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Abstract

We consider Isogeometric Analysis in the framework of the Galerkin method for the spatial approximation

of cardiac electrophysiology models defined on NURBS surfaces; specifically, we perform a numerical com-

parison between basis functions of degree p ≥ 1 and globally Ck-continuous, with k = 0 or p − 1, to find

the most accurate approximation of a propagating front with the minimal number of degrees of freedom.

We show that B-spline basis functions of degree p ≥ 1, which are Cp−1-continuous capture accurately the

front velocity of the transmembrane potential even with moderately refined meshes; similarly, we show that,

for accurate tracking of curved fronts, high-order continuous B-spline basis functions should be used. Fi-

nally, we apply Isogeometric Analysis to an idealized human left atrial geometry described by NURBS with

physiologically sound fiber directions and anisotropic conductivity tensor to demonstrate that the numerical

scheme retains its favorable approximation properties also in a more realistic setting.

Keywords: Isogeometric Analysis, cardiac electrophysiology, surface PDEs, high-order approximation

1. Introduction

The heart is a muscular organ that contracts due to a signal originating from the heart’s natural pace-

maker, the sinoatrial node, that enters the cardiac muscle through the His–Purkinje system. Once the

electrical signal has entered the muscle, it travels on the cell membrane of the cardiac muscle cells (car-

diomyocytes) and passes from cell to cell through the gap junctions. Under the so-called action potential the
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individual cells rapidly become depolarized as positively charged ions enter the cell, triggering the contrac-

tion of the cellular contractile units called sarcomeres. After a period of contraction the positively charged

ions are pumped out of the cells and they repolarize to their resting potential, allowing the muscle to relax

and wait for the next signal to contract again after a refractory period during which no excitation can take

place. For insight on the physiological processes of cardiac activation, we refer to [35].

Mathematical modelling of electrophysiology has shown great promise in being a viable diagnosis and

prediction tool that in the future may be used to guide clinical decision making [20, 53, 55, 64]. The standard

mathematical model for cardiac electrophysiology is the bidomain model, where the tissue is conceptually

divided into the intracellular and extracellular spaces. A formal homogenization procedure is followed to

reduce away the microstructure of the cells and leads to a system of two reaction-diffusion equations for

the intracellular and extracellular potentials. A further assumption of equal anisotropic conductivities in

the intra- and extracellular compartments leads to a simplified formulation in terms of the transmembrane

potential that is defined as the difference of the two potentials, called the monodomain equation, requiring

only the solution of a single reaction-diffusion equation. For details on the derivation of the equations and

further bibliography on their mathematical approximation, see [19, 20].

The bi-/monodomain equation(s) need to be completed by a model describing the ionic currents passing

through voltage-sensitive protein structures called ion channels that give rise to the action potential. Since

any single cell has hundreds of channels that regulate the passage of numerous different molecular species

through the cell membrane, a large number of different membrane models of varying complexity have been

developed in order to describe the cellular excitation process at increasing levels of complexity. The end

result is a (typically very stiff) system of ordinary differential equations that needs to be coupled to the

bi-/monodomain equation(s). The derivation and analysis of the membrane models we consider in this paper

can be found in [42].

At the mesoscopic level, cardiac tissue has a highly anisotropic structure. The cardiomyocytes are

organized into laminar sheetlets, where the muscle cells are tubular in shape and roughly oriented in the same

direction locally, called the (mean) fiber direction. Embedding the muscle cells is a gelatinous interstitial

foam supported by a fibrous extracellular matrix formed mainly of collagen proteins that is synthesized by

cardiac fibroblast cells. In the two atria (antechambers of the heart) the walls are considerably thinner than

in the ventricles, yet exhibit similar anisotropic structure that is less well documented and understood due

to its more complex nature [65]. In many cases the atrial walls are assumed to be thin enough such that

a typical simplification is to consider them as surfaces (two-dimensional manifolds) and to formulate the

bi-/monodomain equation(s) as surface PDEs. This is the approach taken in this work. For a recent review

on the challenges of computational modelling of the atria necessary to capture other physiological aspects

that are not treated in this work, we refer to [22].
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1.1. Challenges in numerical approximation of electrophysiology

While the numerical discretization of the bi-/monodomain equation(s) and the related membrane model

is straightforward, several numerical difficulties are known to exist. The solutions of these equations exhibit

travelling pulse solutions with sharp wavefronts, especially for the more realistic stiff membrane models

found in literature. Unless sufficiently accurate resolution of the travelling front is performed, inaccurate

propagation velocity and/or dynamics are obtained and as a result incorrect predictions about the cardiac

activation pattern are made. Since the front propagation velocity depends on its curvature, in the sur-

face PDE formulation it is especially important to use a sufficiently smooth function space for the spatial

approximation that minimizes the effect of the numerical grid.

Numerical approximation of the bi-/monodomain equation(s) still relies heavily on low-order spatial

approximations combined with highly refined uniform meshes in order to capture correctly the front propa-

gation. In full-heart human electrophysiology simulations such “overkill” meshes lead to systems of hundreds

of millions of degrees of freedom. Approaches to improving the front approximation without excessive global

refinement that have been suggested in the literature include modifying the quadrature rule for the ionic

currents [43], applying mesh adaptivity near the front [9, 18, 61], and more recently using high-order Spec-

tral Element discretizations [12]. In this work, we investigate an approach similar to the latter, except that

we replace orthogonal polynomials with B-splines or Non-Uniform Rational B-splines (NURBS) [52] in the

context of Isogeometric Analysis (IGA) in the framework of the Galerkin method [23, 38].

1.2. Numerical approximation of electrophysiology using IGA

IGA has been nowadays successfully used in a broad range of applications in virtue of its versatility and

geometrical advantages. Indeed, IGA is based on the Isogeometric concept, a reversal of the Isoparametric

paradigm, which facilitates the encapsulation of the exact geometrical representation into the approximation

of the PDEs; specifically, in the Isogeometric concept the basis functions that are used for the geometrical

representation of the computational domain of the PDEs are then also used for the approximation of their

unknown solution fields. Since a broad range of geometries of practical interest are represented exactly

by B-splines or NURBS, IGA commonly employs these as basis functions both in Galerkin [8, 38] and

collocation [5, 59] methods. NURBS basis functions are built from B-splines, piecewise polynomials of

degree p and global continuity Ck, with k ranging from 0 to p− 1. The particularity of choosing the global

regularity k of the basis functions together with the degree p is related to the k-refinement procedure,

a combination of the p- and h-refinement procedures exclusive of NURBS and often used in IGA [23] to

obtain fine meshes with high order continuous basis functions of degree p. In this respect, the advantages

of solving PDEs with regular solutions by means of high order continuous basis functions over their C0-

continuous counterparts have been extensively studied in the IGA community, especially in the framework

of the Galerkin method; see e.g. [2, 24, 27, 30, 39, 40].
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In this work, we consider the spatial approximation of the PDEs arising in electrophysiology models,

specifically for the monodomain equation, by means of NURBS-based IGA in the framework of the Galerkin

method with particular emphasis on the role of using NURBS basis functions of degree p and high order

global continuity k = p− 1. With this aim, we perform a numerical study of the front propagation velocity

when considering B-spline basis functions of different degrees and global continuity, especially highlighting

the advantages of the k-refinement procedure typical of IGA; specifically, we consider both the Mitchell-

Schaeffer [46] and Aliev-Panfilov models [3]. In addition, for the latter electrophysiology model, we focus on

the role of high order continuous B-splines basis functions in the spatial representation of spiral waves, with

particular emphasis on the accuracy and number of degrees of freedom associated to the discrete problem.

We remark that, to the best of our knowledge, this is the first accuracy study for IGA in the context

of cardiac electrophysiology; indeed, existing works [14, 15] rather focus on the definition of efficient and

scalable preconditioners for the bidomain model [51, 60].

Throughout this work, we assume that the atria can be considered as thin-walled and thus are modeled

as two-dimensional surfaces with anisotropy present only in the tangent plane. This assumption at first

sight ignores the inherent transmural anisotropy that is present in the fiber structure of the atrial walls,

but recent works [13, 21] have shown that a proper homogenization treatment of the transmural anisotropy

allows the definition of an effective conductivity tensor that recovers the mid-wall activation pattern with

sufficient accuracy. In this respect, IGA provides a natural framework for the spatial approximation of

elecrophysiology models defined on surfaces, specifically when these are defined by NURBS, as highlighted

in [6] and [28]. While sophisticated ionic models for the electrophysiology of the atria exist — e.g. the

Nygren-Fiset-Firek-Clark-Lindblad-Clark-Giles model with 29 variables [48] or the Courtemanche-Ramirez-

Nattel model with 21 variables [26] — in this paper, we limit ourselves to consider the monodomain problem

with the Mitchell-Schaeffer model in order to better highlight the approximation properties of IGA. We

expect however that the benefits of the IGA approximation straightforwardly extend to more physically

meaningful models for atrial electrophysiology [32].

