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Abstract  

We present current-voltage (I-V) characteristics of an individual carbon nanotube (CNT) 

filled with Cr2O3, a multi-functional magnetic oxide relevant to spintronics. We demonstrate 

that a filled CNT during a two probe I-V scan in suspended geometry, can be used like a 

nano-furnace for controlled restructuring of the oxide encapsulate. With proper utilization of 

Joule heating during I-V scans, the encapsulate, initially in the form of a polycrystalline 

nano-wire, converts to beads, nano-crystals and sheets within the CNT. These morphological 

phases are formed and preserved by controlling the amplitude, rate and holding time of the 

bias voltage. The sequential restructuring, observed in real time by Transmission Electron 

Microscopy (TEM), is also accompanied by a substantial enhancement in the current flowing 

through the CNT. We further demonstrate that advantageously tailoring the morphology of 

the encapsulate is linked to this current enhancement and can be a route for heat dissipation in 

nano devices.  Magnetization measurements reveal that Cr2O3, a well known 
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antiferromagnetic and magnetoelectric, when confined within CNT, exhibits logarithmic time 

dependence. This slow magnetization dynamics is associated to a pinning mechanism that 

points towards the possibility of stress induced moments in this system. These measurements 

elucidate novel magnetic properties of the encapsulate.   
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Abstract  

We present current-voltage (I-V) characteristics of an individual carbon nanotube (CNT) 

filled with Cr2O3, a multi-functional magnetic oxide relevant to spintronics. We demonstrate 

that a filled CNT during a two probe I-V scan in suspended geometry, can be used like a 

nano-furnace for controlled restructuring of the oxide encapsulate. With proper utilization of 

Joule heating during I-V scans, the encapsulate, initially in the form of a polycrystalline 

nano-wire, converts to beads, nano-crystals and sheets within the CNT. These morphological 

phases are formed and preserved by controlling the amplitude, rate and holding time of the 

bias voltage. The sequential restructuring, observed in real time by Transmission Electron 

Microscopy (TEM), is also accompanied by a substantial enhancement in the current flowing 

through the CNT. We further demonstrate that advantageously tailoring the morphology of 

the encapsulate is linked to this current enhancement and can be a route for heat dissipation in 

nano devices.  Magnetization measurements reveal that Cr2O3, a well known 
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antiferromagnetic and magnetoelectric, when confined within CNT, exhibits logarithmic time 

dependence. This slow magnetization dynamics is associated to a pinning mechanism that 

points towards the possibility of stress induced moments in this system. These measurements 

elucidate novel magnetic properties of the encapsulate.   
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1. Introduction  

 Probing the I-V characteristics of individual carbon nanotubes1-15 has been a subject 

of intense investigations since it is crucial for their integration into miniaturized devices. 

Such I-V measurements1-5 are central to the utility of the CNT, either as superior metallic 

interconnects vis a vis Au or Pt nano wires,  or as a replacement for semiconductor based 

transistor elements in nano electronics1-12. Key factors that influence the current carrying 

capacity of the CNT as an interconnect are both intrinsic and geometry related. The intrinsic 

factors include the diameter (D) and length (L) of the CNT and the quality of its graphitic 

shells, degree of crystillanity and presence of defects etc.  The geometry related factors 

include the design or the lay-out of the nano circuit and contact resistance/area during 

electrical transport measurements.  

 I-V data on an individual CNT with simultaneous TEM imaging brings out the 

correlation of both intrinsic and geometry related factors with the current carrying capacity of 

the CNT1-5.  For instance, it is observed that current rises with increasing voltage upto a 

critical value for a CNT during I-V scans in suspended geometry. One of the contributions in 

the non-linear rise in ‘I’ with increasing ‘V’ up to a critical value is associated with annealing 

of the random defects present in the graphitic shells of the CNT. This defect annealing arises 

from Joule heating driven temperature rise, leading to self heating of a CNT under bias1-5.  

This self heating   improves the quality of the graphitic shells of CNT, resulting in reduced 

carrier scattering and consequently larger current.  Beyond the critical voltage (at which the 

current reaches its peak), a drop in current is observed, which is accompanied by a 

progressive deformation and burning of the graphitic shells of the CNT. In this voltage range, 

Joule heating is detrimental, leading to the eventual breakage of CNT at another critical 

voltage1-5. These critical parameters during a typical I-V scan on an individual CNT vary 

with the length, diameter as well as random defects present in its graphitic shells. The current 
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carrying capacity of a CNT not only relates to these intrinsic factors but also to the geometry 

related factors1-10. For instance, I-V characteristics on an individual CNT have been studied 

earlier in a suspended geometry or when it lies over a substrate1, both of which are geometry 

related factors.  These factors crucially influence the heat dissipation paths during I-V scans 

and consequently influence the current carrying capacity1-10. Thus heat dissipation 

mechanism or thermal heat management are important issues in nano electronics based on 

CNT or otherwise1-10.  

