}\left(m^{\prime}\right)^{-\delta} \\
& =o(1)
\end{aligned}
$$

and

$$
\begin{aligned}
\sup _{i \neq j} \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} E\left[u_{i s} u_{j s} u_{i r} u_{j r} \tau_{i j t}^{2}\right]= & \sup _{i \neq j} \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} \operatorname{cov}\left(u_{i s} u_{j s} u_{i r} u_{j r}, \tau_{i j t}^{2}\right) \\
& +\sup _{i \neq j} \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1} E\left[u_{i s} u_{j s} u_{i r} u_{j r}\right] E\left[\tau_{i j t}^{2}\right] \\
= & \sup _{i \neq j} \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s \neq r}^{t-1}(t-(s \vee r))^{-(1+\delta)} \\
= & \sup _{i \neq j} \frac{1}{T} \sum_{m=1}^{t-1} m^{-\delta} \\
= & o(1)
\end{aligned}
$$

by Assumptions A4(v) and B2(ii). Thus, it can be shown that $E\left(V_{T}^{2}\right)=\left(s_{T}^{2}\right)^{2}+o(1)$ which yields that $\operatorname{var}\left(V_{T}\right)=o(1)$, and the result follows.
Proof of Lemma 2. Define

$$
\begin{aligned}
\hat{Z}_{N T}^{\dagger} & =\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\gamma}_{i j, T}^{\dagger 2}-1\right) \\
\hat{\gamma}_{i j, T}^{\dagger} & =\frac{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \hat{u}_{i t} \hat{u}_{j t}}{\sqrt{\omega_{i j, T}}} .
\end{aligned}
$$

then we have

$$
N R B P_{N T}-Z_{N T}=\left(\hat{Z}_{N T}^{\dagger}-Z_{N T}\right)+\left(N R B P_{N T}-\hat{Z}_{N T}^{\dagger}\right)
$$

and we show that:
(i) $\left|\hat{Z}_{N T}^{\dagger}-Z_{N T}\right|=o_{p}(1)$ as $(N, T) \rightarrow \infty$
(ii) $\left|N R B P_{N T}-\hat{Z}_{N T}^{\dagger}\right|=o_{p}(1)$, as $(N, T) \rightarrow \infty$.
(i) Firstly, it can be noted that from Proof of Theorem 1

$$
\hat{\gamma}_{i j, T}^{\dagger}=\gamma_{i j, T}+\frac{1}{\sqrt{\omega_{i j}, T}} \frac{1}{\sqrt{T}} b_{i j, T}=\gamma_{i j, T}+c_{i j, T}, \text { say }
$$

where

$$
\begin{equation*}
b_{i j, T}=u_{i}^{\prime} H_{i} H_{j} u_{j}-u_{i}^{\prime} H_{i} u_{j}-u_{i}^{\prime} H_{j} u_{j}=\sum_{k=1}^{3} a_{i j k, T} \tag{24}
\end{equation*}
$$

and $H_{i}=X_{i}\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime}$ with analogous notation for H_{j}. Thus

$$
\begin{aligned}
\hat{Z}_{N T}^{\dagger}-Z_{N T} & =\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\gamma}_{i j, T}^{\dagger 2}-\gamma_{i j, T}^{2}\right) \\
& =\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} c_{i j, T}^{2}+\frac{2}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \gamma_{i j, T} c_{i j, T} \\
& =A_{1, N T}+A_{2, N T}
\end{aligned}
$$

Since $\inf _{i, j} \omega_{i j, T} \geq K>0$ for T sufficiently large by Assumption A4(iv),

$$
\begin{equation*}
\left|A_{1, N T}\right| \leq K^{-1}\left|\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{T} b_{i j, T}^{2}\right| \tag{25}
\end{equation*}
$$

Consider now $a_{i j 1, T}=u_{i}^{\prime} H_{i} H_{j} u_{j}$ and $\left|a_{i j 1, T}\right|^{2} \leq\left\|H_{i} u_{i}\right\|^{2}\left\|H_{j} u_{j}\right\|^{2}$, where $\left\|H_{i} u_{i}\right\|^{2}=\left|u_{i}^{\prime} H_{i} u_{i}\right|$. Note that

$$
\begin{aligned}
\left|2 \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{T} a_{i j 1, T}^{2}\right| & =\left|\sum_{i=1}^{N} \sum_{j=1, i \neq j}^{N} \frac{1}{T} a_{i j 1, T}^{2}\right| \\
& \leq\left(\frac{1}{\sqrt{T}} \sum_{i=1}^{N}\left\|H_{i} u_{i}\right\|^{2}\right)^{2}
\end{aligned}
$$

Further

$$
\begin{align*}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N}\left\|H_{i} u_{i}\right\|^{2} & =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N}\left|\operatorname{tr}\left(\frac{u_{i}^{\prime} X_{i}}{\sqrt{T}}\left(\frac{X_{i}^{\prime} X_{i}}{T}\right)^{-1} \frac{X_{i}^{\prime} u_{i}}{\sqrt{T}}\right)\right| \\
& \leq\left[\min _{1 \leq i \leq N} \mu_{\min }\left(\frac{X_{i}^{\prime} X_{i}}{T}\right)\right]^{-1} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N}\left|\operatorname{tr}\left(\frac{u_{i}^{\prime} X_{i}}{\sqrt{T}} \frac{X_{i}^{\prime} u_{i}}{\sqrt{T}}\right)\right| \\
& \leq\left[\min _{1 \leq i \leq N} \mu_{\min } E\left(\frac{X_{i}^{\prime} X_{i}}{T}\right)+o_{p}(1)\right]^{-1} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N}\left|\operatorname{tr}\left(\frac{u_{i}^{\prime} X_{i}}{\sqrt{T}} \frac{X_{i}^{\prime} u_{i}}{\sqrt{T}}\right)\right| \\
& =O_{p}(1) \frac{1}{\sqrt{N T}} \sum_{i=1}^{N}\left\|\frac{X_{i}^{\prime} u_{i}}{\sqrt{T}}\right\|^{2} \\
& =O_{p}\left(N^{1 / 2} T^{-1 / 2}\right) \tag{26}
\end{align*}
$$

where the second line follows given that $\operatorname{tr}(A B) \leq \mu_{\max }(A) \operatorname{tr}(B)$; see Bernstein (2005), for any symmetric matrix A and positive semi-definite matrix B. Further, the fourth line in (26) follows since from Lemma S.3(b) $E\left(\frac{X_{i}^{\prime} X_{i}}{T}\right)$ is uniformly positive definite and thus $\min _{1 \leq i \leq N} \mu_{\min } E\left(\frac{X_{i}^{\prime} X_{i}}{T}\right) \geq c_{X}$ a.s. for some $c_{X}>0$, and the last line yields since $\frac{1}{\sqrt{N T}} \sum_{i=1}^{N}\left\|\frac{X_{i}^{\prime} u_{i}}{\sqrt{T}}\right\|^{2}=O_{p}\left(N^{1 / 2} T^{-1 / 2}\right)$ by Markov's inequality given that $E\left\|\frac{X_{i}^{\prime} u_{i}}{\sqrt{T}}\right\|^{2} \leq \Delta<\infty$ uniformly in i. Thus, $\left|\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{T} a_{i j 1, T}^{2}\right|=O_{p}\left(N T^{-1}\right)$. Similar arguments hold for $a_{i j 2, T}$ and $a_{i j 3, T}$. Thus, it is established that $\left|A_{1, N T}\right|=O_{p}\left(N T^{-1}\right)$.
Now consider

$$
\begin{aligned}
\left|A_{2, N T}\right| & =\left|\frac{2}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \gamma_{i j, T} c_{i j, T}\right| \\
& \leq 2 \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \gamma_{i j, T}^{2} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} c_{i j, T}^{2}}
\end{aligned}
$$

where $\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \gamma_{i j, T}^{2}=O_{p}(1)$ by Markov's inequality since $E\left|\gamma_{i j, T}^{2}\right| \leq \Delta<\infty$ uniformly in i and j. Moreover, from the above, $\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} c_{i j, T}^{2}=O_{p}\left(N^{2} T^{-1}\right)$. Therefore, $\left|A_{2, N T}\right|=O_{p}\left(N T^{-1 / 2}\right)$. Hence, $\left|\hat{Z}_{N T}^{\dagger}-Z_{N T}\right|=O_{p}\left(N T^{-1 / 2}\right)=o_{p}(1)$ by Assumption B1.
(ii) Defining $\hat{\omega}_{i j, T}=\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2}$, we have

$$
\begin{aligned}
\left|R B P_{N T}-\hat{Z}_{N T}^{\dagger}\right| & =\left|\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\gamma}_{i j, T}^{2}-\hat{\gamma}_{i j, T}^{\dagger 2}\right)\right| \\
& \leq\left|\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\gamma}_{i j, T}^{2}\left(1-\frac{\omega_{i j, T}}{\hat{\omega}_{i j, T}}\right)\right| \\
& \leq K^{-1} \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\gamma}_{i j, T}^{4} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\omega}_{i j, T}-\omega_{i j, T}\right)^{2}}
\end{aligned}
$$

since for T sufficiently large inf $\hat{\omega}_{i j, T} \geq K>0$ a.s. By Markov's inequality and Corollary $1, \frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\gamma}_{i j, T}^{4}=$ $O_{p}(1)$. Moreover,

$$
\begin{aligned}
\sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\omega}_{i j, T}-\omega_{i j, T}\right)^{2}= & N(N-1)\left\{\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left[\frac{1}{T} \sum_{t=1}^{T}\left(\hat{u}_{i t}^{2} \hat{u}_{j t}^{2}-u_{i t}^{2} u_{j t}^{2}\right)\right]^{2}\right. \\
& \left.+\frac{1}{T} \frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left[\frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left(u_{i t}^{2} u_{j t}^{2}-\omega_{i j, T}\right)\right]^{2}\right\} \\
= & O\left(N^{2}\right)\left[B_{1, N T}+B_{2, N T}\right]
\end{aligned}
$$

By Markov's inequality and Proposition S.1(c), $B_{2, N T}=O_{p}\left(T^{-1}\right)$. Moreover, from the proof of Theorem $1, B_{1, N T}$ can be written as

$$
\begin{aligned}
B_{1, N T} & =\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left[\sum_{q=1}^{8} R_{q i j T}\right]^{2} \\
& \leq 8 \sum_{q=1}^{8}\left\{\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} R_{q i j T}^{2}\right\} \\
& =8 \sum_{q=1}^{8} B_{1, N T}^{q}
\end{aligned}
$$

where the second line follows by the c_{r} inequality, and $R_{q i j T}$ for $q=1, . ., 8$ are defined in Theorem 1 , where, for example,

$$
\begin{aligned}
R_{1 i j T} & =4 \delta_{i}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} u_{i t} u_{j t} x_{i t} x_{j t}^{\prime}\right) \delta_{j} \\
& =4 t r\left(\delta_{i}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} u_{i t} u_{j t} x_{i t} x_{j t}^{\prime}\right) \delta_{j}\right) \\
& \leq 4 \max _{1 \leq i \leq N}\left\|\delta_{i}\right\|^{2}\left\|\frac{1}{T} \sum_{t=1}^{T} u_{i t} u_{j t} x_{i t} x_{j t}^{\prime}\right\|
\end{aligned}
$$