This paper is organized as follows. In Sect. 2 we provide the mathematical formulation of the monodomain

problem as surface PDEs, some examples of membrane models that can be used to simulate atrial activation,

namely the Mitchell-Schaeffer and Aliev-Panfilov models, and briefly recall their spatial discretization by

using NURBS-based IGA. In Sect. 3 we perform a convergence study of the discrete conduction velocity

in order to demonstrate the improved accuracy of propagation velocity using IGA with high order con-

tinuous NURBS basis functions. We also demonstrate certain low order continuous spatial discretizations

may exhibit grid imprinting in the sense that complex spiral wave dynamics tends to incorrectly follow the

numerical gridlines, whereas sufficiently high order approximations correctly approximate the periodic dy-

namics without the need to significantly increase the size of the discrete problem. In Sect. 4 a construction

of an idealized human left atrium geometry using NURBS is performed to consider a realistic test case. An
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indicative fiber geometry is prescribed on the atrial surface and used to perform tests on the effect of spatial

accuracy for NURBS-based IGA. Conclusions follow in Sect. 5.

2. Numerical approximation of the cardiac electrophysiology problem

2.1. Single-cell electrophysiology models

Models for the cardiac excitation at the cellular level are typically based on the Hodgkin-Huxley formalism

of ionic currents passing through the cell membrane. For a model that contains K different ion channels for

different ionic species (the most important ones being K+, Na+, and Ca2+), a system of ordinary differential

equations expressing the conservation of charges reads [19]:





Cm
dv

dt
+ iion(v,w, c) = iapp(t),

iion(v,w, c) =
K∑

k=1

gk(c)
J∏

j=1

w
pjk

j (v − vk(c)) + I0(v, c),

dw

dt
= mw(v,w, c),

dc

dt
= mc(v,w, c).

(1)

The unknowns of the problem are v the transmembrane potential between the intra- and extracellular spaces,

wj the J so-called recovery variables taking values in [0, 1] that regulate the transmembrane currents, and

ck the K intracellular concentrations of the different ionic species. The model parameters are Cm the

local membrane capacitance, iapp the applied external current, and vk the reversal potential of the kth

ionic species. In addition, evolution equations need to be prescribed for the recovery variables and ionic

concentrations, as symbolically indicated in the latter two relations of Eq. (1).

In this work, we use the simpler phenomenological models of Mitchell-Schaeffer [46] and Aliev-Panfilov [3],

which only have two currents, inward and outward, one recovery variable w and no explicit ionic concentra-

tion variables. The general form of these simplified single-cell models reads:





Cm
dv

dt
+ iion(v, w) = iapp(t) in (0, T ),

dw

dt
= grec(v, w) in (0, T ),

v(0) = v0,

w(0) = w0,

(2)

where v0 and w0 are the initial values of the transmembrane potential and recovery variables, respectively.

For the Mitchell-Schaeffer model we have:

iion(v, w) :=
v

τout
+

w

τin
v2(v − 1) and grec(v, w) :=





1 − w

τopen
if v < vrec,

−w

τclose
if v > vrec,

(3)
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while for the (linearized) Aliev-Panfilov model:

iion(v, w) := kv(v − a)(1 − v) − vw and grec(v, w) :=

(
ǫ0 +

µ1w

µ2 + v

)
(−w − kv(v − b− 1)). (4)

The parameters τout, τin, τopen, τclose, and vrec define the Mitchell-Schaeffer model, while k, a, b, ǫ0, µ1,

and µ2 the Aliev-Panfilov model.

2.2. Monodomain equation for tissue-level activation

Starting from the single-cell model (2), we consider the monodomain problem for the tissue-level activa-

tion defined in the computational domain Ω ⊂ R
d, with d = 2 or 3. In the case d = 3, we consider that Ω is

a smooth submanifold of codimension one with regular boundary (an open surface), while for the case d = 2

we consider that Ω is of codimension zero and is a bounded subdomain in the plane with regular boundary.

Let us introduce the function spaces L2(Ω) of square integrable functions in Ω, L∞(Ω), and the Hilbert

space H1(Ω); see [1]. Then, the general form of the monodomain problem with the Mitchell-Schaeffer or

Aliev-Panfilov model(s) reads:

find v, w : Ω × (0, T ) → R :





Cm
∂v

∂t
= ∇Ω · (D∇Ωv) − iion(v, w) + iapp(t) in Ω × (0, T ),

boundary conditions on ∂Ω × (0, T ),

dw

dt
= grec(v, w) in Ω × (0, T ),

v(0) = v0 in Ω,

w(0) = w0 in Ω,

(5)

which is a system coupling a PDE for the transmembrane potential v and an ODE for the recovery variable

w. The second order tensor function D ∈ L∞(Ω;Rd×d) is symmetric, uniformly elliptic, and represents

the anisotropic conductivity whose expression will be specified later. The differential operator ∇Ω indicates

the surface gradient operator, i.e. ∇Ωφ : Ω → R
d for φ ∈ C1(Ω); similarly, ∇Ω· stands for the surface

divergence operator, i.e. ∇Ω · z : Ω → R for z ∈
[
C1(Ω)

]d
(see e.g. [10, 28, 29]). Suitable boundary

conditions (essential or natural) must be specified on the boundary ∂Ω of Ω, provided that the surface is

not closed (∂Ω 6= ∅).

We consider the weak formulation of the PDE in the monodomain problem (5) and define the trial space

for the transmembrane potential V ⊂ C0([0, T ];L2(Ω)) ∩ L2((0, T );H1(Ω)) and the test space V0 ⊆ H1
0 (Ω),

which enforces the essential boundary conditions, the latter in homogeneous form; moreover, we assume the

recovery variable w ∈ W, with W a suitable Bochner function space, e.g. such that W ⊆ C0([0, T ];L∞(Ω))

is sufficient to guarantee existence of weak solutions to the Mitchell-Schaeffer model [44], as well as to the

Aliev-Panfilov model. Then, the nonlinear PDE appearing in problem (5) reads in weak formulation:

∀t ∈ (0, T ), find v(t) ∈ V :
(
φ,Cm

dv

dt
(t)

)
+ (∇Ωφ,D∇Ωv(t)) + (φ, iion(v(t), w̃(t))) − (φ, iapp(t)) = 0 ∀φ ∈ V0,

(6)
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Figure 1: Examples of univariate B-spline basis functions
{

N̂i(ξ)
}nbf

i=1
in Ω̂ = (0, 1) obtained from the knot vectors{

{0}p+1,

{
1
5

}p

,

{
2
5

}p

,

{
3
5

}p

,

{
4
5

}p

{1}p+1

}
for the degrees p = 2 (top) and p = 3 (bottom) and global Cα–continuity

with α = p − 1 (left) and α = 0 (right); the number of non-zero elements is ñel = 5 and the number of basis functions are
nbf = 7, 11, 8, and 16 from (a) to (d), respectively.

with v(0) = v0 in Ω, for any given function w̃(t) ∈ W, where (·, ·) indicates the standard L2(Ω) scalar

product. Finally, the full coupled monodomain problem (5) reads:

∀t ∈ (0, T ), find v(t) ∈ V, w(t) ∈ W :




(
φ,Cm

dv

dt
(t)

)
+ (∇Ωφ,D∇Ωv(t))

+ (φ, iion(v(t), w(t))) − (φ, iapp(t)) = 0 ∀φ ∈ V0,

dw

dt
(t) − grec(v(t), w(t)) = 0 in Ω,

(7)

with v(0) = v0 and w(0) = w0 in Ω. We assume that the applied current iapp ∈ L2(0, T ;H−1(Ω)), the initial

transmembrane potential v0 ∈ L2(Ω), and the initial recovery variable w0 ∈ L∞(Ω), with 0 ≤ w0 ≤ 1 to

guarantee existence of weak solutions [11, 44] for all time.

2.3. Spatial approximation: IGA for surface PDEs

Let us assume that the computational domain Ω is a surface in R
3 and that is geometrically represented
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by means of B-splines or, more generally, NURBS ([52]). In particular, the surface Ω ⊂ R
3 is defined in terms

of the geometrical mapping x : Ω̂ → R
3, ξ → x(ξ), where Ω̂ ⊂ R

2 is a parametric domain and ξ = (ξ1, ξ2)T

a vector-valued independent variable; in addition, we assume that the geometrical mapping x is invertible

a.e. in Ω̂. By introducing suitable knot vectors Ξ1 and Ξ2, we define nbf B-spline basis functions N̂i(ξ)

in Ω̂, for i = 1, . . . , nbf , by means of the tensor product rule applied to univariate B-spline basis functions;

then, by introducing a set of nbf weights, we can derive the corresponding NURBS basis functions R̂i(ξ), for

i = 1, . . . , nbf . The NURBS domain Ω is defined by means of the geometrical mapping x(ξ) =

nbf∑

i=1

R̂i(ξ) Pi,

where Pi ∈ R
3, for i = 1, . . . , nbf , are the control points. By construction, the properties of the B-spline

and NURBS basis functions depend on the knot vectors Ξ1 and Ξ2, both in terms of the polynomial degree

p and global continuity Cα in Ω̂, with α ≥ 0. In particular, when referring to an univariate B-spline or

NURBS basis, the multiplicity m of a knot value determine the local continuity of the basis functions,

which is equal to p − m. As for example, we report in Fig. 1 some univariate B-spline basis functions of

different regularities. We finally remark that the knot vectors define a “mesh” T̂h in the parametric domain

Ω̂, comprised of nel elements Ω̂e, of which ñel are of non-zero size; correspondingly, the global mesh size in

the parametric domain is indicated as ĥ. In the same manner, in virtue of the geometrical mapping x, we

define a mesh Th on the surface Ω, with the associated global mesh size h. For a more detailed overview,

we refer the interested reader to [23, 24, 28, 52].