In this work we explore electron transport on individual multiwall CNT filled with  

Cr2O3 with simultaneous TEM imaging in suspended geometry and provide the first step in 

exploring the utility of Cr2O3 filled CNT in nano scale devices. We also emphasize that while 

a significant amount of work has also been carried out on the encapsulation of metals inside 

CNT11-15, I-V characteristics have mostly been reported for Fe-filled CNT, where the focus 

has primarily been on deciphering the mechanism of mass transport in femtogram scales, and 

the utility of metal-filled CNT as a nano pippet13-15.   Encapsulation of multifunctional 

oxides16 inside CNT, especially their I-V characteristics are relatively less explored area, 

though  oxides such as V2O5
17 and CrO3

18 have earlier been encapsulated inside CNT. While 

encapsulation of CrO3 inside CNT is significant for catalysis related applications18, it is also a 

precursor material for the formation of two different chrome oxides, CrO2 and Cr2O3, both of 

which are relevant for spintronic applications19-24.  

 Cr2O3 is a room temperature antiferromagnet20 (TN~307K), the most stable21 among 

binary chrome oxides and environmentally benign (unlike hexavalent CrO3) and is therefore 

suitable for practical applications.  Significantly, Cr2O3 is also a well-known magnetoelectric, 

in which the magnetism can be tuned via an electric field22-24.  Upon nanoscaling, it is seen to 

develop traits of a new functionality, piezomagnetism25 or the stress induced magnetism. In 

this context, it is important to recall that while bulk Cr2O3, which is inherently 
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antiferromagnetic and magnetoelectric22-25 but not piezomagnetic, can generate this trait in 

ultra thin film form26.  Thus, the magnetic encapsulate within CNT27 realises a hybrid 

nanomaterial  in which the magnetic properties can be  tuned with magnetic field, electric 

field, and possibly stress. These factors can be particularly relevant in the area of 

antiferromagnetic spintronics28 and  the electric field control of magnetism29. 

 First part of our work relates to the application of specific experimental protocols 

during conventional two probe I-V scans, which result in controlled Joule heating and a 

sequential restructuring of the oxide encapsulate. In this context, it is important to note that 

degradation of oxides during device patterning has been a major bottleneck in oxide 

electronics16. Our work brings into fore the usage of filled CNT as a nano furnace, by proper 

utilization of self heating. This enables in-situ formation of various morphological phases of a 

multi -functional oxide that can remain preserved inside the CNT.  Further, we demonstrate 

that the presence of the insulating encapsulate within the CNT is linked to better heat 

dissipation and therefore enhanced current flowing through the CNT.  Finally we also report 

bulk magnetization measurements on CNT elucidating the unusual magnetic properties of the 

encapsulate which is preserved inside the CNT. 

2. Experimental  

The Cr2O3 filling inside CNT is achieved by a two-step post-synthesis filling 

procedure and is characterized by analytical TEM27.  The pristine multiwall CNT used for the 

filling purpose were synthesized by Chemical Vapour Deposition. Filling procedure 

involving capillary action was achieved using (i) pristine CNT (ii)  pristine CNT, further 

subjected to high temperature annealing30  (Supp. Info: Text S1).  In both these cases, Cr2O3, 

in the form of polycrystalline wires, was seen to fill the core cavity of the CNT.   The outer 

diameter of such oxide - filled CNT are in the range of 20 nm to 75 nm and lengths upto 

5µm. A representative TEM image for a  typical (filled) multiwalled CNT is shown in Figure 
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1a.  Here, the encapsulate in the form of a scanty nano wire is visible within the core cavity 

of the CNT. It is to be noted that in these samples, Cr2O3 is also seen to fill the space between 

the graphitic shells of the CNT.  This filling can also be seen as a line guided by an arrow, 

alongside the filling within the core cavity of the CNT in Figure 1a. Though our synthesis 

procedure does not allow a control over this frequently seen  trapping of the encapsulate  in- 

between the graphitic shells, this has been unambiguously  identified to be Cr2O3  with clear 

chromium and oxygen peaks through Electron Energy Loss Spectroscopy (EELS) in TEM in 

a large number of filled CNT. These EELS results are reported in an earlier publication27.   

 The I-V measurements on the individual multiwall CNT (both filled and pristine) 

reported in this work are carried out using in-situ TEM / Scanning Tunnelling Microscopy 

(STM) Nanofactory holder in both JEOL 2010 (operated at 200 kV) and JEOL 3000f. 

Magnetization measurements are conducted using Superconducting Quantum Interface 

Device (SQUID) from Quantum Design. 

3. Results & Discussion 

3.1: I-V scans with in-situ TEM imaging  : Schematic and  experimental protocol 

For the I-V studies, the CNT is suspended  between two Au electrodes, across which a 

dc electrical voltage is applied and the resulting current is measured. The schematic of two 

probe |I-V measurements with simultaneous TEM imaging is shown in Figure 1b. In this 

schematic, a TEM image of a typical pristine CNT, hanging in suspended geometry is shown. 