Now

$$
\begin{align*}
\max _{1 \leq i \leq N}\left\|\delta_{i}\right\| & \leq T^{-1 / 2}\left[\min _{1 \leq i \leq N} \mu_{\min } E\left(\frac{X_{i}^{\prime} X_{i}}{T}\right)+o_{p}(1)\right]^{-1} \max _{1 \leq i \leq N}\left\|\frac{X_{i}^{\prime} u_{i}}{\sqrt{T}}\right\| \\
& =o_{p}\left(N^{1 / 4} T^{-1 / 2}\right) \tag{27}
\end{align*}
$$

where $\max _{1 \leq i \leq N}\left\|\frac{X_{i}^{\prime} u_{i}}{\sqrt{T}}\right\|=o_{p}\left(N^{1 / 4}\right)$ by Lemma S. 7 since $\max _{1 \leq i \leq N} E\left\|\frac{X_{i}^{\prime} u_{i}}{\sqrt{T}}\right\|^{4} \leq \Delta<\infty$. Thus

$$
\begin{aligned}
B_{1, N T}^{1} & =\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} R_{1 i j T}^{2} \\
& \leq 16 \max _{1 \leq i \leq N}\left\|\delta_{i}\right\|^{4} \frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left\|\frac{1}{T} \sum_{t=1}^{T} u_{i t} u_{j t} x_{i t} x_{j t}^{\prime}\right\|^{2} \\
& =o_{p}\left(N T^{-2}\right) O_{p}\left(T^{-1}\right) \\
& =o_{p}\left(N T^{-3}\right)
\end{aligned}
$$

since $E\left[\left(\frac{1}{T} \sum_{t=1}^{T} u_{i t} u_{j t} x_{i t l} x_{j t m}\right)^{2}\right]=O\left(T^{-1}\right)$ by our Assumptions and applying Markov's inequality yields $\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left\|\frac{1}{T} \sum_{t=1}^{T} u_{i t} u_{j t} x_{i t} x_{j t}^{\prime}\right\|^{2}=O_{p}\left(T^{-1}\right)$. For the second term in $B_{1, N T}$, we have
that

$$
\begin{aligned}
B_{1, N T}^{2} & \leq 4 \max _{1 \leq i \leq N}\left\|\delta_{i}\right\|^{2} \frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left\|\frac{1}{T} \sum_{t=1}^{T} u_{j t}^{2} u_{i t} x_{i t}\right\|^{2} \\
& =o_{p}\left(N^{1 / 2} T^{-1}\right) O_{p}\left(T^{-1}\right) \\
& =o_{p}\left(N^{1 / 2} T^{-2}\right)
\end{aligned}
$$

where $\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left\|\frac{1}{T} \sum_{t=1}^{T} u_{j t}^{2} u_{i t} x_{i t}\right\|^{2}=O_{p}\left(T^{-1}\right)$ by Markov's inequality since $E\left\|\frac{1}{T} \sum_{t=1}^{T} u_{j t}^{2} u_{i t} x_{i t}\right\|^{2}=$ $O\left(T^{-1}\right)$ by Assumptions B2(iii), B2(i) and A2(iv). Similarly, $B_{1, N T}^{3}=o_{p}\left(N^{1 / 2} T^{-2}\right)$. By our Assumptions, $B_{1, N T}^{q}=o_{p}\left(N T^{-2}\right)$ for $q=4,5 ; B_{1, N T}^{6}=o_{p}\left(N^{2} T^{-4}\right)$ and $B_{1, N T}^{q}=o_{p}\left(N^{3 / 2} T^{-4}\right)$ for $q=7,8$. Thus, $B_{1, N T}=o_{p}\left(N T^{-2}\right)$ and it follows that $\left|R B P_{N T}-\hat{Z}_{N T}^{\dagger}\right|=O_{p}\left(N \sqrt{\max \left(N T^{-2}, T^{-1}\right)}\right)=o_{p}(1)$ by Assumption B1.

Asymptotic Validity of the Wild Bootstrap

We verify this for the recursive wild bootstrap scheme (WB1) only and, following Davidson and Flachaire (2008), with $u_{i t}^{*}=\varepsilon_{i t} \hat{u}_{i t}$ where the $\varepsilon_{i t}$ are i.i.d for all i and t taking the discrete values ± 1 with an equal probability of 0.5 . With slight amendments, the proofs remain valid for any $\varepsilon_{i t}$ which are i.i.d mean zero and unit variance and the derivations for the other two bootstrap schemes are straightforward.

The proof of the asymptotic validity for the wild bootstrap procedures for the heteroskedasticity robust statistic $N R B P_{N T}$ in Theorem 3 is based on the following lemmas, since $N R B P_{N T}$ has an asymptotic standard normal distribution as established in Theorem 2.

Lemma 3 Under Assumptions A1-A4(i) and (iv) combined with/or strengthened by Assumptions B2(i) and B3 as $(N, T) \xrightarrow{j} \infty$

$$
\begin{align*}
Z_{N T}^{*}= & \frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\gamma_{i j, T}^{* 2}-1\right) \tag{28}\\
= & \frac{1}{\sqrt{\frac{1}{2} N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\frac{\gamma_{i j, T}^{* 2}-1}{\sqrt{2}}\right) \\
& \xrightarrow{d^{*}} N(0,1),
\end{align*}
$$

where

$$
\gamma_{i j, T}^{*}=\frac{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{i t}^{*} u_{j t}^{*}}{\sqrt{\omega_{i j, T}^{*}}}
$$

with $\omega_{i j, T}^{*}=\frac{1}{T} \sum_{t=1}^{T} u_{i t}^{* 2} u_{j t}^{* 2}=\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2}$ by construction of the wild bootstrap errors using the Rademacher distribution and notice that $E^{*}\left[\gamma_{i j, T}^{* 2}-1\right]=0$.

Lemma 4 Under Assumptions A1-A4 combined with Assumption B1

$$
N R B P_{N T}^{*}=Z_{N T}^{*}+o_{p *}(1)
$$

as $(N, T) \rightarrow \infty, N^{2} / T \rightarrow 0$ for the wild bootstrap designs WB1 and WB2. For the wild bootstrap design WB3, the limiting distribution of $N R B P_{N T}^{*}$ follows directly from Lemma 3 since $N R B P_{N T}^{*}=Z_{N T}^{*}$.

Corresponding results apply for the wild bootstrap procedure based on the statistic $N B P_{N T}$. Specifically, $\hat{\rho}_{i j}=\sqrt{v_{T}^{i j}} \hat{\gamma}_{i j, T}+o_{p}(1)$ where (the scalar)

$$
v_{T}^{i j}=\frac{\frac{1}{T} \sum_{t=1}^{T} E\left[u_{i t}^{2} u_{j t}^{2}\right]}{\frac{1}{T} \sum_{t=1}^{T} E\left[u_{i t}^{2}\right] \frac{1}{T} \sum_{t=1}^{T} E\left[u_{j t}^{2}\right]}=O(1)
$$

and is strictly positive for T sufficiently large, by Assumptions A3(ii) and A4(iv). Furthermore, for $\hat{\rho}_{i j}^{*}$ defined at (10), and by Lemma S. 9 (c) in the Suppplementary Appendix, it is also true that $\hat{\rho}_{i j}^{*}=$
$\sqrt{v_{T}^{i j}} \gamma_{i j}^{*}+o_{p^{*}}(1)$, in probability, since by the Davidson and Flachaire (2008) wild bootstrap scheme, $u_{i t}^{* 2}=\hat{u}_{i t}^{2}$. Therefore, the result for $N B P_{N T}^{*}$ in Theorem 3 follows from the following analysis for $N R B P_{N T}^{*}$.

In what follows, let $\mathcal{F}_{N T, t}^{*}$ be the sigma field generated by current and lagged values of $\varepsilon_{i t}$ in the bootstrap sample (i.e., $\left\{\varepsilon_{i, t-p}\right\}, i=1, \ldots, N, p=0,1,2, \ldots, t-1$).
Proof of Lemma 3. Firstly write

$$
\begin{aligned}
Z_{N T}^{*}= & 2 \frac{1}{T} \frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \frac{u_{i t}^{*} u_{j t}^{*} u_{i s}^{*} u_{j s}^{*}}{\omega_{i j, T}^{*}} \\
& +\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\frac{\frac{1}{T} \sum_{t=1}^{T} u_{i t}^{* 2} u_{j t}^{* 2}}{\omega_{i j, T}^{*}}-1\right) \\
= & Z_{1, N T}^{*}+Z_{2, N T}^{*}
\end{aligned}
$$

For the second term, using the Rademacher distribution for generating the bootstrap errors, $\frac{1}{T} \sum_{t=1}^{T} u_{i t}^{* 2} u_{j t}^{* 2}=$ $\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2}$ and thus $Z_{2, N T}^{*}=0$.
Consider now the first term

$$
\begin{aligned}
Z_{1, N T}^{*} & =\sum_{t=2}^{T} \sum_{s=1}^{t-1} H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right) \\
& =\sum_{t=2}^{T} W_{T_{t}}^{*}
\end{aligned}
$$

where $\underline{u}_{t}^{*}=\left(u_{1 t}^{*}, \ldots, u_{N t}^{*}\right)^{\prime}$ and

$$
H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right)=2 \frac{1}{T} \frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{u_{i t}^{*} u_{j}^{*} u_{i s}^{*} u_{j s}^{*}}{\omega_{i j, T}^{*}} .
$$