IGA is based on the reversal of the standard isoparametric concept [23, 38]; indeed, the same basis

functions used for the geometrical representation of the computational domain Ω are then also used to build

the trial function space of the approximate solution of the PDE. With this aim, we define the following finite

dimensional NURBS function space on the surface Ω:

Nh := span {Ri(x), i = 1, . . . , nbf } , (8)

where Ri(x) := R̂i(ξ) ◦ x−1(ξ), for i = 1 . . . , nbf , are the NURBS basis functions in the physical domain

Ω. We remark that the function space Nh can be suitably enriched by means of the so-called h-, p-, or

k-refinements procedures, the latter being particular to NURBS, for which both the polynomial degree and

the global continuity of the basis functions can be suitably elevated in the computational domain; see e.g.

[23, 24, 27]. Then, by referring to the transmembrane potential v(t) in (6) and its spatial approximation,

we introduce, with abuse of notation, the following finite dimensional trial space defined on the surface Ω:

Vh := V ∩ Nh, (9)

for which the approximate transmembrane potential can be written as vh(t) =

nv
DOF∑

i=1

Ri(x)Vi(t), being nv
DOF

the dimension of the function space Vh in terms of the spatial approximation and {Vi(t)}
nv

DOF

i=1 the set of time

dependent control variables; we remark that by reordering the indices of the NURBS basis functions and
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control variables, the full discrete solution in Nh can be rewritten as vh(t) =

nbf∑

i=1

Ri(x)Vi(t), with the vector

v(t) =
(
V1(t), . . . , Vnbf

(t)
)T

∈ R
nbf storing the control variables. We recall that in the standard Isogeometric

approach, including the case of surfaces [28], the weak formulation of the problem is recast into the parametric

domain Ω̂ for which the transmembrane potential v̂h(t) is an element of N̂h := span
{
R̂i(ξ), i = 1, . . . , nbf

}

for any given time t; after having solved the problem defined in Ω̂, then we obtain the approximate solution

vh(t) on the surface Ω by using the geometrical mapping x(ξ). Since we use NURBS-based IGA in the

framework of the Galerkin method for the spatial approximation of the first equation in problem (6), we

introduce the finite dimensional test function space V0,h := V0 ∩ Nh. Specifically, from (6), we obtain:

∀t ∈ (0, T ), find vh(t) ∈ Vh :
(
φh, Cm

dvh

dt
(t)

)
+ (∇Ωφh,D∇Ωvh(t))

+ (φh, iion(vh(t), w̃(t))) − (φh, iapp(t)) = 0 ∀φh ∈ V0,h,

(10)

with vh(0) = v0,h in Ω, for a prescribed function w̃(t) ∈ W, where v0,h is the L2 projection of v0 onto the

NURBS space Nh. Therefore, the discrete form of the spatially approximated potential equation (10) reads:

∀t ∈ (0, T ), find v(t) ∈ R
nbf :





rv

(
dv

dt
(t),v(t); w̃(t)

)
= 0,

viD
(t) = vD(t),

(11)

with v(0) = v0, where the residual vector rv

(
dv

dt
(t),v(t); w̃(t)

)
∈ R

nbf is defined by components as:

rv,i

(
dv

dt
(t),v(t); w̃(t)

)
:=

(
Ri, Cm

dvh

dt
(t)

)
+ (∇ΩRi,D∇Ωvh(t))

+ (Ri, iion(vh(t), w̃(t))) − (Ri, iapp(t)) for i = 1, . . . , nbf ,

(12)

v0 ∈ R
nbf and vD(t) ∈ R

nD are the vectors of the control variables corresponding to v0,h and the essential

(Dirichlet) data, respectively, and the vector iD identifies the nD control variables associated to the essential

boundary conditions. We remark that the spatial approximation of (10) involves the computation of integrals

corresponding to forms and functionals, for which suitable quadrature formula should be used; while different

and computationally efficient possibilities exist for NURBS-based IGA (see e.g. [4]), we use the standard

Gauss-Legendre formulas [56] with (p+1)2 quadrature nodes per mesh element for a total of nqn = (p+1)2 ñel

nodes in Th; in this manner, for a general function ϕ : Ω → R, we have

∫

Ω

ϕ(x) dΩ ≈

nqn∑

q=1

ϕ(xq)αq, where

{xq}nqn

q=1 and {αq}nqn

q=1 are the quadrature nodes and weights, respectively. For more details regarding the

spatial approximation of PDEs on surfaces by means of NURBS-based IGA in the framework of the Galerkin

method, we refer the interested reader to [28].

Next we consider the spatial approximation of the recovery variable w̃(t) ∈ W in (11) and (12) for all

t ∈ (0, T ). Two different approaches are typically used and we illustrate them for NURBS basis functions; in

9



the following, we outline a brief, formal overview of these approaches within the context of IGA. In the first

approach, one looks for an approximate recovery variable w̃h(t) ∈ Wh, being Wh ⊂ W a finite dimensional

function space; this approach is called nodal interpolation (NI) and is typically used with interpolatory basis

functions as e.g. for the Finite Element method. More specifically, when considering NURBS basis functions,

we can choose Wh := W ∩ Nh, for which the approximate recovery variable reads w̃h(t) =

nbf∑

i=1

Ri(x) W̃i(t),

being the dimension of the function space Wh generally coincident with that of Nh (i.e. nbf ) and
{
W̃i(t)

}nbf

i=1

the set of time dependent control variables such that w̃(t) =
(
W1(t), . . . ,Wnbf

(t)
)T

∈ R
nbf . We remark

that, due to the nature of NURBS basis functions, the approach is not interpolatory as the recovery control

variables do not correspond to physical points on the surface Ω. We notice that the approximate recovery

variable w̃h(t) affects the potential equation (10) through the ionic current term iion(vh(t), w̃h(t)), which

requires its evaluation at quadrature nodes for the approximation of the integrals. At least two different

possibilities have been considered in literature [43, 50] for the evaluation of the ionic current at the nnq

quadrature nodes of the mesh Th. In the first one, called state variable interpolation (NI-SVI) the potential

and recovery variables are evaluated (“interpolated”) at the quadrature nodes {xq}nqn

q=1, for which the current

is computed as:

iSVI
ion (xq) = iion

(nbf∑

i=1

Ri(xq)Vi(t),

nbf∑

i=1

Ri(xq) W̃i(t)

)
.

In the second one, called ionic current interpolation (NI-ICI), the current is first evaluated at the control

variables and then “interpolated” at the quadrature nodes by means of the NURBS basis functions as:

iICI
ion (xq) =

nbf∑

i=1

Ri(xq) iion(Vi(t), W̃i(t));

in this manner, an approximate evaluation of the ionic current is obtained at the quadrature nodes, but

the computationally expensive evaluations of the basis functions at the quadrature nodes {xq}nqn

q=1 can be

computed only once for all t ∈ (0, T ].

The second approach for the spatial approximation of the recovery variable w̃(t), called Gauss integration

(GI), consists in defining a vector w(t) =
(
W 1(t), . . . ,Wnq(t)

)T
∈ R

nnq of nqn recovery control variables

“ideally” defined correspondingly to the quadrature nodes {xq}nqn

q=1 on Ω for which the ionic current is then

evaluated, similarly to the NI-ICI case, as:

iGI
ion(xq) =

nbf∑

i=1

Ri(xq) iion(Vi(t),W q(t)).

We remark that the approach chosen for the spatial approximation of the recovery variable w(t) may

have significant consequences on the accuracy of the solution of the full coupled monodomain problem (7).

For example, in [43], the results obtained when considering the Finite Element method with NI-ICI and

GI approaches have been compared. Specifically, it was shown that the exact conduction velocity of the

10



action potential is underestimated by using the NI-ICI approach and overestimated by the GI one; in both

the cases, a significantly refined mesh was needed to obtain accurate approximations of the front velocity.