The voltage is applied in two experimental protocols: (i)‘Slow Scan’ in which a fixed dc 

voltage is applied and held for a few tens of seconds.  This process is repeated at regular 

intervals (~few tens of seconds) for different voltages. For a typical slow scan, ranging from 

0.5V to 3V, step ∆V can be ~ 0.2 - 0.5V (ii) ‘Fast Scan’, in which the dc voltage is 

progressively ramped from 0 up to ±Vmax with well-defined bias steps ( ∆V~ 2mV).   Here, 
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each voltage pulse (0 upto ±Vmax) is ramped for a very short time, of the order of a few 

milliseconds. The crucial difference between the slow and the fast scan is holding time of the 

bias voltage.  This can be of the order of few tens of seconds for a typical slow scan and a 

few milliseconds for a typical fast scan. Typical resistance value of the multiwall CNT, both 

filled and pristine used in this work ranges from a few k� to a few tens of k�.  In each I-V 

scan, following either slow or fast scan, care has been taken to  first stabilize the contact 

resistance before applying larger bias voltages that can result in any morphological phase 

changes of the encapsulate. (supp. Info: Text S2).  

  

 

 

 

 

 

 

 

 

 

Figure 1:  (a) TEM image of a typical  filled  CNT, depicting the oxide encapsulate within its core 

and in- between its graphitic shells.  Arrows are the guide to the eye. (b) Real time image of a pristine 

CNT in suspended geometry, along with the schematic of two probe |I-V measurements with 

simultaneous TEM imaging.  (c) I-V data following a slow scan protocol on the same pristine CNT 

show in the upper schematic. Upper TEM image depicts damaged walls of the CNT observed  at the 

bias voltage ~2 V . Lower TEM image is recorded at VB ~2.4 volts, at which CNT is seen to break.       
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Figure 1c shows an I-V scan, following a slow scan protocol on a pristine CNT with 

D ~ 40 nm; L ~ 930 nm,  having resistivity  ~ 10-5 �-m. This is the same pristine CNT for 

which TEM image is shown in Figure 1b. During I-V scan, current first rises with increasing 

voltage and reaches a peak value “IP” at a critical voltage “VP”. For the CNT shown in 

Figure 1b, VP ~ 1.7 Volts and IP ~ 290 µA.  On increasing the bias voltage beyond VP, the 

current is seen to drop which is accompanied by a visible deformation of its graphitic shells. 

A TEM image of a segment of this CNT in the upper inset of Figure 1c, depicts the deformed 

graphitic shells and broken walls at the bias voltage V ~ 2 Volts.  On approaching another 

critical voltage referred to as VB (~ 2.4 Volts in this case)   the CNT is seen to break, as 

shown in the lower TEM image in Figure 1c. These results are in qualitative agreement with 

earlier reports1-5 manifesting the effects of Joule heating driven temperature rise.  

In case of a metal filled CNT, such as Fe filled CNT reported in literature13-15,   the 

Joule heating driven temperature rise influences the graphitic shells of the CNT as well as the 

metallic encapsulate, which is seen to melt and move during I-V scans13-15. In the following 

we demonstrate that in  case of oxide filled CNT, by variations in the amplitude and holding 

time of the bias voltage, the encapsulate can be converted to a desired morphology.     

3.2 :   Restructuring  of the encapsulate during I-V Scans  

Figure 2a-2d show segments of a typical Cr2O3-filled CNT under bias,  following the 

slow scan protocol during I-V scan.  A sequential restructuring of the encapsulate,  from the 

initial state of a scanty nano wire to well separated beads and crystals,  is observed in real 

time when the voltage was varied from 500 mV to 1800 mV,  in the steps  ~ 200 mV.  The 

current is also measured as a function of time for each voltage step as shown in Figure 2e. 

The step like features in I vs Time graph are associated with amplitude changes of the applied 

voltage, as indicated in Figure 2e. The total time span is about 5 minutes for the entire I-V 

scan. However, for the sake of clarity, only a few representative voltages are marked in 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

9 

 

Figure 2e.  At each voltage step, the holding time is of the order of a few tens of seconds. 

The exact holding time is also evident from Figure 2e.  It is to be noted that for higher 

amplitude of the bias voltage, current rises steadily for a fix value of V. This is seen to occur 

when the encapsulate melts and converts into beads or crystal. On the contrary, the current as 

a function of time remains rather constant at lower amplitude of the bias voltage, when there 

is no restructuring of the encapsulate. These features are guided by red arrows in Figure 2e. 

A clip from the video (Supp. Info : Video S1 clip)  in the time period between 120 - 180 

seconds shows the encapsulate  in the form of continuous filling converting into well 

separated beads. Full video covering entire I-V scan (~5 minutes), can be seen in Supp. Info 

: Video S1 full) .  

  

 

 

 

 

 

 

Figures 2(: (a)-(d)  are  TEM snap shots for a typical  Cr2O3 filled CNT during I-V scans, following 

the slow scan protocol described in text. The encapsulate remains in the form of a nano wire within 

the core cavity for V ~ 1 V.  Well separated beads and crystals are observed with progressively 

increasing bias voltages. (e)  Current vs. Time data  for various  bias voltages.  