Note that $E^{*}\left[W_{T t}^{*} \mid \mathcal{F}_{N T, t-1}^{*}\right]=E^{*}\left[W_{T t}^{*}\right]=0$ due to (conditional) independence where $E^{*}[\cdot]$ denotes the expectation induced by the wild bootstrap conditional on the sample data. Therefore, we apply the CLT theorem for U-statistic for (conditionally) independent but heterogenous data, for which it suffices to check as $(T, N) \rightarrow \infty$:
(i) $s_{T}^{* 2} \rightarrow 1$, where

$$
s_{T}^{* 2}=E^{*}\left[\left(\sum_{t=2}^{T} W_{T t}^{*}\right)^{2}\right]
$$

(ii) $s_{T}^{*-2} \sum_{t=2}^{T} E^{*}\left[W_{T t}^{* 2} 1\left(\left|W_{T t}^{*}\right|>\delta s_{T}^{*}\right) \mid \mathcal{F}_{N T, t-1}^{*}\right] \rightarrow 0$ for all $\delta>0$ Then

$$
Z_{1, N T}^{*}=\sum_{t=2}^{T} W_{T t}^{*} \xrightarrow{d} N(0,1)
$$

as $(T, N) \rightarrow \infty$.
For (i),

$$
\begin{aligned}
s_{T}^{* 2} & =E^{*}\left[\sum_{t=2}^{T} \sum_{t^{\prime}=2}^{T} W_{T t}^{*} W_{T t^{\prime}}^{*}\right] \\
& =E^{*}\left[\sum_{t=2}^{T} W_{T t}^{* 2}\right] \\
& =\sum_{t=2}^{T} E^{*}\left[\sum_{s=1}^{t-1} \sum_{r=1}^{t-1} H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right) H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{r}^{*}\right)\right] \\
& =\sum_{t=2}^{T} \sum_{s=1}^{t-1} E^{*}\left[H_{T}^{* 2}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right)\right]
\end{aligned}
$$

where the second and third lines follow by m.d.s. and conditional independence of the bootstrap and the last line follows since

$$
E^{*}\left[H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right) H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{r}^{*}\right)\right]=\frac{4}{T^{2} N(N-1)} E^{*}\left[\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sum_{l=1}^{N-1} \sum_{m=l+1}^{N} \frac{u_{i t}^{*} u_{j}^{*} u_{i s}^{*} u_{j s}^{*}}{\omega_{i j, T}^{*}} \frac{u_{l t}^{*} u_{m t}^{*} u_{l r}^{*} u_{m r}^{*}}{\omega_{l m, T}^{*}}\right]
$$

and for $s \neq r$

$$
\begin{aligned}
E^{*}\left[\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sum_{l=1}^{N-1} \sum_{m=l+1}^{N} u_{i t}^{*} u_{j t}^{*} u_{i s}^{*} u_{j s}^{*} u_{l t}^{*} u_{m t}^{*} u_{l r}^{*} u_{m r}^{*}\right]= & \sum_{i=l \neq j=m} E^{*}\left[u_{i t}^{* 2} u_{j t}^{* 2} u_{i s}^{*} u_{j s}^{*} u_{i r}^{*} u_{j r}^{*}\right] \\
& +\sum_{i \neq j \neq l \neq m} E^{*}\left[u_{i t}^{*} u_{j t}^{*} u_{i s}^{*} u_{j s}^{*} u_{l t}^{*} u_{m t}^{*} u_{l r}^{*} u_{m r}^{*}\right] \\
& +3 \sum_{i \neq j=l \neq m} E^{*}\left[u_{i t}^{*} u_{j t}^{* 2} u_{i s}^{*} u_{j s}^{*} u_{m t}^{*} u_{j r}^{*} u_{m r}^{*}\right] \\
= & 0
\end{aligned}
$$

by conditional independence and construction of the bootstrap. Thus

$$
\begin{aligned}
s_{T}^{* 2} & =\frac{4}{T^{2} N(N-1)} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{E^{*}\left[u_{i t}^{* 2} u_{j t}^{* 2} u_{i s}^{* 2} u_{j s}^{* 2}\right]}{\omega_{i j, T}^{* 2}} \\
& =\frac{4}{T^{2} N(N-1)} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\hat{u}_{i t}^{2} \hat{u}_{j t}^{2} \hat{u}_{i s}^{2} \hat{u}_{j s}^{2}}{\omega_{i j, T}^{* 2}}
\end{aligned}
$$

and we can write further that

$$
2 \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2} \hat{u}_{i s}^{2} \hat{u}_{j s}^{2}=\frac{1}{T^{2}}\left(\sum_{t=1}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2}\right)^{2}-\frac{1}{T^{2}} \sum_{t=1}^{T} \hat{u}_{i t}^{4} \hat{u}_{j t}^{4}
$$

Now $\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{4} \hat{u}_{j t}^{4}=O_{p}(1)$, by Cauchy-Schwartz inequality and Assumption B2(i), since $\hat{u}_{i t}=u_{i t}-$ $x_{i t}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right)$. Specifically

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{4} \hat{u}_{j t}^{4} & \leq \sqrt{\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{8} \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{j t}^{8}} \\
& =O_{p}(1)
\end{aligned}
$$

by Assumption B2(i) and B3 following arguments in (35) for $q=8$. Therefore

$$
\begin{aligned}
2 \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2} \hat{u}_{i s}^{2} \hat{u}_{j s}^{2} & =\left(\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2}\right)^{2}+O_{p}\left(T^{-1}\right) \\
& =\omega_{i j, T}^{* 2}+O_{p}\left(T^{-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
s_{T}^{* 2} & =\frac{2}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\omega_{i j, T}^{* 2}}{\omega_{i j, T}^{* 2}}+O_{p}\left(T^{-1}\right) \\
& =1+o_{p}(1) .
\end{aligned}
$$

To establish (ii) it is sufficient to show that $\sum_{t=2}^{T} E^{*}\left[W_{T t}^{* 4}\right]=o_{p}(1)$, where

$$
\begin{align*}
E^{*}\left[W_{T t}^{* 4}\right]= & E^{*}\left[\left(\sum_{s=1}^{t-1} H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right)\right)^{4}\right] \\
= & \sum_{s=1}^{t-1} E^{*}\left[H_{T}^{* 4}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right)\right]+3 \sum_{s \neq r}^{t-1} \sum^{t-1} E^{*}\left[H_{T}^{* 2}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right) H_{T}^{* 2}\left(\underline{u}_{t}^{*}, \underline{u}_{r}^{*}\right)\right] \\
& +\sum_{s \neq r \neq s^{\prime} \neq r^{\prime}}^{t-1} \sum^{t-1} \sum^{t-1} \sum^{t-1} E^{*}\left[H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right) H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{r}^{*}\right) H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{s^{\prime}}^{*}\right) H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{r^{\prime}}^{*}\right)\right] \\
& +6 \sum_{s \neq r}^{t-1} \sum^{t-1} \sum^{t-1} E^{*}\left[H_{T}^{* 2}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right) H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{r}^{*}\right) H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{s^{\prime}}^{*}\right)\right] \\
& +4 \sum_{s \neq r}^{t-1} \sum^{t-1} E^{*}\left[H_{T}^{* 3}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right) H_{T}^{*}\left(\underline{u}_{t}^{*}, \underline{u}_{r}^{*}\right)\right] . \tag{29}
\end{align*}
$$

The first term in (29) is

$$
E^{*}\left[H_{T}^{* 4}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right)\right]=16 T^{-4}[(N(N-1))]^{-2} E^{*}\left[\left(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{u_{i t}^{*} u_{j t}^{*} u_{i s}^{*} u_{j s}^{*}}{\omega_{i j, T}^{*}}\right)^{4}\right]
$$

where

$$
\begin{aligned}
& E^{*}\left[\left(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} u_{i t}^{*} u_{j t}^{*} u_{i s}^{*} u_{j s}^{*}\right)^{4}\right] \\
= & E^{*}\left[\sum_{i<j} \sum_{l<m} \sum_{p<q} \sum_{h<n} u_{i t}^{*} u_{j t}^{*} u_{i s}^{*} u_{j s}^{*} u_{l t}^{*} u_{m t}^{*} u_{l s}^{*} u_{m s}^{*} u_{p t}^{*} u_{q t}^{*} u_{p s}^{*} u_{q s}^{*} u_{h t}^{*} u_{n t}^{*} u_{h s}^{*} u_{n s}^{*}\right] \\
= & \sum_{i<j} \hat{u}_{i t}^{4} \hat{u}_{j t}^{4} \hat{u}_{i s}^{4} \hat{u}_{j s}^{4}+\sum_{i<j} \sum_{l<m} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2} \hat{u}_{i s}^{2} \hat{u}_{j s}^{2} \hat{u}_{l t}^{2} \hat{u}_{m t}^{2} \hat{u}_{l s}^{2} \hat{u}_{m s}^{2}
\end{aligned}
$$

For the second term in (29)

$$
E^{*}\left[H_{T}^{* 2}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right) H_{T}^{* 2}\left(\underline{u}_{t}^{*}, \underline{u}_{r}^{*}\right)\right] \leq\left\{E^{*}\left[H_{T}^{* 4}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right)\right] E^{*}\left[H_{T}^{* 4}\left(\underline{u}_{t}^{*}, \underline{u}_{r}^{*}\right)\right]\right\}^{1 / 2}
$$

where the first line follows by Cauchy-Schwartz inequality whereas the second line by the previous result. The other terms in (29) are zero by the conditional independence and construction of the bootstrap errors. Since for T sufficiently large $\inf _{i, f} \omega_{i j, T}^{*} \geq K>0$, letting $C=48 K^{-4}$

$$
\begin{aligned}
\sum_{t=2}^{T} E^{*}\left[W_{T t}^{* 4}\right] \leq & C T \sum_{t=2}^{T} \sum_{s=1}^{t-1} E^{*}\left[H_{T}^{* 4}\left(\underline{u}_{t}^{*}, \underline{u}_{s}^{*}\right)\right] \\
= & C N^{-2}(N-1)^{-2} \sum_{i<j} T^{-3} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \hat{u}_{i t}^{4} \hat{u}_{j t}^{4} \hat{u}_{i s}^{4} \hat{u}_{j s}^{4} \\
& +C N^{-2}(N-1)^{-2} \sum_{i<j} \sum_{l<m} T^{-3} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2} \hat{u}_{i s}^{2} \hat{u}_{j s}^{2} \hat{u}_{l t}^{2} \hat{u}_{m t}^{2} \hat{u}_{l s}^{2} \hat{u}_{m s}^{2} \\
= & R_{1, N T}+R_{2, N T}
\end{aligned}
$$

where

$$
\begin{aligned}
R_{1, N T} & \leq C \frac{1}{2} \frac{1}{N^{2}(N-1)^{2}} \sum_{i<j} \frac{1}{T}\left(\frac{1}{T} \sum_{t=2}^{T} \hat{u}_{i t}^{4} \hat{u}_{j t}^{4}\right)^{2} \\
& =O_{p}\left(N^{-2} T^{-1}\right)
\end{aligned}
$$

since $\frac{1}{T} \sum_{t=2}^{T} \hat{u}_{i t}^{4} \hat{u}_{j t}^{4}=O_{p}(1)$ as established previously. Furthermore