Similar behavior holds for the NI-SVI method [47], as in the case of GI. While we notice that a similar effect

can be obtained when considering NURBS-based IGA, we remark that in this paper we are mainly focusing

on the study of the effects of the continuity of the NURBS basis functions for a specific approach. For this

reason, we selected in this paper a unique approach for the spatial approximation of the recovery variable

w(t), specifically the analogous of the NI-ICI approach for NURBS basis functions. Our choice is motivated

by the simplicity and efficiency of the numerical implementation of the algorithm in combination with the

time discretization approach; in this respect, we remark that in [14], the analogous of the NI-SVI approach

is instead used for NURBS-based IGA.

For the NI-ICI approach in the context of NURBS-based IGA, we select the finite dimensional function

space

Wh := W ∩ Nh, (13)

as trial space for the approximate recovery variable wh(t). In view of the application of the NI-ICI approach

to the problem (11) for some w̃h(t) ∈ Wh, we reformulate the ionic current function iion as:

iICI
ion (v(t), w̃(t)) :=

nbf∑

i=1

Ri iion

(
Vi(t), W̃i(t)

)
,

iICI
ion (v(t), w̃(t)) :=

(
iion

(
V1(t), W̃1(t)

)
, . . . , iion

(
Vnbf

(t), W̃nbf
(t)
))T

∈ R
nbf .

(14)

Similarly, we assume that the applied current function iapp(t) can be written in the form:

iICI
app(t) :=

nbf∑

i=1

Ri iapp,i(t),

iICI
app(t) :=

(
iapp,1(t), . . . , iapp,nbf

(t)
)T

∈ R
nbf .

(15)

In this manner, the NI-ICI spatial discretization of problem (11) reads:

∀t ∈ (0, T ), find v(t) ∈ R
nbf :





rICI
v

(
dv

dt
(t),v(t); w̃(t)

)
= 0,

viD
(t) = vD(t),

(16)

with v(0) = v0, where the residual rICI
v

(
dv

dt
(t),v(t); w̃(t)

)
∈ R

nbf is defined by components using (14) and

(15) as:

rICI
v,i

(
dv

dt
(t),v(t); w̃(t)

)
:=

(
Ri, Cm

dvh

dt
(t)

)
+ (∇ΩRi,D∇Ωvh(t))

+
(
Ri, i

ICI
ion (v(t), w̃(t))

)
− (Ri, i

ICI
app(t)) for i = 1, . . . , nbf .

(17)

We remark that, even for wh(t) ∈ Wh, the spatial approximation of the equation for the recovery

variable (see the second equation in problem (7)) can be addressed in different ways. By following a
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procedure similar to NI-ICI for the recovery function grec and by indicating with ṽh(t) =

nbf∑

i=1

Ri(x) Ṽi(t) the

L2 projection onto the NURBS space Nh of a prescribed potential variable ṽ(t) for all t ∈ (0, T ) and with

ṽ(t) =
(
Ṽ1(t), . . . , Ṽnbf

(t)
)T

∈ R
nbf the associated vector of control variables, we define:

gICI
rec (ṽ(t),w(t)) :=

nbf∑

i=1

Ri grec

(
Ṽi(t),Wi(t)

)

gICI
rec (ṽ(t),w(t)) :=

(
grec

(
Ṽ1(t),W1(t)

)
, . . . , grec

(
Ṽnbf

(t),Wnbf
(t)
))T

∈ R
nbf .

(18)

Then, we obtain the discrete equation for the recovery variable:

∀t ∈ (0, T ), find w(t) ∈ R
nbf : rICI

w

(
dw

dt
(t),w(t); ṽ(t)

)
= 0, (19)

with wh(0) = w0,h, for an assigned potential ṽ(t) ∈ V, where the residual vector r̃ICI
w

(
dw

dt
(t),w(t); ṽ(t)

)
∈ R

nbf

is defined using (18) as:

rICI
w

(
dw

dt
(t),w(t); ṽ(t)

)
:=

dw

dt
(t) − gICI

rec (ṽ(t),w(t)) (20)

and w0,h is the vector of control variables corresponding to the L2 projection of w0 onto the NURBS space

Nh. We remark that problem (19) represents a system of first order ODEs.

Finally, by combining (16) and (19) in a coupled problem, we obtain the full spatial approximation of

the monodomain problem (7) by means of NURBS-based IGA, which at the discrete level reads:

∀t ∈ (0, T ), find v(t), w(t) ∈ R
nbf :





rICI
v

(
dv

dt
(t),v(t),w(t)

)
= 0,

viD
(t) = vD(t),

rICI
w

(
dw

dt
(t),v(t),w(t)

)
= 0,

(21)

with v(0) = v0 and w(0) = w0, where the residuals are defined following Eqs. (17) and (20) as:

rICI
v,i

(
dv

dt
(t),v(t),w(t)

)
:=

(
Ri, Cm

dvh

dt
(t)

)
+ (∇ΩRi,D∇Ωvh(t))

+
(
Ri, i

ICI
ion (v(t),w(t))

)
− (Ri, i

ICI
app(t)) for i = 1, . . . , nbf ,

rICI
w

(
dw

dt
(t),w(t),v(t)

)
:=
dw

dt
(t) − gICI

rec (v(t),w(t)).

(22)

2.4. Time discretization

We consider now the time discretization of the monodomain problem (21) spatially approximated by

NURBS-based IGA; specifically, we adopt the second order Strang’s symmetrical splitting scheme [41] based

on the separation of the diffusive and reaction (zero order) terms in the system of ODEs correspondingly to

12



the potential equation (16), which appears in the first equation of problem (21). By considering directly the

first residual in Eq. (22), we can identify the following (split) residuals in view of using the splitting scheme:

rICI
v,diff,i

(
dv

dt
(t),v(t)

)
:=

(
Ri, Cm

dvh

dt
(t)

)
+ (∇ΩRi,D∇Ωvh(t)) for i = 1, . . . , nbf ,

rICI
v,react

(
dv

dt
(t),v(t),w(t)

)
:= Cm

dv

dt
(t) + iICI

ion (v(t),w(t)) − iICI
app(t);

(23)

the latter has been obtained by rewriting the zero order terms in strong form, as allowed for the NI-ICI

approach under consideration. The residual vector rICI
v,diff

(
dv

dt
(t),v(t)

)
can be also rewritten as:

rICI
v,diff

(
dv

dt
(t),v(t)

)
= MCm

dv

dt
(t) + KDv(t), (24)

where, by virtue of the IGA spatial approximation, MCm
and KD ∈ R

nbf ×nbf , with (MCm
)ij := (Ri, CmRj)

and (KD)ij := (∇ΩRi,D∇ΩRj), for i, j = 1, . . . , nbf .

Let us partition the time interval (0, T ) into Nt times steps of size ∆t = T/Nt, yielding the discrete times

tk = k∆t, for k = 0, . . . , Nt. Then, we introduce the time dependent vectors vk,(1)(t) and wk,(1)(t) ∈ R
nbf

defined for t ∈ (tk, tk+1/2), vk,(2)(t) ∈ R
nbf defined for t ∈ (tk, tk+1), and finally vk,(3)(t) and wk,(3)(t) ∈ R

nbf

defined for t ∈ (tk+1/2, tk+1), for any k = 0, . . . , Nt − 1 with tk+1/2 := tk + ∆t/2. In this manner, we outline

the following splitting scheme at the generic discrete time tk, for k = 0, . . . , Nt −1, as the sequential solution

of the following three problems:

∀t ∈ (tk, tk+1/2), find vk,(1)(t), wk,(1)(t) ∈ R
nbf :





rICI
v,react

(
dvk,(1)

dt
(t),vk,(1)(t),wk,(1)(t)

)
= 0,

rICI
w

(
dwk,(1)

dt
(t),vk,(1)(t),wk,(1)(t)

)
= 0,

(25)

with vk,(1)(tk) = v
k,(1)
0 and wk,(1)(tk) = w

k,(1)
0 ,

∀t ∈ (tk, tk+1), find vk,(2)(t) ∈ R
nbf :





rICI
v,diff

(
dvk,(2)

dt
(t),vk,(2)(t)

)
= 0,

v
k,(2)
iD

(t) = vD(t),

(26)

with vk,(2)(tk) = vk,(1)(tk+1/2),

∀t ∈ (tk+1/2, tk+1), find vk,(3)(t), wk,(3)(t) ∈ R
nbf :





rICI
v,react

(
dvk,(3)

dt
(t),vk,(3)(t),wk,(3)(t)

)
= 0,

rICI
w

(
dwk,(3)

dt
(t),vk,(3)(t),wk,(3)(t)

)
= 0,

(27)

with vk,(3)(tk+1/2) = vk,(2)(tk+1) and wk,(3)(tk+1/2) = wk,(1)(tk+1/2), where v
k,(1)
0 := vk,(3)(tk) and

w
k,(1)
0 := wk,(3)(tk) for k = 1, . . . , Nt − 1, while v

k,(1)
0 := v0 and w

k,(1)
0 := w0 for k = 0.