Similar experiments  conducted on  more than a dozen  oxide–filled CNT with 

varying diameters and lengths  and filling fractions reveal  that it is possible to restructure the 

encapsulate with discrete dc voltage pulses, roughly  between 1 -3 volts.  This restructuring is 

observed while measuring I-V in both slow and fast scans. The nano-crystals  formed during 
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I-V scans  can be preserved by removing the bias (Figure 3a -3b).  We also observe that 

depending on the initial amount of the encapsulate as well as its location over the length of 

the CNT, fairly big crystals can be formed.  Such big crystals are more frequently seen near 

the contact end (the Au electrodes) where encapsulate tends to collect in the molten form 

(Supp. Info : Vid. S2).  We also observed that formation of big crystal can deform the 

graphitic shells of the CNT. One such crystal with its clear facets formed within a CNT under 

prolonged bias has been shown in Figure 3(b). 

 

 

 

 

 

 

 

 

 

Figure 3: (a) Formation of beads and crystals  at different locations within the core cavity of self 

heated CNT.  (b) Hexagonal shape Cr2O3 particle with clear facets formed near the contact end 

during I-V scan. Right panel in (c) shows electron diffraction  on  encircled area in CNT, confirming 

presence of  Cr2O3  in the form of beads and crystals. The encircled area in (d) shows segment of a 

CNT in which the oxide encapsulate has either been flown out at the contact end or evaporated during 

I-V scans.  However, the ED on the right panel of (d) confirms the presence of Cr2O3 in the form of 

thin sheets. 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

11 

 

3.3 : Characterization of  individual morphological phases of the encapsulate     

Once a particular phase is well formed during a I-V scan and  preserved by removing 

the bias voltage,  Electron Diffraction (ED) can be recorded on a thermally stabilized CNT 

under zero bias.  A representative is shown in Figure 3c, confirming the presence of Cr2O3 in 

the form of beads and crystals.  We also emphasize that we could not find any evidence of 

elemental chromium in ED data obtained on a number of CNT, thus ruling out the possibility 

of reduction of Cr2O3 to elemental chromium. Another important observation is that on 

reversing the polarity of voltage during I-V scans, the oxide beads or crystals do not move in 

opposite direction.  This is different from the case of Fe filled CNT where the metallic 

encapsulate is seen to move in the reverse direction on reversing the polarity during I-V 

scans13-15.   

 The nano crystals formed within CNT under bias can also be re-melted on further 

increasing the bias voltage.  This melt is seen to flow within the core-cavity and also it can 

flow out at the contact end (supp. Info Videos S2-S4).  While the encapsulate evaporating or 

flowing out of the CNT is a common observation13-15, we find that by controlled variations in 

V, the oxide visibly shows a tendency to flow in-between the graphitic shells of CNT (Supp. 

info : Text S3). A tendency for the encapsulate to exist in-between the graphitic shells was 

observed during routine TEM characterization of these oxide filled CNT27.  However, real 

time observation of this phenomenon during I-V scans further confirms that for Cr2O3 in 

molten form, the surface tension conditions are conducive for it to flow in sub nanometer 

scale.   

For confirming the presence of Cr2O3 is sheet stage, the  amplitude of the voltage was 

increased such that the nano crystals and beads  formed within the CNT either flow out from 

the contact end, or evaporate. To obtain this state, V is intentionally increased well above VP 

to ensure that no crystals or beads are seen across the length of the CNT and a seemingly 
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empty CNT is left.  A representative  is shown in the left panel.  The ED patterns recorded on 

the enclosed segment of the CNT  is shown in the right panel of Figure 3d. This confirms the 

presence of the chrome oxide in the form of ultra thin sheets within CNT.   (Supp. Info : 

Figure S1  & Video S4)    

Here it is important to note that due to the resolution issues in TEM imaging while 

performing electrical transport measurements, the encapsulate in the form of  thin oxide 

sheets cannot be as clearly imaged as for the situation in which it is in the form of beads or 

nano crystals within the CNT. It is also important to image a broad segment of the CNT 

during I-V scans, in order to track the morphology of the encapsulate across its length. 

However for seemingly empty tube under both slow or fast scan, ED shows presence of 

chrome oxides. 

The possibility to form a thin oxide sheet in a controlled manner during I-V scans is a 

particularly interesting observation.  Since Cr2O3 is not a typical 2-dimensional material that 

can be easily exfoliated into sheets similar to graphene or MoS2,  the controlled variation of 

V with proper utilization of self heating can be a route to form and preserve ultra thin sheets 

of Cr2O3 and possibly other functional materials inside CNT. This can be particularly relevant 

for exploring interface effects in oxides31.  

Snapshots presented in Figure 2 and 3 confirm that the filled CNT in suspended 

geometry, under controlled bias can act as a nano-furnace, in which beads, nano-crystals or 

sheets of Cr2O3 can be fabricated and preserved. The generic nature of this behaviour points 

towards the possibility of achieving the same in other functional materials. For instance, a 

filled CNT can easily be patterned to lie over a trench in suspended geometry, similar to what 

was achieved for pristine CNT by Pop et.al1 and the functional magnetic oxide can be 

reshaped/ restructured by controlled voltage modulations, as shown here. This can have 

significant implications in on-spot formation of desired phase/ morphology, as oxides are 
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known to exhibit deterioration in their functional properties during device fabrication 

procedure16.           