$$
\begin{aligned}
R_{2, N T} & \leq C \frac{1}{2} \frac{1}{N^{2}(N-1)^{2}} \sum_{i<j} \sum_{l<m} \frac{1}{T}\left(\frac{1}{T} \sum_{t=2}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2} \hat{u}_{l t}^{2} \hat{u}_{m t}^{2}\right)^{2} \\
& \leq \frac{1}{2} \frac{1}{N^{2}(N-1)^{2}} \sum_{i<j} \sum_{l<m} \frac{1}{T}\left(\frac{1}{T} \sum_{t=2}^{T} \hat{u}_{i t}^{4} \hat{u}_{j t}^{4}\right)\left(\frac{1}{T} \sum_{t=2}^{T} \hat{u}_{l t}^{4} \hat{u}_{m t}^{4}\right) \\
& =O_{p}\left(T^{-1}\right)
\end{aligned}
$$

juwhere the second line follows by the Cauchy-Schwartz inequality. Therefore, condition (ii) holds as $(N, T) \rightarrow \infty$.
Proof of Lemma 4. Secondly, for the wild bootstrap designs WB1 and WB2 in order to establish that

$$
N R B P_{N T}^{*}=Z_{N T}^{*}+o_{p}(1)
$$

as $(N, T) \rightarrow \infty, N^{2} / T \rightarrow 0$ for, we show that
(i) $\left|\tilde{Z}_{N T}^{*}-Z_{N T}^{*}\right|=o_{p^{*}}(1)$, in probability as $(N, T) \rightarrow \infty$, where

$$
\begin{aligned}
\tilde{Z}_{N T}^{*} & =\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\tilde{\gamma}_{i j, T}^{* 2}-1\right) \\
\tilde{\gamma}_{i j, T}^{*} & =\frac{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \hat{u}_{i t}^{*} \hat{u}_{j t}^{*}}{\sqrt{\omega_{i j, T}^{*}}}
\end{aligned}
$$

(ii) $\left|N R B P_{N T}^{*}-\tilde{Z}_{N T}^{*}\right|=o_{p^{*}}(1)$, in probability as $(N, T) \rightarrow \infty$.

For (i), similar to the first-order asymptotic analysis, define

$$
\tilde{\gamma}_{i j}^{*}=\gamma_{i j, T}^{*}+\frac{1}{\sqrt{\hat{\omega}_{i j, T}}} \frac{1}{\sqrt{T}} b_{i j, T}^{*}=\gamma_{i j, T}^{*}+c_{i j, T}^{*}, \text { say }
$$

where note that $\omega_{i j, T}^{*}=\hat{\omega}_{i j, T}=\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t}^{2} \hat{u}_{j t}^{2}$ and

$$
\begin{equation*}
b_{i j, T}^{*}=u_{i}^{* \prime} H_{i}^{*} H_{j}^{*} u_{j}^{*}-u_{i}^{* \prime} H_{i}^{*} u_{j}^{*}-u_{i}^{* \prime} H_{j}^{*} u_{j}^{*}=\sum_{k=1}^{3} a_{i j k, T}^{*} \tag{30}
\end{equation*}
$$

where $H_{i}^{*}=X_{i}^{*}\left(X_{i}^{* \prime} X_{i}^{*}\right)^{-1} X_{i}^{* \prime}, X_{i}^{*}$ has rows $x_{i t}^{*}$, with $u_{i}^{*}=\left(u_{i 1}^{*}, \ldots, u_{i T}^{*}\right)^{\prime}$ and note that Lemma 8 and Assumption A3(i), ensures that $\left(X_{i}^{*} X_{i}^{*} / T\right)^{-1}$ exists for sufficiently large T and is $O_{p^{*}}$ (1), in probability. Further, since for T sufficiently large $\min _{i, j} \hat{\omega}_{i j, T} \geq K>0$, similarly as in the proof of Lemma 2 , it can be established that

$$
\begin{aligned}
\left|A_{1, N T}^{*}\right| & =\left|\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{T} a_{i j, T}^{* 2}\right| \leq K^{-1}\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N}\left|u_{i}^{* \prime} H_{i}^{*} u_{i}^{*}\right|\right)^{2} \\
& =O_{p}^{*}\left(N T^{-1}\right)
\end{aligned}
$$

Similar arguments hold for $a_{i j 2, T}^{*}$ and $a_{i j 3, T}^{*}$. Moreover

$$
\begin{aligned}
\left|A_{2, N T}^{*}\right| & =\left|\frac{2}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \gamma_{i j, T}^{*} c_{i j, T}^{*}\right| \\
& \leq 2 \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \gamma_{i j, T}^{* 2} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} c_{i j, T}^{* 2}}
\end{aligned}
$$

where $\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \gamma_{i j, T}^{* 2}=O_{p}^{*}(1)$,in probability by Markov's inequality since $E^{*}\left|\gamma_{i j, T}^{* 2}\right|=$ $O_{p}^{*}(1)$, in probability uniformly in i and j. Moreover, from the above, $\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} c_{i j, T}^{* 2}=O_{p}^{*}\left(N^{2} T^{-1}\right)$. Therefore, $\left|A_{2, N T}^{*}\right|=O_{p}^{*}\left(N T^{-1 / 2}\right)=o_{p}^{*}(1)$, in probability.
Now for step (ii),

$$
\begin{aligned}
\left|R B P_{N T}^{*}-\tilde{Z}_{N T}^{*}\right| & =\left|\frac{1}{\sqrt{N(N-1)}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\gamma}_{i j, T}^{* 2}-\tilde{\gamma}_{i j, T}^{* 2}\right)\right| \\
& \leq K^{-1} \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\gamma}_{i j, T}^{* 4} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\omega}_{i j, T}^{*}-\omega_{i j, T}^{*}\right)^{2}}
\end{aligned}
$$

since for T sufficiently large $\inf \hat{\omega}_{i j, T} \geq K>0$ a.s. By Markov's inequality, $\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\gamma}_{i j, T}^{4}=$ $O_{p}^{*}(1)$, in probability. Moreover,

$$
\begin{aligned}
\sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\hat{\omega}_{i j, T}^{*}-\omega_{i j, T}^{*}\right)^{2} & =N(N-1)\left\{\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left[\frac{1}{T} \sum_{t=1}^{T}\left(\hat{u}_{i t}^{* 2} \hat{u}_{j t}^{* 2}-\hat{u}_{i t}^{2} \hat{u}_{j t}^{2}\right)\right]^{2}\right. \\
& =O\left(N^{2}\right) B_{N T}^{*}
\end{aligned}
$$

By similar arguments as in Lemma 2, $B_{N T}^{*}=o_{p}^{*}\left(N T^{-2}\right)$ which yields that $\left|R B P_{N T}^{*}-\tilde{Z}_{N T}^{*}\right|=O_{p}^{*}\left(N^{3 / 2} T^{-1}\right)=$ $o_{p}^{*}(1)$, in probability.

Table 1: Rejection frequencies of the asymptotic and various Wild Bootstrap RBP and BP tests in panel ADL $(1,0)$ models under homoskedastic errors (HET0).

[^9]$-49,-48, \ldots, T$.with $\theta_{i 1} \sim$ i.i.d. $N(0,1), \theta_{i 2}=1-\phi_{i}, \phi_{i} \sim$ i.i.d. Uniform[0.4, 0.6], and the $z_{i t}$ are generated for $(N=5, T=25)$ as independent random draws from the standard lognormal distribution. This block of regressor values is then reused as necessary to build up data for the other combinations $(N, T) . y_{i,-49}=0$, and first 49 values are discarded. The error term is written as $u_{i t}=\sigma_{i t} \varepsilon_{i t}, i=1,2, \ldots, N$ and $t=1,2, \ldots, T$. There is homoskedasticity
under scheme HET0, with $\sigma_{i t}=1$ for all t. The term $\varepsilon_{i t}$ is generated as $\varepsilon_{i t}=\sqrt{1-\rho^{2}} \xi_{i t}+\rho \zeta_{+}$where $\xi_{i t} \sim$ i.i.d.

Table 2: Rejection frequencies of the asymptotic and various Wild-Bootstrap RBP and BP tests in panel $\mathrm{ADL}(1,0)$ models under one-break-in-volatility heteroskedastic scheme (HET1).