We remark that problems (25), (26), and (27) are still continuously dependent on the time variable

t ∈ (tk, tk+1) for k = 0, . . . , Nt − 1 and need to be fully discretized in time. With this aim, we consider
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the backward Euler method for problems (25) and (27), while the generalized-α method (see [17] and e.g.

[45]) for problem (26). The latter is an implicit, unconditionally absolutely stable method with control on

high frequency dissipation, which, for a linear problem, is also second order accurate. In view of using such

discretization schemes, we indicate with v
(1)
k , v

(1)
k+1/2, w

(1)
k , w

(1)
k+1/2, v

(2)
k , v

(2)
k+1, v

(3)
k+1/2, v

(3)
k+1, w

(3)
k+1/2,

and w
(3)
k+1 ∈ R

nbf the approximations of vk,(1)(tk), vk,(1)(tk+1/2), wk,(1)(tk), wk,(1)(tk+1/2), vk,(2)(tk),

vk,(2)(tk+1), vk,(3)(tk+1/2), vk,(3)(tk+1), wk,(3)(tk+1/2), and wk,(3)(tk+1) ∈ R
nbf , respectively. Then, we

recall the parameters αm =
1

2

(
3 − ρ∞

1 + ρ∞

)
, αf = δ =

1

1 + ρ∞

for the generalized-α method, which are de-

pendent on the parameter ρ∞ ∈ [0, 1] controlling the high frequency dissipation, which we set in this work

as ρ∞ =
1

2
; this choice is rather common in literature, see e.g. [2, 33, 45], as it allows to damp the high

frequencies introduced by the numerical discretization while preserving most of the natural ones associated

to the continuous model. Finally, we introduce the auxiliary variables v
(2)
k+αf

, v̇
(2)
k+1, and v̇

(2)
k+αm

∈ R
nbf used

for the approximation of v
(2)
k+1 with the generalized-α method and the discrete time tk+αf

= tk + αf ∆t.

In this manner, the fully discrete splitting scheme at the generic discrete time tk, for k = 0, . . . , Nt − 1,

corresponds to the consecutive solution of the following three problems:

find v
(1)
k+1/2, w

(1)
k+1/2(t) ∈ R

nbf :





Cm

∆t/2

(
v

(1)
k+1/2 − v

(1)
k

)
+ iICI

ion

(
v

(1)
k ,w

(1)
k

)
− iICI

app(tk) = 0,

1

∆t/2

(
w

(1)
k+1/2 − w

(1)
k

)
− gICI

rec

(
v

(1)
k ,w

(1)
k

)
= 0,

(28)

find v
(2)
k+1,v

(2)
k+αf

, v̇
(2)
k+1, v̇

(2)
k+αm

∈ R
nbf :





MCm
v̇

(2)
k+αm

+ KDv
(2)
k+αf

= 0,

v
(2)
k+αf ,iD

= vD(tk+αf
),

v
(2)
k+1 = v

(1)
k+1/2 + ∆t

[
δ v̇

(2)
k+1 + (1 − δ)

1

∆t/2

(
v

(1)
k+1/2 − v

(1)
k

)]
,

v
(2)
k+αf

= αf v
(2)
k+1 + (1 − αf )v

(1)
k+1/2,

v̇
(2)
k+αm

= αmv̇
(2)
k+1 + (1 − αm)

1

∆t/2

(
v

(1)
k+1/2 − v

(1)
k

)
,

(29)

find v
(3)
k+1, w

(3)
k+1(t) ∈ R

nbf :





Cm

∆t/2

(
v

(3)
k+1 − v

(2)
k+1

)
+ iICI

ion

(
v

(2)
k+1,w

(1)
k+1/2

)
− iICI

app(tk+1/2) = 0,

1

∆t/2

(
w

(3)
k+1 − w

(1)
k+1/2

)
− gICI

rec

(
v

(2)
k+1,w

(1)
k+1/2

)
= 0,

(30)

where we set v
(1)
k = v

(3)
k and w

(1)
k = w

(3)
k for k = 1, . . . , Nt − 1, while v

(1)
0 = v0 and w

(1)
0 = w0 for k = 0.

Finally, according to the splitting method used, the approximations of v(tk) and w(tk) at the discrete time

tk, for k = 1, . . . , Nt, correspond to vk = v
(3)
k and wk = w

(3)
k , respectively, with the initial data v0 and w0

provided at k = 0.
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Figure 2: Visualization of the transmembrane potential v (dimensionless) computed for the Mitchel-Schaeffer model at the
time t = 25.0 ms by using a mesh of size h = 1/64 with B-spline basis functions of degree p = 2 and C1-continuous; the number
of basis functions is nbf = 2, 340.

3. Convergence and accuracy study of the IGA spatial approximation of the monodomain

equation

In this section we aim at highlighting the advantage of using high order continuous B-spline basis functions

in solving the system (7), approximated as in Eqs. (28)-(30), over their C0-continuous counterpart of degree

p. In particular, we focus on the study of two numerical aspects: the approximation of the conduction

velocity of the transmembrane potential fronts and the simulation of spiral wave tip motion.

3.1. Conduction velocity for the Mitchell-Schaeffer and Aliev-Panfilov monodomain models

For both the Mitchell-Schaeffer and Aliev-Panfilov models we consider a computational domain Ω =

(0, 2) × (0, 0.25) cm (dimensionless for the Aliev-Panfilov model) and null initial values for dimensionless

transmembrane potential v and recovery w variables v0 = 0.0 and w0 = 0.0. The stimulus for the depo-

larization is applied at the discrete level at time Ts by forcing the control variables v
(1)
k+1/2, w

(1)
k+1/2, v

(3)
k+1,

and w
(3)
k+1 associated to the outermost left control points to values allowing the potential fronts to travel

towards the right side of Ω. Such numerical stimulus plays the role of the applied current iapp(t) in Eq. (6).

We consider different IGA spatial discretizations associated to B-spline basis functions of degree p and Ck-

continuity, with k = 0 or p−1; the time discretization uses the time step size ∆t = 0.0025 ms (dimensionless

for the Aliev-Panfilov model).

We start by solving the monodomain equation with the Mitchell-Schaeffer model by setting the following

data in Eqs. (3) and (6): Cm = 1.00, D = Diso I, with I the second order identity tensor and D = 10−3 cm2

ms
,

τin = 0.300 ms, τout = 6.00 ms, τopen = 120 ms, τclose = 150 ms, and vrec = 0.13; we run the simulation for

T = 35.0 ms and the stimulus is applied up to Ts = 1.00 ms. In this manner, t assumes the dimension of

ms, the recovery variable w and the potential v are dimensionless; the dimensional counterpart of v can be

recovered as v = Vmin + (Vmax − Vmin) v, with Vmin = −70.0 mV and Vmax = 30.0 mV. In Fig. 2 we report

the transmembrane potential v computed at t = 25.0 ms with B-splines over a mesh of size h = 1/64, degree

p = 2, and C1-continuous for which nbf = 2, 340; such solution exhibits a front of the potential propagating

rightwards. In order to measure the quality of the computation of such front velocity, we compute the mean

conduction velocity Vf by measuring the distance of the potential front covered over the last 10.0 ms of the

simulation; the distance corresponds to the difference between the averaged coordinates of the contourlines

of the potential v = 0.5 at the times t = 25.0 and 35.0 ms. We assume that the conduction velocity computed

with B-spline basis functions of degree p = 3 and C2-continuous over a mesh of size h = 1/320 represents
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EVf
vs. h EVf

vs. nbf

Figure 3: Errors EVf
([cm/ms]) of the front propagation velocity for the Mitchell-Schaeffer model vs. the mesh size h (left) and

the number of B-spline basis functions nbf (right) of degrees p = 1 (◦), 2 (�), and 3 (∗) and C0 (−−) and Cp−1-continuous (—).

Figure 4: Visualization of the action potential v (dimensionless) computed for the Mitchell-Schaeffer model at the point
(0.5, 0.125) cm using B-splines basis functions of degrees p = 1 (blue) and 2, the latter both C0 (red) and C1-continuous
(black); the associated numbers of basis functions are nbf = 2, 193, 2, 193, and 2, 340, while the mesh sizes are h = 1/64, 1/32,
and 1/64, respectively. The time axis is shifted for best matching the waveforms at the value v = 0.5.

the “overkill” value, which we indicate with V ∗

f = 3.3502227 · 10−2 cm/ms. Then, we compute the front

velocities Vf for different B-spline basis functions of degrees p = 1, 2, and 3 which are Ck-continuous, with

k = 0 or p− 1; the mesh sizes h used in the computations range from h = 1/32 down to 1/368 for B-splines

of degree p = 1. The corresponding errors, say EVf
:= Vf − V ∗

f , are displayed in Fig. 3 vs. the mesh size h

and the number of basis functions nbf . Except for the B-splines of degree p = 1, those of degrees p = 2 and 3

deliver accurate results already for relatively coarse meshes, regardless of the continuity, C0 or Cp−1, of the

basis functions. Moreover, the higher is the degree p for C0-continuous B-spline basis functions, the more

accurate is the computed value of Vf for a given number of basis functions nbf . However, the smoother,
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Figure 5: Visualization of the transmembrane potential v (dimensionless) computed for the Aliev-Panfilov model at the
dimensionless time t = 80.0, by using a mesh of size h = 1/64 with B-spline basis functions of degree p = 2 and C1-continuous;
the number of basis functions is nbf = 2, 340.