From the I-V data collected over a large number of filled CNT, we find some 

interesting correlations between current flowing in the CNT and various morphological 

phases of the encapsulate. We observe that for a given voltage, the current flowing in the 

CNT is systematically larger when the encapsulate is in the form of beads or crystals as 

compared to the case when it is in the form of a scanty nano wire. The rise in current, when 

the encapsulate is in different morphological phases, is observed in both experimental 

protocols, the slow and the fast  I-V scans.   

3.4 : Restructuring of the encapsulate  and current enhancement    

  We first discuss current enhancement in various stages of the encapsulate prepared 

and preserved following a slow scan protocol.  For these measurements,  I-V scans  limited to 

±1 Volt is recorded at the initial stage, when the oxide is in the form of nano wire. Thereafter 

the encapsulate is intentionally converted to beads (or crystals) using a slow scan protocol 

and this phase is preserved by switching off the bias.  Waiting for a sufficiently long time 

(after switching off the bias) enables thermal stabilization of the CNT. Thereafter, I-V scan, 

limited upto ±1 Volt’ is again recorded. The reason to limit the bias voltage upto ±1V is that 

voltages of this magnitude do not further change the existing morphological phase.  Such 

limited scans, recorded at different states of the encapsulate are shown in Figure 4a,  

depicting that the current for a given voltage is systematically higher when the encapsulate is 

in the form of beads and crystals. 

   To explore the correlation between restructuring of the encapsulate and enhancement 

in the current, we further  investigated the effect of faster heating time scales and recorded I-

V scans while the encapsulate changes morphology.  This was achieved following the fast 
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scan protocol in which voltage pulse of the type (0 upto ±Vmax) are ramped for a very short 

time (Figure 4b).  Here each voltage cycle (say +2 to -2 volts indicated in purple color in 

Figure 4b) is ramped within a few millseconds, which is essentially the holding time of the 

bias voltage during each ramp. This results in correspondingly shorter Joule heating times.  In 

these fast scans, for voltage pulse in which Vmax > 1 volt, the encapsulate changes its 

morphology, similar to what one also observes in a typical slow scan.  Fast scans lead to a 

different pattern of formation of beads and nanocrystals as compared to patterns seen in slow 

scans.  However, all the core observations including a systematic enhancement in the current 

remain the same (Figure 4b & Supp. Info: Figure S2).  

  

 

 

 

 

 

Figure 4 : I-V scan recorded using different protocols (a)  I vs V  limited upto ±1 Volts,  at 

different stages of the encapsulate. These stages have been prepared following a slow scan protocol 

(b) I-V scans, following fast scan protocol for shorter heating times, covering ±Vmax  within a few 

milliseconds.   

 

Overall, data in Figure 2e and Figure 4 indicate that there is an enhancement in the 

current when systematic restructuring of the encapsulate takes place. However, from the 

statistics collected over a large number of CNT, we find that the magnitude of this current 

enhancement can be different for CNT with varying diameters lengths and filling fractions.  
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In order to investigate the possible reasons for the observation of current enhancement 

in filled CNT, We first compare the I-V scans in pristine CNT and filled CNT so as to isolate 

the possible role of the encapsulate, particularly when it restructures. We take into account  

both intrinsic factors (related to the dimension/defect density in the graphitic shells of the 

individual CNT) as well as the geometry related factors (related to the layout of the nano 

circuit)  so as to understand the possible reason of current enhancement.   

3.5 :   I-V scans : Pristine vis a vis filled CNT   

   We first recall the I-V characteristics investigated in the past for CNT1-7. Here a key result 

is that as a function of applied voltage, current is higher for the CNT with larger diameter and 

shorter length4.  In addition, each graphitic shell can have random defects, which also 

influences the current flowing in the CNT. These random defects can get annealed out during 

I-V scans when Joule heating driven temperature rise is sufficient. Such random effects 

associated with the graphitic shells are likely to be present in both pristine and the filled 

CNT. Annealing of such defects can give rise to reduced carrier scattering and slightly 

enhanced current in both cases. Thus value of VP and Ip is likely to vary with the length, 

diameter and defect density1-5  corresponding to  each CNT; filled or pristine.   

 Apart from the above mentioned factors, a key difference between filled and pristine 