$H_{0}: E\left[u_{i t} u_{j t}\right]=0$											$H_{A}: E\left[u_{i t} u_{j t}\right]=0.2$									
	SN					χ_{6}^{2}					$S N$					χ_{6}^{2}				
N	5	10	25	50	100	5	10	25	50	100	5	10	25	50	100	5	10	25	50	100
Asymptotic critical values											Asymptotic critical values									
25	3.5	5.4	12.6	29.3	82.8	3.3	4.6	9.9	25.2	72.9	5.8	9.8	29.5	69.3	98.3	4.0	8.2	26.7	59.0	93.9
50	4.5	5.2	8.2	14.0	34.3	3.6	4.5	6.3	12.7	32.9	8.2	15.9	50.0	85.9	99.3	6.9	14.4	40.5	74.2	96.4
100	5.3	5.5	5.7	8.4	15.2	4.4	5.0	6.8	8.7	18.0	15.9	35.9	82.6	99.4	100.0	13.1	29.8	75.8	96.9	99.9
200	4.7	5.5	4.9	6.6	10.1	5.2	4.7	6.4	8.0	12.8	31.9	68.7	99.5	100.0	100.0	29.5	63.2	98.3	100.0	100.0
$B P_{T}$											$B P_{T}$									
25	8.1	18.1	57.0	96.2	100.0	8.7	16.6	53.7	95.6	100.0	11.5	26.1	75.9	99.4	100.0	11.7	25.1	74.1	99.2	100.0
50	9.5	18.6	53.6	96.8	100.0	9.4	17.8	50.9	94.1	100.0	15.5	37.1	87.9	99.9	100.0	16.5	37.6	86.8	99.9	100.0
100	10.2	18.7	51.1	96.0	100.0	10.2	16.9	52.4	95.3	100.0	25.7	60.4	98.8	100.0	100.0	25.6	57.8	98.1	100.0	100.0
200	9.5	17.5	54.0	95.3	100.0	9.5	15.9	53.6	96.2	100.0	44.4	85.9	100.0	100.0	100.0	42.6	84.5	100.0	100.0	100.0
T											$N R B P_{N T}$									
25	5.5	7.0	13.2	30.1	83.4	4.7	5.2	10.7	26.0	73.1	8.1	11.6	31.3	70.3	98.3	5.9	10.2	27.8	60.1	93.9
50	6.3	6.4	8.5	14.6	34.8	5.2	6.0	7.0	13.3	33.4	10.6	18.4	51.1	86.3	99.3	8.7	16.8	41.9	74.8	96.4
100	7.1	6.5	6.3	8.7	15.4	6.1	5.8	7.5	9.0	18.4	19.5	38.3	83.8	99.4	100.0	16.5	32.6	76.8	97.1	99.9
200	6.0	6.7	5.5	7.0	10.3	6.3	5.8	6.9	8.3	13.0	35.9	71.6	99.5	100.0	100.0	34.0	65.9	98.4	100.0	100.0
NBP ${ }_{N T}$											$N B P_{N T}$									
25	11.2	20.7	58.8	96.4	100.0	11.1	19.0	55.4	95.6	100.0	14.1	28.8	77.3	99.4	100.0	14.3	27.3	75.4	99.3	100.0
50	12.2	20.4	55.3	96.9	100.0	11.2	20.2	52.4	94.5	100.0	18.5	40.4	88.3	99.9	100.0	20.2	40.2	87.6	100.0	100.0
100	12.5	21.7	53.3	96.1	100.0	12.9	19.3	54.3	95.5	100.0	29.5	62.5	98.8	100.0	100.0	29.4	60.7	98.1	100.0	100.0
200	12.3	19.9	55.7	95.5	100.0	12.1	17.6	55.1	96.4	100.0	48.7	87.3	100.0	100.0	100.0	47.8	85.8	100.0	100.0	100.0
											WB 1: Recursive resampling									
T	WB 1: Recursive resampling$N R B P_{N T}^{*}$										$N R B P_{N T}^{*}$									
25	4.8	5.2	5.7	5.2	6.9	3.9	4.5	4.1	4.0	4.5	5.7	8.3	18.1	36.0	66.3	6.0	8.8	17.6	31.2	51.2
50	4.9	4.5	4.4	5.8	5.2	4.9	4.8	4.7	4.8	5.6	8.2	16.7	41.3	76.3	97.0	8.7	14.6	36.5	64.5	88.3
100	4.9	4.8	4.5	5.2	7.0	4.6	5.0	6.1	5.6	6.8	15.0	33.1	81.2	98.8	100.0	15.0	29.6	72.2	94.8	99.8
200	4.5	4.7	5.9	4.9	5.7	4.9	5.2	5.3	5.9	7.6	31.6	65.9	99.4	100.0	100.0	28.8	62.5	97.6	100.0	100.0
$N B P_{N T}^{*}$											$N B P_{N T}^{*}$									
25	4.5	5.7	6.6	9.6	20.1	4.2	5.6	6.6	8.8	18.3	6.7	9.5	22.1	48.0	79.3	7.0	12.1	26.5	50.6	79.5
50	4.6	4.7	6.1	9.5	14.1	5.9	5.1	6.0	8.2	13.9	8.6	17.9	46.9	81.9	98.3	10.8	18.5	48.9	81.4	98.0
100	5.2	5.3	6.0	7.5	11.7	4.6	5.8	6.8	6.6	10.6	16.0	34.2	83.5	99.4	100.0	18.1	35.3	81.9	98.5	100.0
200	5.1	5.2	6.2	5.7	7.7	4.8	4.8	5.6	5.2	7.3	32.4	66.5	99.5	100.0	100.0	31.0	68.1	98.7	100.0	100.0

WB 2: Fixed-design resampling \quad WB 2: Fixed-design resampling

T	$N R B P_{N T}^{*}$										$N R B P_{N T}^{*}$									
25	5.5	5.5	6.0	6.3	10.7	4.5	5.4	4.8	5.3	7.0	6.1	9.1	19.6	39.0	71.2	6.6	9.4	18.8	33.9	56.1
50	4.6	4.7	5.1	6.3	6.1	5.1	4.6	4.8	5.0	6.4	8.4	16.1	42.4	76.8	97.3	8.9	15.0	37.2	65.5	89.1
100	4.7	4.7	4.9	5.4	6.7	4.7	4.7	6.4	5.6	7.2	14.6	33.0	81.3	98.9	100.0	15.1	30.0	72.2	94.8	99.8
200	4.8	5.0	5.9	5.1	5.7	4.8	5.6	5.8	6.0	7.7	31.7	65.6	99.5	100.0	100.0	28.4	63.0	97.7	100.0	100.0
$N B P_{N T}^{*}$											$N B P_{N T}^{*}$									
25	4.9	5.9	8.4	13.1	31.8	4.4	6.1	8.3	11.8	29.3	6.5	10.0	24.1	53.7	84.6	7.3	12.7	28.5	55.0	84.8
50	4.6	4.9	6.5	10.7	16.3	5.6	5.2	6.6	9.0	15.4	8.5	18.2	47.8	82.5	98.6	10.8	19.1	49.4	82.1	98.2
100	4.9	5.4	6.3	7.9	12.0	4.9	5.9	6.9	6.3	11.4	15.4	33.6	83.4	99.4	100.0	18.3	35.4	81.8	98.8	100.0
200	5.1	5.0	6.4	5.7	7.7	4.8	5.1	5.7	5.6	7.3	32.4	66.6	99.6	100.0	100.0	30.8	68.7	98.7	100.0	100.0
WB 3: Direct resampling											WB 3: Direct resampling									
T	$N R B P_{N T}^{*}$										$N R B P_{N T}^{*}$									
25	5.2	5.7	7.2	8.3	17.3	4.1	5.4	5.6	7.2	10.8	5.9	9.2	21.0	43.8	77.0	6.6	9.7	20.3	38.4	62.9
50	4.7	5.0	5.5	7.3	8.5	4.9	4.8	5.2	6.3	9.4	8.7	16.2	42.7	79.0	97.6	9.6	15.5	37.9	66.8	91.0
100	4.8	4.6	4.6	5.9	8.4	4.8	5.0	6.7	6.5	8.5	15.2	33.2	82.0	99.0	100.0	15.5	30.3	73.0	95.4	99.9
200	4.7	4.7	5.9	5.2	6.3	4.7	5.1	5.6	6.1	8.9	31.7	65.6	99.5	100.0	100.0	28.9	62.5	97.5	100.0	100.0
$N B P_{N T}^{*}$											$N B P_{N T}^{*}$									
25	4.5	5.9	8.3	13.3	30.9	4.2	6.6	8.6	12.3	29.8	7.2	10.2	24.0	52.5	85.2	7.4	12.6	28.8	55.6	85.2
50	4.4	5.0	6.0	9.1	13.0	5.8	5.1	6.1	7.9	13.4	8.4	17.6	46.5	81.1	98.4	10.6	18.6	48.1	81.2	97.9
100	5.2	5.1	5.6	7.0	10.0	4.9	5.6	6.3	5.8	9.1	14.9	33.9	82.8	99.1	100.0	17.9	35.2	81.2	98.4	100.0
200	5.3	4.9	6.3	5.1	6.9	4.9	4.5	5.1	5.3	6.4	31.9	66.4	99.5	100.0	100.0	30.6	68.3	98.7	100.0	100.0

Notes: The data generating process is identical to those used for Table 1 except that $\sigma_{i t}=0.8$ for $t=1,2, \ldots, m=$
$\lfloor T / 2\rfloor$ and $\sigma_{i t}=1.2$ for $t=m, m+1, \ldots, T$, where $\lfloor A\rfloor$ is the largest integer part of A.

Table 3: Rejection frequencies of the asymptotic and various wild-bootstrap RBP and BP tests in panel ADL $(1,0)$ models under trending volatility heteroskedastic scheme (HET2).

$H_{0}: E\left[u_{i t} u_{j t}\right]=0$											$H_{A}: E\left[u_{i t} u_{j t}\right]=0.2$									
	SN					χ_{6}^{2}					SN					χ_{6}^{2}				
N	5	10	25	50	100	5	10	25	50	100	5	10	25	50	100	5	10	25	50	100
T	Asymptotic critical values										Asymptotic critical values									
25	3.4	5.2	12.1	27.0	78.6	3.5	4.1	9.6	24.7	70.7	5.6	10.1	30.1	69.8	98.1	4.3	8.1	26.8	59.2	92.7
50	4.3	5.3	8.0	13.6	32.1	3.7	4.6	6.8	12.7	33.2	8.5	17.3	52.7	87.8	99.4	7.5	15.0	43.0	75.5	96.6
100	5.1	5.1	6.2	9.0	13.1	4.3	5.0	7.1	9.2	18.0	17.0	38.2	85.5	99.6	100.0	14.1	32.2	78.7	97.9	100.0
200	4.4	5.6	5.1	6.8	9.0	5.3	4.5	6.1	8.0	13.2	35.0	73.7	99.7	100.0	100.0	31.4	68.0	98.7	100.0	100.0
											$B P_{T}$									
25	6.4	10.8	28.1	68.5	99.5	6.0	9.5	27.6	68.2	99.3	9.4	17.6	52.3	92.4	100.0	9.3	18.5	53.9	90.7	100.0
50	6.4	10.1	21.2	52.4	95.3	6.7	10.5	20.3	48.9	94.2	12.1	26.7	71.9	98.1	100.0	13.7	28.7	70.9	96.9	100.0
100	6.8	9.1	17.0	43.2	89.7	6.5	8.4	19.3	41.6	88.5	21.4	48.0	93.9	100.0	100.0	22.8	48.3	93.0	99.9	100.0
200	6.6	8.7	16.7	39.5	85.8	7.0	8.2	17.2	39.3	83.6	39.2	81.2	99.9	100.0	100.0	38.6	79.4	100.0	100.0	100.0
T	$N R B P_{N T}$										$N R B P_{N T}$									
25	5.0	6.4	13.1	28.0	79.1	4.6	5.1	10.7	25.1	71.1	8.1	12.0	31.7	70.5	98.1	6.1	10.0	28.0	60.1	92.8
50	6.1	6.6	8.3	14.1	32.6	5.1	5.9	7.3	13.4	33.7	11.0	20.4	53.7	88.1	99.4	9.7	17.6	43.8	76.1	96.7
100	7.1	6.1	6.6	9.3	13.3	5.7	5.9	7.8	9.5	18.5	20.7	42.3	86.6	99.6	100.0	17.1	34.4	79.4	97.9	100.0
200	6.5	6.5	5.6	7.0	9.2	7.5	5.4	6.8	8.3	13.3	39.5	75.9	99.7	100.0	100.0	35.9	70.5	98.7	100.0	100.0
$N B P_{N T}$											$N B P_{N T}$									
25	8.2	12.4	29.5	69.1	99.5	8.0	10.9	28.7	68.9	99.5	11.4	20.0	53.8	92.7	100.0	12.1	20.4	55.0	91.1	100.0
50	8.4	11.7	22.1	53.0	95.5	8.6	11.7	21.2	49.7	94.2	14.6	28.9	73.0	98.1	100.0	16.7	31.9	72.3	96.9	100.0
100	8.6	10.9	18.0	44.4	89.7	8.9	9.8	20.5	42.5	88.7	25.4	51.4	94.4	100.0	100.0	26.3	51.0	93.3	99.9	100.0
200	8.3	10.1	17.7	40.1	86.1	9.3	9.4	18.8	40.5	83.8	45.7	82.8	99.9	100.0	100.0	42.9	81.3	100.0	100.0	100.0

WB 1: Recursive resampling
WB 1: Recursive resampling
$N R B P_{N T}^{*}$

T	$N R B P_{N T}^{*}$									
25	5.3	5.7	5.3	5.7	7.0	4.9	5.1	5.3	4.9	5.1
50	3.6	4.5	5.0	5.7	6.2	4.2	4.8	4.9	5.5	6.1
100	5.0	5.6	6.0	4.1	5.3	5.1	4.4	6.5	5.9	7.5
200	4.4	5.0	4.7	5.3	4.8	4.5	6.5	5.1	5.7	7.4
$N B P_{N T}^{*}$										
25	5.1	5.2	6.5	7.2	11.1	4.7	4.8	5.5	6.7	11.2
50	4.0	4.7	5.1	6.5	9.8	4.5	4.5	5.2	5.4	8.1
100	4.5	5.9	6.1	4.9	7.3	5.3	4.9	6.6	5.0	6.2
200	4.8	5.2	4.6	6.0	6.1	4.0	5.8	5.2	4.5	5.