EVf
vs. h EVf

vs. nbf

Figure 6: Errors EVf
(dimensionless) of front propagation velocity for the Aliev-Panfilov model vs. the mesh size h (left) and

number of B-spline basis functions nbf (right) of degrees p = 1 (◦), 2 (�), and 3 (∗) and C0 (−−) and Cp−1-continuous (—).

globally Cp−1-continuous B-splines of degrees p = 2 and 3 deliver much more accurate computations of Vf

than their C0-continuous counterparts, already for relatively small values of nbf . Finally, we report in Fig. 4

the evolution of the action potential evaluated in a point of the domain for different choices of the B-splines

basis functions; as highlighted, the waveforms of the action potentials are qualitatively very similar already

for coarse spatial discretizations.

We solve now the monodomain problem with the Aliev-Panfilov model by setting in Eqs. (4) and (6):

Cm = 1.00, D = Diso I with D = 10−4, k = 8.00, a = 0.15, ǫ0 = 2.00 · 10−3, µ1 = 0.200, and µ2 = 0.300;

we run the simulation for T = 100 and we apply the initial stimulus up to Ts = 0.500. All the data, t, w,

and v are dimensionless; the dimensional counterpart of v can be recovered as v = Vmin + (Vmax − Vmin) v,

with Vmin = −80.0 mV and Vmax = 20.0 mV, while t = 12.9 ms. In Fig. 5 we report as example the

transmembrane potential v computed at t = 80.0 with B-spline basis functions of degree p = 2 which are

C1-continuous. As done for the Mitchell-Schaeffer model, we quantitatively compare the results obtained

by different B-spline bases in terms of the conduction velocity Vf (the one associated to the depolarization

front); the mean Vf is computed over the last 10.0 dimensionless time units of the simulation. By assuming

that the “overkill” front velocity V ∗

f = 1.368069 · 10−2 is computed with B-splines of degree p = 3 and

17



Figure 7: Visualization of the action potential v (dimensionless) computed for the Aliev-Panfilov model at the point (0.5, 0.125)
using B-splines basis functions of degrees p = 1 (blue) and 2, the latter both C0 (red) and C1-continuous (black); the associated
numbers of basis functions are nbf = 2, 193, 2, 193, and 2, 340, while the mesh sizes are h = 1/64, 1/32, and 1/64, respectively.
The time axis is shifted for best matching the waveforms at the earliest incurrence of the value v = 0.5.

C2-continuous over a mesh of size h = 1/320, we display the front velocity errors EVf
:= Vf −V ∗

f associated

to the different B-spline bases in Fig. 6. Similarly to the Mitchell-Schaeffer model, the front velocity Vf

associated to the Aliev-Panfilov model is better captured by B-spline bases of degrees p = 2 and 3 with

respect to degree p = 1. Moreover, the errors EVf
for bases of degrees p = 2 and 3 are very similar for the

same mesh sizes h, regardless of the continuity, C0 or Cp−1, of the basis functions. Conversely, in terms

of EVf
vs. nbf , the use of B-splines degrees p = 2 and p = 3 is potentially more efficient than for degree

p = 1. Moreover, the use of smooth Cp−1-continuous B-spline bases of degree p = 2 and 3 is more accurate

than their C0-continuous counterpart. Finally, we report in Fig. 7 the evolution of the action potential for

different B-splines bases; similarly to the Mitchell-Schaeffer model, the waveforms of the action potentials

qualitatively match already for coarse spatial discretizations.

We conclude that, for both the Mitchell-Schaeffer and Aliev-Panfilov models, which develop smooth

but sharp and thin interfaces between the polarization and depolarization phases of the transmembrane

potential v, the use of high order, globally Cp−1-continuous B-spline basis functions of degree p is more

accurate than their C0-counterpart. Since the C0-continuous B-splines share similar properties with the

Lagrangian polynomial bases used in the Finite Element method [38, 54], we speculate that IGA with high

order continuous B-splines and NURBS is more accurate and can be more efficient than its Finite Element

counterpart, independently of the geometrical advantages in the representation of the computational domain

allowed by IGA; even if we only showed numerical results for B-splines of degrees p = 2 and 3, the advantages

of using globally Cp−1-continuous basis functions hold also for higher degrees p ≥ 4. Furthermore, we remark

that B-splines and NURBS bases, being positive definite and not interpolatory, as well as endowed with the

so-called “variation diminishing property" [23], mitigate the over- and undershooting behavior often occurring

with Lagrangian polynomial basis functions in the presence of sharp internal and boundary layers.
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t = 15.0 t = 35.1 t = 40.0

t = 45.0 t = 55.0 t = 65.0

t = 75.0 t = 85.0 t = 95.0

Figure 8: Spiral waves of the transmembrane potential induced for the Aliev-Panfilov model at different dimensionless times
t computed with B-spline basis functions of degree p = 2 and C1-continuous using a mesh of size h = 1/64 and comprised of
nbf = 4, 356.

3.2. Approximation of spiral waves for the Aliev-Panfilov model

We now consider the accuracy of the representation of the spiral waves for the monodomain equation with

the Aliev-Panfilov model; specifically, we discuss the role of the IGA spatial approximation in the presence of

complex solutions for the transmembrane potential v. Indeed, the Aliev-Panfilov model [3] can be suitably

used to describe patterns of the potential v which are more complicated than the simple unidirectionally

propagating pulses considered in Sec. 3.1. As a matter of fact, complex potential fields v, as those showing

re-entrant spiral or scroll waves, may correspond to pathological diseases of the heart; for example, cardiac

arrhythmias can be related to the presence of wavefront spirals which lead to an irregular contraction of the
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B-spline p = 1, p = 2, p = 2, p = 3, p = 3,
basis C0-cont. C0-cont. C1-cont. C0-cont. C2-cont.
nel 4, 096 1, 024 4, 096 484 4, 096
h 1/64 1/32 1/64 1/22 1/64
nbf 4, 225 4, 225 4, 356 4, 489 4, 489

Table 1: B-spline bases used for the IGA spatial approximation of the spiral waves associated to the Aliev-Panfilov model with
corresponding number of mesh elements nel, mesh sizes h, and basis functions nbf used for the space Nh.

p = 1, C0-continuous

t = 75.0 t = 85.0 t = 95.0

Figure 9: Spiral waves of the transmembrane potential induced for the Aliev-Panfilov model at dimensionless times t =
75.0 (left), 85.0 (center), and 95.0 (right) computed with B-spline basis functions of degree p = 1 and C0-continuous built from
a mesh of size h = 1/32 with nbf = 4, 225.

cardiac muscle [16, 31, 34].

We consider for the Aliev-Panfilov model the same data already used in Sect. 3.1 with the computational

domain Ω = (0, 1)2 and the time step size ∆t = 0.1. To set up a test case of re-entrant wave patterns, the

initialization is done by applying a stimulus in the wake of a propagating pulse such that the refractory

region effectively generates a spiral wave. Numerically speaking, such dynamics requires the approximation

of a moving curved front for v; thus, we are interested in comparing the simulations of these spiral waves for

B-splines of different polynomials degrees p and continuities C0 and Cp−1 of the basis functions. In Fig. 8

we report the numerical results obtained for the IGA spatial approximation with a mesh size h = 1/64

and B-spline basis functions of degree p = 2 which are globally C1-continuous; the results highlight the

procedure followed to induce the spiral waves, their formation, and propagation in Ω.

For the example highlighted in Fig. 8 we now compare the numerical results obtained by considering

B-spline basis functions of degrees p = 1, 2, and 3 which are globally C0- and Cp−1-continuous in Ω over

uniform meshes. Specifically, our comparison of the quality of the IGA spatial approximation is based on the

number of basis functions nbf ; the latter is approximately kept constant in the comparison. In this manner,

we use meshes of different sizes h to yield about the same nbf for the B-spline bases under consideration1

1We remark that globally Cp−1-continuous B-spline bases require finer meshes than their C0-counterparts to yield the same
number of basis functions nbf ; see [27].
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p = 2, C0-continuous

p = 2, C1-continuous

t = 75.0 t = 85.0 t = 95.0

Figure 10: Spiral waves of the transmembrane potential induced for the Aliev-Panfilov model at dimensionless times t =
75.0 (left), 85.0 (center), and 95.0 (right) computed with B-spline basis functions of degree p = 2, C0-continuous (top) and C1-
continuous (bottom); C0-continuous B-splines are built from a mesh of size h = 1/32 with nbf = 4, 225, while C1-continuous
B-splines have h = 1/64 with nbf = 4, 356.

are reported in Table 1 where we highlight the corresponding number of mesh elements nel, mesh sizes h,

and number of basis functions nbf . The results obtained at some significant time instances t by means of

such bases are highlighted in Figs. 9, 10, and 11 for the degrees p = 1, 2, and 3, respectively. As we can

observe, the results obtained for the B-spline bases of degrees p = 1, 2, and 3 and globally Cp−1-continuous

yield comparable results, at least qualitatively, with about the same number of basis functions nbf , apart

for the tip positions of the spiral waves (partially due to the different induction mechanism used at the

discrete level). However, this is not the case for the B-spline bases of degrees p = 2 and 3 which are only

C0-continuous; indeed, in these cases, the coarser meshes, used to yield about the same nbf , lead to results

which exhibit significant grid imprinting. For a more detailed discussion and numerical tests, we refer the

interested reader to [49].