CNT is that each filled CNT may have different extent of filling in its as-prepared stage. In 

addition, contact resistance/ area can also vary significantly for each I-V scan.  Thus it is non-

trivial to isolate the various contributions related to dimension factor, defect density and 

amount of filling  and quantify the enhancement in current, particularly while measuring two 

probe I-V scans with simultaneous TEM imaging.  It is also practically difficult to locate a 

pristine and a filled CNT of similar dimensions. 
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 However, we compare I-V scans of one pristine ( red dots) and one filled ( blue dots)  

of approximately similar diameter in Figure 5a.  Both I-V scans are recorded under slow 

scan protocol. Here a normalized quantity I/I500mV is plotted against the bias voltage V for 

each CNT. This normalization  in current enables us to get rid of variations in dimensions as 

well as the contact resistance. Here I500mV (‘I’ measured at applied bias V~500 mV) for 

normalization was chosen for two reasons. (i) For voltage scans upto 500 mV, the contact 

resistance is unhysteretic and reproducible over multiple scans. (ii) voltage scans upto 500 

mV  do not lead to any significant self heating  that can lead to morphological phase changes 

in the encapsulate. These factors are crucial for a meaningful comparison of current 

enhancement in filled and the pristine CNT. The maximum value of the normalized current  

in I/I500 mV  vs V  graph  is    “Ip/I500 mV”.  This value is indicative of the “current enhancement 

factor” for individual CNT in any I-V scan on a CNT, irrespective of its dimensions and 

contact resistance value. These values are highlighted by arrows for both CNT in Figure 

5(a).   

As evident from the Figure 5a, both filled and pristine CNT exhibit a peak like 

structure in I-V pattern, which is expected for a CNT under bias in suspended geometry1.   

However, the value of Ip/I500 mV is about 55 for the filled CNT and 20 for the pristine one. 

This data again shows a substantial enhancement in the current for the filled CNT, which is 

approximately three times the length of pristine CNT and also slightly less in diameter.  It is 

also to be noted that longer CNT in hanging geometry are seen to display lower threshold 

value Vp, at which  maximum current IP  is reached.  However, in this case we find that the 

filled CNT also exhibits  approximately similar Vp.   
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Figure 5: Current Enhancement Factor of filled CNT : (a) Comparison of the normalized 

current (I/I500 mV)  as a function of bias voltage(V) for a  filled CNT and a pristine CNT.  The 

maximum value of normalized current (Ip / I500 mV) in filled CNT is about three times in 

magnitude as compared to the pristine one.   Normalized I-V scans for a number pristine and 

filled CNT are shown in (b) and (c).    Normalized  IP as a function of diameter is shown in (d) for a 

number of filled and pristine  CNT .  The length of the individual CNT in each case is also indicated 

in beside each data point.  Data shown in (d) further confirms that the average value of normalized IP 

for the filled CNT is significantly large irrespective of length and diameter.  

I-V data on a number of  pristine and filled  CNT of various diameter and length is 

shown in Figure 5b & 5c respectively.  We observe that for pristine CNT, the rise in 
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normalized current starts to occur ~ 1 Volt.  The slope at which current rises as well as the 

value Ip and Vp vary, depending on the dimension of individual CNT as well as defect density 

associated with the graphitic shells. For filled CNT, the rise starts to occur at a relatively 

higher value ~ 1.5 Volt, which also coincides with the restructuring of the encapsulate as 

observed during in-situ TEM imaging. As evident from the Figure 5c, current rises at much 

faster rate and normalized Ip  is significantly larger.  For some filled CNT, the voltage was not 

scanned beyond VP so as to preserve the crystal or the beads for recording ED pattern. 

However the trend in the rise of the current indicates even superior current enhancement 

factor (blue diamonds in Figure 5c).  

Normalized IP (or the current enhancement factor) obtained from individual I-V scans 

in each case, as a function of diameter is shown in Figure 5d . It falls within a certain range 

(10-20) in case of pristine and between 40-80 in case of filled ones. These data confirms that 

the average value of maximum current flowing in the filled CNT significantly larger 

irrespective of dimensions and defect density factor.  It is to be noted that all the data shown 

in Figure 5, (for comparing the current enhancement factors) are recorded following identical 

experimental protocol of slow I-V scans. Qualitatively similar results were observed during 

fast scans (not shown here) as well.    

As is evident from Figure 5, large enhancement in current observed in filled CNT 

cannot be explained only within the framework of variations in the dimension of the CNT or 

the presence of the random defects in its graphitic shells. (Supp. Info : Text S4)  The range of 

current rise due to annealing of random defects associated with the graphitic shells can be 

also judged from Figure 5d. The data contained in Figure 5(a-d)  brings out that defect 

annealing of the graphitic shells  exists in both pristine and the filled CNT,  as both  exhibit a 

sharper rise in normalized current, roughly above  1Volt, where Joule heating  becomes 
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significant. However current rises at much faster rate for the filled CNT and the normalized IP 

is also much larger in magnitude.  .  

Regarding the enhancement of the current, another possibility is that of current 

flowing through the encapsulate, apart from the graphitic shells of the CNT during I-V scans.  

However, here a nano scale insulator is encapsulated  within a metallic multiwall CNT. For a 

metallic encapsulate, such as the case of Fe filled CNT13, possibility of current flowing 

through  the metallic Fe core can  be taken into account.  However, considering the insulating  

nature of the encapsulate, (and for the geometry such as shown in Figure 1b during I-V 

scans)  it is reasonable to assume that the current primarily flows through the  graphitic shells 

of the CNT. ( Supp. Info S5)  

Thus the situation in our case is that of a nano scale insulating oxide  inside a metallic 

CNT  and during I-V scans we observe a significant enhancement in current flowing through 

the filled CNT vis-a-vis  pristine CNT. This enhancement does not seem to arise from only 

the dimension factor or defect density associated with a particular CNT.  In the following 

section, we discuss a possible scenario related to the heat sinking mechanism in our filled 

CNT that can lead to the observed current enhancement.   