$N R B P_{N T}^{*}$
$\begin{array}{llllllllll}7.1 & 9.4 & 21.6 & 40.0 & 67.7 & 6.6 & 9.4 & 17.3 & 32.1 & 53.7\end{array}$ $\begin{array}{lllllllll}8.3 & 16.9 & 45.7 & 79.9 & 96.8 & 9.6 & 15.3 & 37.7 & 68.3 \\ 88.8\end{array}$ $\begin{array}{llllllllll}16.8 & 37.5 & 85.6 & 99.5 & 100.0 & 16.1 & 31.9 & 77.5 & 96.6 & 99.9\end{array}$ $\begin{array}{llllllllll}32.2 & 71.9 & 99.9 & 100.0 & 100.0 & 30.4 & 67.4 & 98.3 & 100.0 & 100.0\end{array}$ $N B P_{N T}^{*}$
$\begin{array}{llllllllll}6.3 & 9.9 & 23.5 & 46.0 & 76.6 & 6.6 & 10.6 & 24.3 & 45.7 & 75.7\end{array}$ $\begin{array}{llllllllll}8.8 & 17.3 & 48.1 & 82.6 & 97.9 & 11.3 & 19.1 & 49.6 & 81.1 & 97.6\end{array}$ $\begin{array}{llllllllll}16.4 & 38.7 & 86.5 & 99.6 & 100.0 & 17.3 & 37.8 & 86.5 & 99.0 & 100.0\end{array}$ $\begin{array}{llllllllll}32.5 & 71.7 & 99.9 & 100.0 & 100.0 & 33.1 & 72.6 & 99.1 & 100.0 & 100.0\end{array}$

WB 2: Fixed-design resampling $N R B P_{N T}^{*}$

WB 2: Fixed-design resampling $N R B P_{N T}^{*}$

T	$N R B P_{N T}^{*}$													
25	5.0	5.3	6.1	6.1	10.3	4.4	4.7	4.6	6.1	7.4				
50	4.7	5.0	4.7	6.2	5.3	5.2	4.9	4.9	6.0	6.9				
100	5.2	4.8	4.6	5.5	6.3	4.9	5.2	6.9	5.9	7.8				
200	5.2	4.7	6.1	4.8	6.1	4.5	5.1	5.4	6.0	8.0				
			8	$N B P_{N T}^{*}$										
25	4.8	5.4	6.4	8.3	15.0	4.6	5.0	6.0	8.2	14.7				
50	4.3	5.0	5.3	7.5	8.1	5.4	4.5	5.3	5.9	8.8				
100	5.1	5.4	4.8	5.8	8.3	4.4	5.5	6.6	5.2	7.6				
200	5.9	4.7	6.4	5.1	6.5	4.4	4.9	5.1	5.2	6.2				

6.1	9.2	21.3	41.1	72.4	6.6	9.4	18.5	34.9	56.9
8.9	18.1	45.5	80.0	97.6	9.2	15.8	39.6	68.0	90.5
15.9	35.3	85.4	99.3	100.0	16.1	31.8	77.0	96.0	99.8
34.0	70.4	99.8	100.0	100.0	30.8	66.3	98.1	100.0	100.0

$\begin{array}{llllllllll}6.6 & 9.9 & 23.4 & 46.0 & 78.3 & 7.4 & 11.1 & 26.1 & 50.3 & 77.8\end{array}$ $\begin{array}{lllllllll}9.4 & 18.3 & 48.7 & 82.5 & 98.5 & 11.4 & 19.2 & 50.3 & 81.4 \\ 97.5\end{array}$ $\begin{array}{llllllllll}16.0 & 36.8 & 86.2 & 99.4 & 100.0 & 17.9 & 38.0 & 84.0 & 98.9 & 100.0\end{array}$ $\begin{array}{llllllllll}34.2 & 71.3 & 99.8 & 100.0 & 100.0 & 33.9 & 72.0 & 99.1 & 100.0 & 100.0\end{array}$
WB 3: Direct resampling
WB 3: Direct resampling
$N R B P_{N T}^{*}$

T	$N R B P_{N T}^{*}$											
25	5.3	5.5	7.0	8.6	16.5	4.5	4.7	5.2	8.1	11.6		
50	4.8	5.2	5.3	6.8	8.3	4.9	4.8	5.1	7.2	9.8		
100	5.3	4.8	4.9	5.9	7.2	4.7	5.7	6.7	6.8	9.6		
200	5.7	4.5	6.6	5.0	6.3	4.5	5.1	5.6	6.3	8.7		
			8	$N B P_{N T}^{*}$								
25	4.5	5.7	7.1	9.7	21.9	4.4	6.2	7.0	9.8	21.3		
50	4.4	5.1	5.7	8.3	9.8	5.6	5.1	5.7	7.2	10.4		
100	4.7	5.4	5.2	5.7	8.3	4.8	5.3	6.6	5.4	7.6		
200	5.9	4.6	6.6	4.9	6.6	4.8	4.9	4.9	5.2	6.1		

$N R B P_{N T}^{*}$
$\begin{array}{llllllllll}6.1 & 9.6 & 22.7 & 45.9 & 79.1 & 6.7 & 10.0 & 20.3 & 38.3 & 63.5\end{array}$ $\begin{array}{llllllllll}9.2 & 18.0 & 47.0 & 81.5 & 98.1 & 9.1 & 16.3 & 40.5 & 69.7 & 92.0\end{array}$ $\begin{array}{llllllllll}15.9 & 35.9 & 85.5 & 99.4 & 100.0 & 16.1 & 32.1 & 77.5 & 96.5 & 99.9\end{array}$ $\begin{array}{llllllllll}34.4 & 70.5 & 99.9 & 100.0 & 100.0 & 30.4 & 66.5 & 98.3 & 100.0 & 100.0\end{array}$ $N B P_{N T}^{*}$

6.7	10.8	24.6	50.8	83.1	7.4	11.8	28.2	54.5
82.5								

Notes: The data generating process is identical to those used for Table 1 except that $\sigma_{i t}=\sigma_{0}-\left(\sigma_{1}-\sigma_{0}\right)\left(\frac{t-1}{T-1}\right)$ with $\sigma_{0}=0.8$ and $\sigma_{1}=1.2$.

Table 4: Rejection frequencies of the asymptotic and various Wild Bootstrap RBP and BP tests in panel $\mathrm{ADL}(1,0)$ models under conditional heteroskedasticity depending on a regressor (HET3).