In addition, in order to better assess the quality of the IGA spatial approximation, we compare the

trajectories of the tips of the spiral waves. Such comparison is made following [16] where the trajectories of

fronts’ tips are tracked to study the effect on the solutions v of the initial stimuli, specifically the manner in

which these are applied and for how long. In [16] several types of tips’ trajectories are obtained and analyzed

for the 3-variables Fenton-Karma monodomain model [31], even if similar behaviors may can be obtained
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p = 3, C0-continuous

p = 3, C2-continuous

t = 75.0 t = 85.0 t = 95.0

Figure 11: Spiral waves of the transmembrane potential induced for the Aliev-Panfilov model at dimensionless times t =
75.0 (left), 85.0 (center), and 95.0 (right) computed with B-spline basis functions of degree p = 3, C0-continuous (top) and C2-
continuous (bottom); C0-continuous B-splines are built from a mesh of size h = 1/22 with nbf = 4, 489, while C2-continuous
B-splines from a mesh with h = 1/64 with nbf = 4, 489.

by means of other monodomain models. Here, we extend such analysis to the Aliev-Panfilov model and for

the globally C0- and Cp−1-continuous B-splines of degrees p = 1, 2, and 3 (see also [49]). In Fig. 12 we

display the trajectories of the spiral tips corresponding to the spatial discretizations considered in Figs. 9,

10, and 11 for such B-spline bases. The trajectories are determined, over a period of 15.0 dimensionless

time units, by tracking the positions of the point laying on the contourline of the transmembrane potential

v = 0.5 which possesses minimum curvature (with sign). The results highlight that the trajectory of the

spiral waves’ tip should be circular or elliptical and reasonably smooth. Moreover, we observe that the

trajectories associated to high order continuous B-spline bases are more accurate and smoother than those

associated to bases which are only C0-continuous when about the same number of basis functions nbf is

involved in the computation. Additional results and comparisons for the h- and k-refinements procedures

are presented and discussed in [49]; nevertheless, it is quite evident from the tests reported in this paper

that the use of the k-refinement procedure yields more accurate numerical results.
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p = 1 p = 2, C0-cont. p = 3, C0-cont.

p = 2, C1-cont. p = 3, C2-cont.

Figure 12: Trajectories of the spiral waves’ tips over 15.0 dimensionless time units as computed for the B-spline bases of degrees
p = 1 (left), 2 (center), and 3 (right) and globally C0- (top) and Cp−1-continuous (bottom); the corresponding transmembrane
potentials v are highlighted in Figs. 9, 10, and 11 and the details of the spatial discretizations are reported in Table 1.

4. Numerical results for a human left atrium

We solve the Mitchell-Schaeffer monodomain equation [46] presented in Sect. 2.1 by means of IGA on

a surface Ω ⊂ R
3, where Ω, which is represented by means of NURBS, is dimensionally and geometrically

similar to the human left atrium (LA). We briefly discuss the procedure followed to represent the human

LA by means of NURBS and we discuss our approach for the definition of the anisotropic conductivity of

the LA tissue, which is based on the solution of an auxiliary Poisson interpolation problem. Finally, we

present the numerical result obtained for the propagation of the transmembrane potential front, with the

focus being on the variation of the location of such potential fronts with respect to the number of basis

functions used in the IGA spatial approximation.

4.1. Geometrical representation of the human left atrium by means of NURBS

We briefly outline the procedure used for the definition of the human LA geometry by means of NURBS.

In this respect, the LA can be represented as a surface since the thickness of the atrium wall is small and hence

transmural activation differences along the thickness can be assumed to be negligible. The characteristic

dimensions of the anatomical features of the human LA are reported in Table 2.

The LA is represented as a mid-surface and built as a single NURBS patch starting from B-spline basis

functions of degree p = 2 along both the parametric directions ξ1 and ξ2. The generation of the surface
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LA anatomical features Mean values [cm]
Wall thickness 0.2
Pulmonary veins diameter (inside) 1.1
Mitral valve diameter (outside) 2.9
Anterior-posterior extent 3.8
Septal-lateral extent 3.9
LA appendage

Length 2.9
Diameter (mid) 1.6

Table 2: Characteristic sizes of the anatomical features of the human left atrium (LA). Data taken from [36].

.

Figure 13: NURBS representation of the LA based on the characteristic sizes of Table 2; views from different angles (the
outermost left views are used in Figs. 15 and 16).

Mesh Th,1 Th,2 Th,3 Th,4 Th,5 Th,6

nel 2, 950 10, 456 22, 630 39, 382 60, 742 86, 710
nbf 3, 100 10, 772 23, 052 39, 940 61, 436 87, 540

Table 3: Meshes Th,i used for the numerical simulations of the transmembrane potential on the LA and corresponding number
of mesh elements nel and NURBS basis functions nbf used for the space Nh.

starts by considering a cylindrical surface as reference geometrical model, with features added step by

step by means of the combined use of the knot insertion procedure (h-refinement, [52]) and extrusion of

the newly inserted control points in the physical space; we refer the interested reader to [67] for a more

detailed discussion about the generation of NURBS geometries in cardiovascular applications and to [49]

regarding the specific LA geometry under consideration. As mentioned, in our geometrical model, we start

from the cylindrical shell and we represent the four pulmonary veins by suitable knot insertions along the

circumferential direction ξ1. Then the oval-shaped opening corresponding to the mitral valve is generated by

inserting additional knots in the parametric direction ξ2. The resulting representation of the LA by means

of NURBS is displayed in Fig. 13 from different points of view. We remark that our geometrical LA model

is represented by means of NURBS basis functions of degree p = 2 and mostly C1-continuous along both

the parametric directions. Indeed, some “pathological” mesh edges, for which the basis functions are only

C0-continuous, are maintained in the mesh Th to facilitate the construction of the NURBS geometry. Our
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basic geometrical representation of the LA involves nbf = 425 NURBS basis functions and nel = 345 mesh

elements; we denote the corresponding mesh as Th,0. The NURBS space Nh, which is built using the above

mentioned basis, is then successively enriched by means of the h-refinement procedure for the use of IGA

in the spatial approximation of Eqs. (28)-(30), yet preserving the original representation of Ω associated to

the mesh Th,0. The number of NURBS basis functions nbf corresponding to the enriched bases and meshes

Th,i are indicated in Table 3.

4.2. Anisotropic conductivity: the Laplace-Beltrami problem for the definition of the fibers’ direction

The cardiac tissue is strongly anisotropic both in terms of mechanical response and of the conduction ve-

locity on the cells’ membrane, as consequence of the local orientation of the cardiomyocytes; such anisotropic

behavior affects the conductivity tensor D in the monodomain equation (5). In this respect, several tech-

niques have been used in literature to reproduce realistic, or at least physically meaningful, anisotropic

conductivity tensors for the cardiac tissue. For example, in [63] the authors split the LA into subdomains

and then, using characteristic data of the anatomy of the atria as in [37], they defined the conduction tensor

piecewise in such subdomain. A similar procedure has been adopted in [21].

In this paper, we built a rule-based fiber-field on the LA surface following the Poisson-based interpolation

algorithm of [57] inspired from [7, 66] and adapted to the current case for which a surface centerline is not

well-defined. The basic idea consists in introducing, at the discrete level, a time-independent potential

function ϕf ,h defined on the LA surface Ω, whose normalized gradient field, say fh ∈ R
3, yields the fibers’

direction as:

fh =
∇Ωϕf ,h

|∇Ωϕf ,h|
in Ω. (31)

Specifically, the discrete potential field ϕf ,h, which we use to set the fibers’ direction fh as in (31), is obtained

by solving a Laplace-Beltrami problem defined on the surface Ω with suitable constraints for prescribing a

meaningful orientation of the fibers. By assuming ϕf ,h ∈ Xh, being Xh ⊂ C0(Ω) a general finite dimensional

function space, we solve the following Laplace-Beltrami problem on Ω:

find ϕf ,h ∈ Yh :

∫

Ω

∇Ωψh · ∇Ωϕf ,h dΩ = 0 ∀ψh ∈ Y0
h, (32)

with:

Yh := {wh ∈ Xh : wh(xi) = +1 for i = 1, 3, 4 and wh(x2) = −1} ,

Y0
h := {wh ∈ Xh : wh(xi) = 0 for i = 1, 2, 3, 4} ,

(33)

where x1 and x2 are two points on ∂Ω set correspondingly to the portion of the atrium in proximity of the

left ventricle, specifically the outermost left and right points as in Fig. 13(right), while the points x3 and

x4 lay on ∂Ω between the pairs of pulmonary veins, respectively. Such constraints are set to prescribe a

meaningful orientation of the fibers’ field, other than to yield a well-posed Laplace-Beltrami problem (32).
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Figure 14: Fibers directions on the LA computed for the mesh Th,6; views from different angles.