3.6 :  Pristine vis a vis  filled CNT in suspended geometry  : Heat sinking mechanism   

Considering the lay out of the nano circuit during I-V scans, (which is a geometry 

related factor) we recall that the current flowing  in a suspended CNT is slightly smaller in 

comparison to the case when the same  is lying on the substrate1. Here the suspended CNT is 

seen to exhibit a peak like structure in I-V scans whereas the one lying on the substrate shows 

a saturating behaviour1.  These features are understood to arise from better heat sinking 

mechanism due to the presence of the substrate1. It is also observed that a pristine CNT in 

suspended geometry during I-V scans usually breaks from the middle on approaching VB, as 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

20 

 

the Joule heating driven temperature rise is maximum at this location2-3.  At the contact ends, 

the metallic electrode provide better heat sinking mechanism.  From I-V scans  upto VB  on a 

number of filled CNT, we observe that unlike pristine CNT, the filled ones do not usually 

break from middle on approaching VB. These features indicate that the heat dissipation 

mechanism of filled CNT in our case, though still in suspended geometry, needs to be 

investigated. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 (a)-(d) Schematic of Cr2O3 filled CNT  (side and top view ) depicting various morphological 

phases of the encapsulate being formed under progressively increasing bias  

We first note that in our case, the electrically insulating encapsulate is in thermal 

contact with the graphitic shells of the CNT. The filled CNT is shown schematically in 

Figure 6a where the encapsulate (green) is in the form of scanty polycrystalline nano-wire 

within the core cavity, with an occasional trapping in-between the graphitic shells. This 
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depiction is for as-prepared filled CNT under zero bias.  Figures 6b-6d display the effect of 

systematically increasing bias voltage and associated temperature rise due to Joule heating. 

Here the encapsulate, (through its thermal contact with the self heated CNT) melts and 

expands within the core cavity as is clearly observed in simultaneous real time TEM imaging 

This is followed by the systematic formation of beads and nano crystals. (Figures 1-2, Video 

S1-S4).   This procedure is likely to create a more uniform coating of the encapsulate within 

the core cavity of the CNT, leading to a better thermal contact with the graphitic shells.   On 

increasing the applied bias further, the nano-crystals, thus formed, re-melt and further 

expand, resulting in the common observation of more and more material flowing out of the 

CNT at the contact ends  until there is no visible particle observed within the core cavity.  

However, a thin layer remains within the core cavity and in –between the graphitic shells ( 

Figure 3c -3d). Since the graphitic shells are in thermal contact with the heat sink (the Au- 

electrodes) the uniform coating of the oxide encapsulate is likely to provide additional / better 

heat sinking mechanism than what exists for a pristine CNT. This heat sinking to the Au –

electrodes can be direct or through the graphitic shells of CNT.  

Thus I-V scans on filled CNT indicate that various forms of the insulating filling 

(wire- beads-crystals -sheets) are likely to act as the heat sinks of varying capacity, providing 

additional heat dissipation routes along the length of the CNT and contribute in larger current 

flow for a given voltage, as  we observe.  This is also corroborated by I vs Time of Figure 2e, 

clearly exhibiting a steeper rise in current when a morphological phase changes take place in 

the filling.  The magnitude of this substantially enhanced current in the case of filled CNT 

also indicates that it would be interesting to investigate the thermal conductivity32 of each 

morphological phase and its contribution in the current carrying capacity of the CNT.    

3.7 : Magnetic characterization  of  Cr2O3 filled CNT 
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Having established that on–spot morphological phase changes are possible for this 

functional magnetic oxide using CNT in suspended geometry observation of associated 

current enhancement, we have also explored the magnetic properties of as–prepared filled 

CNT using SQUID magnetometer. Figure 7 shows the magnetic characterization of Cr2O3 is 

in the form of nanowires within CNT.  Here, bulk magnetization (M) is measured as a 

function of magnetic field (H) and temperature (T).  Figure 7a shows the M-H isotherm 

recorded at 10 K depicting a non-saturating behaviour of M upto the field of the order of 5 

Tesla, indicative of AFM interactions. This also confirms that our sample does not contain 

ferromagnetic catalyst particles, which generally adhere to CNT during the routine synthesis, 

using Chemical Vapour Deposition30 (Supp. Info: Text S6). The M vs T data measured from 

310 K down to 5K in the field cooled (FC) state, is seen to increase with decreasing 

temperature, as shown in  Figure 7b. This behaviour is qualitatively similar to what is seen in 

nanoscale antiferromagnets in general, and in nanoparticles and nanowires of Cr2O3
33-35.  