$H_{0}: E\left[u_{i t} u_{j t}\right]=0$											$H_{A}: E\left[u_{i t} u_{j t}\right]=0.2$									
	SN					χ_{6}^{2}					SN					χ_{6}^{2}				
N	5	10	25	50	100	5	10	25	50	100	5	10	25	50	100	5	10	25	50	100
Asymptotic critical values											Asymptotic critical values									
25	4.0	5.7	13.4	35.9	88.1	3.1	5.2	11.1	29.9	80.1	5.5	10.5	33.7	75.1	99.1	5.1	9.4	28.9	63.7	95.8
50	4.1	4.9	9.2	20.8	53.5	4.1	4.8	7.9	18.8	51.6	8.3	18.5	53.7	90.4	99.9	7.3	15.5	47.2	79.6	98.2
100	3.9	4.8	7.4	12.8	23.3	3.6	5.2	7.0	9.7	25.0	14.9	35.1	86.6	99.7	100.0	14.3	30.1	78.3	97.5	100.0
200	5.0	5.0	7.2	7.1	13.7	4.2	4.8	5.6	8.7	15.5	33.3	68.9	99.6	100.0	100.0	29.3	63.8	98.7	100.0	100.0
$B P_{T}$											$B P_{T}$									
25	5.4	8.3	20.0	51.4	96.6	5.1	8.2	21.0	51.5	95.7	7.4	13.5	45.0	85.7	99.8	8.6	16.1	46.9	84.5	99.6
50	4.5	7.1	17.9	43.2	87.9	5.1	7.4	15.8	41.0	86.3	9.5	23.5	65.9	96.1	100.0	12.4	24.4	66.0	95.1	100.0
100	4.9	7.3	16.9	42.0	85.9	4.5	7.9	16.1	36.4	82.4	15.4	40.6	92.0	100.0	100.0	18.0	40.8	89.9	99.9	100.0
200	5.3	7.1	16.1	38.7	86.6	4.5	6.8	14.8	36.4	84.8	33.1	72.2	100.0	100.0	100.0	33.7	72.2	99.5	100.0	100.0
T	$N R B P_{N T}$										$N R B P_{N T}$									
25	6.1	6.8	14.4	37.3	88.2	5.1	6.4	12.0	30.8	80.3	7.4	12.1	35.1	75.9	99.1	7.0	11.2	30.3	64.2	95.8
50	5.2	6.6	10.2	21.6	53.7	5.6	5.5	8.8	19.4	51.9	10.9	20.6	55.4	90.6	99.9	9.6	17.3	48.4	80.0	98.2
100	5.9	6.0	8.0	13.2	23.6	5.4	6.4	7.3	10.2	25.4	17.7	38.2	87.2	99.7	100.0	18.0	32.9	79.0	97.6	100.0
200	6.8	6.3	7.9	7.4	13.8	5.9	5.7	5.9	8.9	15.7	38.3	71.3	99.6	100.0	100.0	33.4	67.0	98.8	100.0	100.0
$N B P_{N T}$											$N B P_{N T}$									
25	7.4	9.5	21.6	52.4	96.7	7.2	9.2	22.2	52.0	95.8	10.3	15.7	46.6	86.2	99.8	11.0	18.3	48.4	84.6	99.6
50	5.9	8.2	19.2	43.7	88.1	6.9	8.7	16.9	41.9	86.5	12.2	25.7	67.0	96.4	100.0	14.9	26.5	67.1	95.3	100.0
100	6.3	8.3	17.9	42.8	86.2	6.4	9.1	16.9	37.1	82.7	18.4	43.5	92.4	100.0	100.0	21.6	43.8	90.5	99.9	100.0
200	7.5	8.2	17.1	39.7	86.8	5.9	8.4	16.1	36.8	85.1	37.9	74.6	100.0	100.0	100.0	38.4	74.9	99.6	100.0	100.0
	WB 1: Recursive resampling										WB 1: Recursive resampling									
T	$N R B P_{N T}^{*}$										$N R B P_{N T}^{*}$									
25	5.2	5.3	5.8	6.4	10.4	4.2	5.2	4.1	6.3	7.3	6.6	9.6	21.4	42.0	72.3	6.3	8.7	18.4	34.4	57.5
50	4.3	5.1	5.3	7.8	9.7	4.8	5.1	5.2	6.7	10.0	8.9	17.5	46.0	81.0	98.1	8.5	16.1	41.4	68.8	91.2
100	4.4	4.3	5.8	6.1	6.3	4.8	5.6	5.9	5.6	8.7	15.3	34.8	83.5	99.4	100.0	15.8	30.0	74.7	95.7	99.9
200	5.7	4.7	6.1	4.5	6.1	4.4	5.0	5.2	6.2	7.7	33.1	69.0	99.6	100.0	100.0	30.6	63.8	98.2	100.0	100.0
$N B P_{N T}^{*}$											$N B P_{N T}^{*}$									
25	4.5	5.0	6.0	8.1	12.1	4.9	5.0	5.7	8.2	12.1	6.9	9.0	22.7	44.9	77.2	6.8	10.1	25.2	47.3	74.6
50	3.9	5.6	8.1	13.8	26.8	5.0	5.1	6.3	12.6	25.2	8.7	18.6	50.5	86.7	99.1	10.3	18.9	52.7	84.6	98.8
100	4.2	5.4	7.7	11.0	19.8	4.7	5.8	6.5	8.3	18.3	14.8	35.2	85.5	99.6	100.0	17.3	35.7	85.1	99.2	100.0
200	5.6	5.3	7.5	6.9	13.2	4.5	5.3	5.2	6.9	10.6	33.6	67.7	99.6	100.0	100.0	33.0	68.5	99.1	100.0	100.0
	WB 2: Fixed-design resampling										WB 2: Fixed-design resampling									
T	$N R B P_{N T}^{*}$										$N R B P_{N T}^{*}$									
25	5.5	5.3	6.7	8.1	14.4	4.4	5.6	5.1	8.0	11.0	6.3	9.8	22.7	44.6	76.8	6.5	9.6	20.4	37.7	61.3
50	4.1	4.8	5.3	8.3	10.6	5.1	4.8	5.5	7.4	11.8	9.0	18.0	46.3	81.4	98.3	8.3	15.4	41.6	69.6	91.7
100	4.3	4.7	5.7	6.4	6.7	4.1	5.6	5.8	5.5	8.6	14.9	34.7	83.7	99.4	100.0	15.6	30.8	75.0	95.8	99.9
200	5.7	4.9	6.3	4.9	6.4	4.5	5.1	5.1	6.3	7.9	33.8	68.7	99.5	100.0	100.0	30.5	64.0	98.3	100.0	100.0
$N B P_{N T}^{*}$											$N B P_{N T}^{*}$									
25	4.4	5.2	6.2	9.8	17.5	5.0	5.2	6.6	9.9	19.0	7.1	9.5	23.7	48.3	80.4	7.0	10.6	26.8	50.0	79.0
50	4.3	5.7	8.0	14.9	29.6	4.9	4.7	6.8	12.7	27.7	8.6	19.3	51.4	86.7	99.3	10.4	19.3	53.1	85.4	98.9
100	4.1	5.5	8.1	11.4	20.4	4.2	5.5	6.8	8.5	19.3	14.4	34.9	85.2	99.6	100.0	17.5	35.3	85.2	99.2	100.0
200	5.8	5.1	7.8	7.0	13.4	4.8	5.2	5.3	7.5	10.5	33.0	68.0	99.7	100.0	100.0	32.5	68.6	99.2	100.0	100.0
											WB 3: Direct resampling									
T	WB 3: Direct resampling										$N R B P_{N T}^{*}$									
25	5.2	5.4	7.5	11.7	26.8	4.7	5.6	6.4	11.7	21.4	6.6	10.2	25.6	50.6	85.3	6.5	9.6	22.5	43.3	71.5
50	4.5	5.5	7.4	11.5	21.1	4.7	5.0	7.0	10.9	22.2	9.2	18.6	48.8	85.1	99.0	8.6	16.3	43.7	73.7	95.0
100	4.1	4.5	6.7	8.3	11.8	4.7	5.2	6.7	7.9	15.0	15.3	35.3	85.1	99.5	100.0	15.5	31.8	76.9	96.9	100.0
200	5.5	5.0	6.8	6.0	9.6	4.5		5.7	7.9	11.2	33.6	68.8	99.6	100.0	100.0	30.8	64.5	98.3	100.0	100.0
	$N B P_{N T}^{*}$										$N B P_{N T}^{*}$									
25	4.8	5.6	7.9	13.7	31.4	5.1	6.0	8.5	14.4	32.9	7.2	10.3	26.9	55.1	88.0	7.1	11.3	29.4	57.3	86.8
50	4.3	5.7	8.8	16.2	34.9	5.3	4.9	7.5	15.4	34.3	8.7	19.5	51.8	89.1	99.5	10.8	20.1	54.5	87.3	99.3
100	4.5	5.2	7.6	11.6	20.9	4.9	5.9	7.1	9.0	20.6	15.5	35.7	85.4	99.6	100.0	17.7	35.9	85.3	99.2	100.0
200	5.8	5.1	8.0	7.0	13.2	5.1	5.3	5.0	7.438	10.8	33.5	68.1	99.6	100.0	100.0	32.7	68.6	99.2	100.0	100.0

[^10]Table 5: Rejection frequencies of the asymptotic and various Wild-Bootstrap RBP and BP tests in panel $\operatorname{ADL}(1,0)$ models under conditional heteroskedasticity, $\operatorname{GARCH}(1,1)$
(HET4).