Earlier studies have indicated that in ultra thin film form, when Cr2O3 appears as a surface 

layer in a composite system, comprising of a ferromagnetic core (CrO2) and 

antiferromagnetic shell (Cr2O3), its magnetoelectric properties are enhanced near the room 

temperature24. In addition, it also develops traits of piezomagnetism25 or stress induced 

magnetism, when appears as ultra thin surface layer in this composite26.  We investigated if 

some of these traits, especially signatures of stress induced moments, are still present when 

Cr2O3 is confined within CNT. These features are explored through Thermo-Remanent 

Magnetization (TRM) measurements. 

It is interesting to recall that the magnetization dynamics of nano scale antiferromagnets 

is a heavily debated topic in literature33. For such systems, measuring The TRM 

measurements (as a function of time ‘t’ or temperature ‘T’) can reveal subtle magnetic 

features, which are not clearly visible in routine in-field magnetization measurements33,35. In 
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addition, the TRM, which basically represents the magnetization relaxation dynamics, after 

the removal of the applied magnetic field, carries a wealth of information about the 

associated magnetic phase26,35. This can be crucial for nano scale antiferromagnets which 

have large number of uncompensated surface spin, leading to a variety of magnetic phases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Magnetic characterization of as-prepared CNT:  (a) shows MH isotherm at 10K, 

exhibiting non saturating magnetization up to 5 Tesla. This also confirms the absence of 

ferromagnetic catalyst impurities in our sample.(b)Magnetization as a function of temperature at  

H = 0.1 Tesla.(c) Main panel shows TRM as a function of temperature, indicative of robust pinning 

mechanism leading to a fairly constant TRM value in a wide temperature range. The inset shows a 
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change of slope around 280K, which is not clearly visible in routine or in-field M vs T measurements.  

(d)  shows the TRM as a function of time, exhibiting slow relaxation phenomenon, following a 

logarithimic dependence (inset).  

In Figures 7c & 7d, the TRM data is presented which has been obtained with the 

following protocol. First the sample is cooled in the presence of magnetic field, referred to as 

Hcool from 310 K down to 10 K. At 10 K, the magnetic field is removed and the TRM is 

measured  in  zero magnetic field either (i) as a function of  increasing temperature T, from 

10 K to 300 K,  or (ii ) as a function of  time ‘t’ up to a couple of hours.  

Figure 7c shows TRM as a function of temperature showing a finite value over a wide 

temperature range right up to the room temperature. This indicates a magnetization pinning 

mechanism which is fairly robust in nature.  The inset shows the same in the expanded 

region, between 240-320 K exhibiting a subtle change of slope around 280K. This feature in 

the TRM data is not as clearly seen in routine (in –field) M vs T data.  These data also brings 

out the utility of TRM measurements in the cases of nano scale AFMs. It is interesting to 

recall that a similar feature in M vs T in isostructural compound α-Fe2O3 is associated with 

the onset of piezomagnetism or stress induced moments36. While bulk Cr2O3 does not exhibit 

this feature, in ultra thin film form, it has shown the possibility of piezomagnetic moments 

due to strain effects arising from lattice mismatch26. Observation of substantial TRM along 

with a change of slope in TRM vs T  around 280 K  indicates the possibility of stress induced 

moments when Cr2O3 is confined within CNT in the form of nano -wires .  

 Figure 7d shows TRM as a function of time, measured over a time period of about 1.5 

hours, exhibiting slow relaxation phenomenon. The inset shows that the magnetic relaxation 

or the time dependence of the TRM is logarithmic in nature.  This is different from 

exponential decay, seen in Fe filled CNT37, indicating unusual magnetic properties of the 

oxide encapsulate within CNT. These data further confirm unusual magnetic state of Cr2O3, 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

25 

 

particularly through the observation of a long lived remanance26, which can be associated 

with the onset of stress induced moments in this system.     

More importantly, the functional magnetic properties exist near the room temperature 

where nano spintronic devices are expected to work. It is also evident that its magnetic 

properties, when it systematically forms as beads, nano crystals and sheets inside an 

individual CNT will be interesting from both theoretical and experimental point of view. The 

magnetic properties on individual CNT can also be explored using the technique of micro 

Hall Magnetometry38 , and such measurements are planned for the future. 

4. Conclusion 

In summary we show the possibility of changing the morphological phase of a multi 

functional magnetic oxide encapsulated and protected inside carbon nanotubes. This is 

achieved via modulations in amplitude, rate and holding time of the bias voltage during two 

probe I-V measurements on individual CNT in suspended geometry and points towards the 

possibility of achieving the same in other functional oxides. We further demonstrate that the 

presence of an insulating filling inside the CNT serves as a pathway to heat sink or acts as a 

substrate within the CNT, leading to the enhancement in current flowing through the CNT. 

This can be promising for enhancing the current carrying capability of CNT as interconnects 

and for better thermal heat management in nano electronics.  Novel nano-spintronic devices 

can be envisaged, comprising of unique magnetic and electrical properties of the oxide 

encapsulate, which is protected inside the graphitic shells of carbon. In addition, graphitic 

shell of the multilwall or single wall carbon nanotubes, can provide either metallic or 

semiconducting contact according to a specific application for device patterning.    

Supporting Information  

Text S1-S6, Figures S1-S2, Video S1- S4 have been given as supporting information.  
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