$H_{0}: E\left[u_{i t} u_{j t}\right]=0$											$H_{A}: E\left[u_{i t} u_{j t}\right]=0.2$									
	SN					χ_{6}^{2}					SN					χ_{6}^{2}				
N	5	10	25	50	100	5	10	25	50	100	5	10	25	50	100	5	10	25	50	100
											Asymptotic critical values									
T	Asymptotic critical values$R B P_{T}$										$R B P_{T}$									
25	4.5	5.8	12.5	31.6	83.2	3.3	5.8	10.9	27.7	76.5	5.1	10.9	33.9	73.6	98.7	5.1	10.2	29.4	63.4	94.4
50	4.0	5.1	7.5	14.9	33.1	4.9	4.7	7.5	13.6	32.6	8.8	19.0	53.2	89.3	99.6	8.0	16.0	45.5	78.0	97.2
100	4.5	4.6	6.5	8.8	14.4	3.9	5.0	7.2	8.5	17.5	15.9	38.7	88.0	99.6	100.0	15.8	31.9	80.9	97.9	100.0
200	5.6	5.2	6.7	5.8	9.3	4.1	4.3	5.6	7.6	11.6	35.5	73.0	100.0	100.0	100.0	30.6	68.1	98.9	100.0	100.0
$B P_{T}$											$B P_{T}$									
25	5.1	7.6	16.6	40.8	91.3	5.8	8.4	17.6	42.5	91.0	7.7	14.6	40.9	80.9	99.5	8.6	16.2	44.2	81.3	99.4
50	5.2	5.7	9.5	17.7	37.9	6.0	5.7	9.0	16.8	38.8	10.0	21.4	58.0	91.5	99.8	12.4	23.5	60.1	89.8	99.7
100	5.5	5.3	7.3	9.5	16.6	4.8	6.0	8.2	8.9	15.5	17.1	40.3	88.9	99.9	100.0	20.1	41.0	87.6	99.4	100.0
200	5.7	5.1	6.6	5.9	9.9	4.7	4.7	5.5	6.8	9.4	36.5	74.4	99.9	100.0	100.0	35.4	73.7	99.4	100.0	100.0
T	$N R B P_{N T}$										$N R B P_{N T}$									
25	6.1	7.0	13.2	32.3	83.6	5.4	7.0	11.7	28.5	77.0	7.1	12.7	34.8	74.2	98.8	7.1	12.5	30.3	64.1	94.5
50	5.3	6.1	8.2	15.4	33.7	6.4	5.6	8.0	14.2	33.1	11.5	21.0	54.9	89.6	99.6	10.5	18.1	46.9	78.8	97.2
100	5.9	5.6	7.0	9.1	14.8	5.5	6.1	7.4	8.9	18.0	19.3	41.1	88.5	99.7	100.0	19.2	34.9	81.5	98.0	100.0
200	6.9	5.9	7.1	6.3	9.5	5.5	5.5	5.9	8.1	11.7	40.1	74.8	100.0	100.0	100.0	35.2	70.4	98.9	100.0	100.0
$N B P_{N T}$											$N B P_{N T}$									
25	7.7	8.8	17.2	41.7	91.5	7.4	9.8	18.6	43.4	91.2	9.9	16.4	42.2	81.2	99.5	11.5	18.5	46.2	81.7	99.4
50	6.1	7.3	10.2	18.4	38.3	7.9	7.0	9.9	17.5	39.2	12.8	23.5	59.7	91.6	99.8	15.3	25.9	61.4	90.2	99.7
100	7.0	6.3	7.7	9.7	16.7	6.7	7.4	8.7	9.2	15.6	20.6	43.1	89.2	99.9	100.0	23.4	43.8	88.3	99.4	100.0
200	7.5	6.3	7.0	6.4	10.0	6.2	5.9	5.8	7.1	9.5	40.7	76.0	100.0	100.0	100.0	39.0	76.0	99.4	100.0	100.0
											WB 1: Recursive resampling									
T	WB 1: Recursive resampling$N R B P_{N T}^{*}$																			
25	5.0	4.7	5.8	5.6	6.8	4.5	5.7	4.5	5.7	6.5	6.1	9.9	20.5	40.0	71.0	6.3	9.5	18.8	35.0	55.8
50	4.4	4.8	5.5	5.8	4.7	5.6	4.8	5.1	5.9	6.4	9.0	18.4	46.6	81.1	97.6	8.9	16.5	41.5	68.8	91.3
100	4.8	4.4	5.4	5.3	5.5	4.7	4.7	6.4	5.8	6.9	16.6	37.8	86.5	99.3	100.0	16.7	32.7	78.6	97.0	99.9
200	5.7	4.7	5.5	4.9	5.3	4.4	4.6	5.2	6.4	7.6	35.9	72.6	99.9	100.0	100.0	31.7	67.8	98.7	100.0	100.0
$N B P_{N T}^{*}$											$N B P_{N T}^{*}$									
25	4.4	5.1	4.6	5.5	6.0	4.4	4.9	4.9	5.9	6.6	6.4	10.3	21.4	40.6	71.0	7.2	11.2	24.2	45.6	70.7
50	4.5	5.0	5.0	5.8	4.3	5.7	4.5	4.9	4.9	6.1	9.5	18.4	47.7	81.7	98.1	10.6	19.2	49.9	81.1	96.9
100	5.1	4.4	5.3	5.1	5.9	5.2	5.7	6.0	4.5	5.3	16.7	38.0	86.8	99.4	100.0	19.0	38.9	85.4	99.1	100.0
200	5.7	4.6	5.8	4.7	5.2	4.7	4.3	4.5	5.2	4.9	36.1	72.8	100.0	100.0	100.0	34.5	73.7	99.4	100.0	100.0
	WB 2: Fixed-design resampling$N R B P_{N T}^{*}$										WB 2: Fixed-design resampling $N R B P_{N T}^{*}$									
T																				
25	5.1	5.1	6.7	7.6	12.6	4.8	6.3	5.3	7.7	10.2	5.9	10.5	22.6	44.4	76.6	6.8	10.2	20.9	39.5	62.0
50	4.5	4.8	5.6	7.4	5.9	5.5	4.9	5.7	6.9	8.4	9.3	18.1	47.2	81.7	98.1	9.0	16.3	42.0	70.1	92.2
100	5.2	4.5	5.5	5.2	5.9	4.7	5.3	6.4	5.9	7.8	16.3	37.9	86.6	99.3	100.0	17.1	32.7	78.8	97.1	99.9
200	5.9	4.9	5.9	4.7	5.4	4.2	4.5	4.9	6.0	7.9	35.4	72.4	99.9	100.0	100.0	31.7	67.7	98.7	100.0	100.0
$N B P_{N T}^{*}$											$N B P_{N T}^{*}$									
25	4.9	4.9	5.8	7.3	11.3	4.8	6.0	6.0	8.3	11.7	. 5	11.0	23.5	46.2	77.9	7.0	11.7	25.9	50.4	76.9
50	4.8	5.0	5.3	6.9	5.6	5.9	4.4	5.3	5.6	7.0	9.4	18.7	48.3	82.5	98.4	10.9	19.7	50.6	82.1	97.3
100	4.8	4.8	5.2	5.1	6.0	5.4	5.5	6.0	4.7	6.0	16.5	37.8	86.6	99.4	100.0	18.8	39.1	85.7	99.2	100.0
200	6.1	4.7	5.9	4.8	5.3	4.5	4.3	4.4	5.1	5.0	35.2	72.9	99.9	100.0	100.0	34.2	73.8	99.3	100.0	100.0
											WB 3: Direct resampling									
T	WB 3: $\begin{gathered}\text { Direct resampling } \\ N R B P_{N T}^{*}\end{gathered}$										$N R B P_{N T}^{*}$									
25	5.0	5.3	7.4	9.9	19.8	4.9	6.4	6.0	10.2	14.7	6.0	10.5	25.2	48.3	82.0	6.6	10.7	21.6	42.3	68.4
50	4.3	5.0	6.0	7.9	8.4	5.4	4.9	6.0	7.8	10.9	9.4	18.7	48.1	83.0	98.6	9.2	17.1	42.6	71.2	93.0
100	5.1	4.7	5.7	5.9	7.2	4.9	5.3	6.7	6.3	8.9	16.4	38.0	86.7	99.3	100.0	17.2	32.9	79.2	97.2	99.9
200	5.8	4.8	5.9	5.0	5.9	4.4	4.6	5.1	6.4	8.5	35.4	72.8	100.0	100.0	100.0	31.8	68.2	98.7	100.0	100.0
											$N B P_{N T}^{*}$									
25	4.7	5.4	6.8	10.1	20.4	4.7	6.3	7.6	11.1	20.6	6.8	11.1	25.3	52.2	84.2	7.4	12.3	28.7	55.1	83.5
50	4.8	4.9	6.0	8.1	8.6	5.7	4.5	5.8	7.0	9.8	9.8	19.4	49.9	83.8	98.6	11.0	19.8	51.8	83.8	97.9
100	4.8	4.8	5.8	5.7	7.3	5.2	5.6	6.3	5.2	7.2	16.6	37.7	87.3	99.5	100.0	18.7	38.7	86.2	99.2	100.0
200	5.9	4.5	5.8	4.6	6.1	4.7	4.4	4.8	5.239	95.8	35.5	72.2	99.9	100.0	100.0	34.1	73.7	99.2	100.0	100.0

Notes: The data generating process is identical to those used for Table 1 except that $\sigma_{i t}^{2}=\delta+\alpha_{1} u_{i, t-1}^{2}+\alpha_{2} \sigma_{i, t-1}^{2}$,
$t=-49,-48, \ldots, T$. The value of parameters are chosen to be $\delta=1, \alpha_{1}=0.1$ and $\alpha_{2}=0.8$.

Table 6: p-values of cross section correlation tests in dynamic empirical growth models, 20 OECD countries, annual data 1955-2004

p-values	$N R B P_{N T}$	$N B P_{N T}$
asymptotic	0.089	0.017*
wild bootstrap 1	0.118	0.115
wild bootstrap 2	0.112	0.107
wild bootstrap 3	0.108	0.128

Note: The dynamic model estimated is $\Delta \widetilde{l g d p w}_{i t}=\theta_{1 i}+\theta_{2 i} \widetilde{l k}_{i t}+\theta_{3 i} \Delta \widetilde{l k}_{i t}+\theta_{4 i} \Delta \widetilde{l k}_{i t-1}+\phi_{1 i} \Delta \widetilde{l g d p w}_{i, t-1}+$ $\phi_{2 i} \Delta \widetilde{l g d p w}_{i, t-2}+u_{i t},, i=1,2, \ldots, 20$ and $t=1,2, \ldots, 47$, where $\widetilde{l g d p w}_{i t}$ is cross section demeaned log of output per worker and $\widetilde{l k}_{i t}$ is cross section demeaned log of the investment share. $\|*\|$ signifies the null hypothesis being rejected at the 5% level. Asymptotic p-values are obtained referring the value of the statistics to standard normal distribution (one-sided). Bootstrap p-values are based on 5000 bootstrap resampling. Three wild bootstrap schemes are explained in the previous section. For the wild bootstrap scheme $1, \widetilde{l k}_{i t}, \Delta \widetilde{l k}_{i t}$ and $\Delta \widetilde{l k}_{i t-1}$ are treated as fixed.

[^0]: *We are grateful to Steve Bond, Tom Wansbeek for helpful comments.
 ${ }^{\dagger}$ Corresponding author. Email: takashi.yamagata@york.ac.uk.

[^1]: ${ }^{1}$ See, for example, Wu (1986), Liu (1988), Mammen (1993), Davidson and Flachaire (2008), in the context of the classical linear regression model.

[^2]: ${ }^{2}$ When the null of no error cross-sectional correlation and slope homogeneity are rejected, the Common Correlated Effects (CCE) estimator of Chudik and Pesaran (2015) could be employed.

[^3]: ${ }^{3}$ This formulation is similar to that employed, for example, by Weiss (1986).

[^4]: ${ }^{4}$ The test can detect local alternatives at the rate $(N T)^{-1 / 2}$; see the local alternative analysis result in the Supplementary Appendix.

[^5]: ${ }^{5}$ In the Appendix, we verify this for the recursive wild bootstrap scheme (WB1) only and, following Davidson and Flachaire (2008), with $u_{i t}^{*}=\varepsilon_{i t} \hat{u}_{i t}$ where the $\varepsilon_{i t}$ are independently and identically distributed for all i and t taking the discrete values ± 1 with an equal probability of 0.5 .
 ${ }^{6}$ Note that the weaker alternative rate can be sufficient for establishing the asymptotic validity of the wild bootstrap similarly to the first-order asymptotic results.

[^6]: ${ }^{7}$ Observe that the rejection frequencies of $N R B P_{N T}$ test under no error cross-sectional correlation along a path of N^{2} / T being constant seem not to get worse when N and T increase. For example, in Table 4, the estimated size of $N R B P_{N T}$ test for $(N, T)=(25,50),(50,200)$, where $N^{2} / T=12.5$, are 8.8% and 8.9%, respectively. This seems consistent with our analytical results, in particular, under Assumption B1 $\left(N^{2} / T \rightarrow 0\right)$.

[^7]: ${ }^{8}$ These OECD countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Greece, Iceland, Ireland, Italy, Japan, Luxembourg, Netherland, Norway, Spain, Sweden, Switzerland, United Kingdom and United States.
 ${ }^{9}$ The values of t-bar statistics, which are the cross-sectional averages of country $\operatorname{ADF}(2)$ statistics with a linear trend for $\widetilde{l g d p w}_{i t}$ is -1.55 , and the exact 5% critical values reported Im et al. (2003; table 2) for $N=20$ and $T=50$ is -2.47 . The values of similar t-bar statistics but with an intercept only for $\Delta \widetilde{l g d p w}_{i t}$, $\widetilde{l k}$ and $\Delta \widetilde{l k}$ are $-3.45,-2.00$ and -4.71 , respectively, and the exact 5% critical value is -1.85 .

[^8]: ${ }^{10}$ They considered a Hausman-type test and a modified version of the LM test, but based on the finite sample results the bootstrap $R L M_{T, i}$ test or a bootstrap modified LM test is recommended. We consider the WB1 bootstrap $R L M_{T, i}$ test only, since the reported performance of these two tests by Godfrey and Tremayne (2005) was very similar and the former is computationally simpler. Note, however, that these procedures require more restrictive assumptions than those imposed in this paper.
 ${ }^{11}$ Full test results are available upon request. Only the p-value of Norway was on the borderline, being 5.1%. However, assuming all country specific errors are cross-sectionally independent, then the serial correlation test statistics are also independent over countries. Thus, the result that the proportion of the rejections, at (about) the 5% significance level and over 20 countries, is 5% is consistent with the hypothesis of no error serial correlation.

[^9]: Notes: The data generating process considered is $y_{i t}=\theta_{i 1}+\theta_{i 2} z_{i t}+\phi_{i} y_{i, t-1}+u_{i t}, i=1,2, \ldots, N$ and $t=$

[^10]: Notes: The data generating process is identical to those used for Table 1 except that $\sigma_{i t}=\sqrt{\exp \left\{c z_{i t}\right\}}, t=1, \ldots, T$.