Then, after the fibers’ field fh is computed by solving problem (32) and evaluating the normalized gradient

field (31), the discrete anistropic conductivity tensor Dh is defined as:

Dh = Diso (γf I + (1 − γf )Fh) in Ω, (34)

where Diso > 0 is the isotropic conductivity coefficient, 0 < γf ≤ 1 is a parameter setting the level of

anisotropy, I is the identity second order tensor, while Fh is the second order tensor associated to the

fibers direction fh, such that Fh,ii = fh,i for i = 1, 2, 3, while Fh,ij = 0 for i 6= j. The rule-based discrete

conductivity tensor Dh replaces th tensor D in the monodomain equation (10) and following ones, thus

yielding a transversally isotropic model.

In this work, the Laplace-Beltrami problem (32) is solved by means of NURBS-based IGA, for which we

compute the fibers’ potential ϕf ,h by setting Xh ≡ Nh (the NURBS space), and hence the fibers’ direction

fh and the anisotropic conductivity tensor Dh. We remark that the computation of ϕf ,h, fh, and Dh depend

on the IGA spatial discretization, specifically on the dimension nbf and properties of the NURBS space Nh,

but not on the geometrical representation of Ω, since we consider meshes Th,i which preserve the original

mapping associated to the mesh Th,0. We also recall that, in the specific LA geometry under consideration,

the NURBS space Nh involves basis functions which are mostly C1-continuous in Ω, but also C0-continuous

along some mesh edges; therefore, the fibers’ direction fh and conductivity tensor Dh may be discontinuous

along such mesh edges. Nevertheless, the tensor Dh is evaluated in the monodomain equation (10) only at

the Gauss-Legendre quadrature nodes in order to assemble the matrix KD in Eq. (24), which are internal

to the mesh elements.

In Fig. 14 we show the fibers’ direction field fh computed by means of NURBS-based IGA using the

discretization associated to the mesh Th,6 indicated in Table 3. Such computed fibers field is qualitatively

similar to the ones in reported in [21, 63].
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t = 0.500ms t = 2.50ms

t = 12.5ms t = 25.0ms

t = 37.5ms t = 50.0ms

t = 62.5ms t = 75.0ms

Figure 15: Transmembrane potential (dimensionless) on the LA computed for the mesh Th,6 at times 0.500 ≤ t ≤ 75.0 ms;
views from different angles.

27



t = 10.0ms t = 20.0ms

t = 30.0ms t = 40.0ms

t = 50.0ms t = 60.0ms

t = 70.0ms t = 80.0ms

Figure 16: Comparisons of the transmembrane potential fronts on the LA computed at times 10.0 ≤ t ≤ 80.0 ms for the meshes
Th,1 (yellow), Th,2 (blue), Th,4 (red), and Th,6 (black); views from different angles. The front corresponds to the contourline
of value 0.5 for the dimensionless transmembrane potential v.
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4.3. Numerical simulation of transmembrane potential on the LA for the Mitchell-Schaeffer model

We now solve the monodomain problem described by the Mitchell-Schaeffer model by using the numerical

scheme described in Eqs. (28)-(30) and based on IGA for the spatial approximation. We use as computational

domain Ω the NURBS representation of the LA highlighted in Fig. 13 and described in Sect. 4.1. The data of

the Mitchell-Schaeffer model are the same reported in Sect. 3.1, except for the conductivity tensor D which

is chosen as in Eq. (34) with the isotropic conductivity coefficient Diso = 0.0100
cm2

ms
and the anisotropy

level γf = 0.1. We solve the problem in terms of dimensionless transmembrane potential v and recovery w

variables; the value of v = 0 corresponds to −70.0 mV, while v = 1 to 30.0 mV.

In order to initiate the depolarization of the LA in a physically meaningful manner, we move from the

following considerations. The propagation of the electric signal in the LA occurs from four entry points

connected to the right atrium (RA), where the depolarization phase originally starts [58]: the Bachmann’s

bundle, the anterior septum, the posterior septum, and the coronary sinus musculature. In practice, the

electric signal can travel from the RA to the LA from one or more of these connection points; the synchro-

nization of the signal entry from these points determine the physiological or pathological propagation of the

transmembrane potential on the LA. For our computational model of the LA, in order to avoid synchroniza-

tion issues, we assume that the initialization of the depolarization occurs only at the Bachmann’s bundle,

which is approximately located in the interior LA wall close to the right superior pulmonary vein. More

specifically, in our model, we initialize the depolarization of the LA by forcing the dimensionless transmem-

brane potential and recovery variables to be equal to 1.0 in a region of diameter 0.2 cm corresponding to

the Bachmann’s bundle and for a time inferior to Ts = 0.0400 ms; the initial value of the dimensionless

transmebrane and recovery variables is set equal to 0.0.

We solve the monodomain equation up to the final time T = 400 ms by prescribing a homogeneous

Dirichlet boundary condition for the potential v at the boundary ∂Ω of the LA; for the time discretization

we consider the time step size ∆t = 0.0200 ms. We report in Fig. 15 the evolution of the dimensionless

transmembrane potential on the LA using the spatial discretization corresponding to the mesh Th,6 of

Table 3. The evolution of the transmembrane potential covers the depolarization phase; the region where

the initialization of the depolarization occurs is visualized in Fig. 15(top-left).

We remark that we use NURBS basis functions of degree p = 2 and mostly C1-continuous, except

at some mesh edges where these are C0-continuous. Therefore, as already discussed in Sect. 3.1 for the

propagation of the front velocity for the Mitchell-Schaeffer model, we can reasonably expect that such

velocity is accurately represented already for relatively coarse meshes and with a “small” number of basis

functions nbf . To confirm this, we solve the monodomain problem on the LA by means of IGA with the

spatial discretizations indicated in Table 3. We remark that, for all the meshes Th,2-Th,6, we obtain results

which are qualitatively and quantitatively very similar to the ones of Fig. 15. We highlight this aspect

by comparing in Fig. 16 the front locations of the dimensionless transmebrane potential computed for the

29



Figure 17: Action potential at three points on the LA surface computed for the meshes Th,1 (blue), Th,2 (red), and Th,6 (black).

discretizations associated to the meshes Th,1, Th,2, Th,4, and Th,6. The results associated to the meshes Th,5

and Th,6 are in practice coincident also for “large” values of the time t. Therefore, we remark that accurate

results can be obtained with relatively coarse discretizations if smooth NURBS basis functions are used

for the IGA spatial approximation. This is also confirmed in Fig. 17 by comparing the action potentials

computed for the meshes Th,1, Th,2, and Th,6 in three points on the LA.

5. Conclusions

In this paper we considered IGA for the spatial approximation of cardiac electrophysiology models,

specifically based on the monodomain equation coupled to the Mitchell-Schaeffer [46] and Aliev-Panfilov [3]

models. We qualitatively and quantitatively addressed and discussed the numerical results for benchmark

test problems with the focus being on the properties on the basis functions, namely B-splines and NURBS,

used in the IGA approximation of the monodomain equation. Indeed, other than the geometrical advantages

allowed by the use of the isogeometric concept in the representation of the computational domain, the

approximation properties of IGA also depend on the specific basis functions used. In this respect, it is

well know in literature [2, 24, 25, 27, 30, 39, 40, 62] that globally, high order continuous basis functions as

B-splines and NURBS yield very accurate and computationally efficient approximations of several classes of

PDEs, including problems exhibiting smooth but sharp layer and interfaces [33, 45], possibly over surfaces
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[6, 28]. In this paper we showed that, also for the cardiac elecrophysiology models under consideration, B-

spline basis functions of degree p ≥ 2 and globally Cp−1-continuous over the computational domain provide

more accurate results than their C0-counterpart when about the same number of basis functions is used

in the spatial discretization. Specifically, the results obtained for traveling fronts of the transmembrane

potential v, both for straight fronts or when spiral waves are developed, indicate that B-splines of degrees

p = 2 and 3 which are C1- and C2-continuous, respectively, require a relatively small number of degrees of

freedom for the spatial approximation. Thus, in the case such bases are used or the k-refinement procedure

is adopted for their enrichment, the numerical solution of the monodomain problems may be more accurate

and eventually more efficient than with C0-continuous basis functions, like those used with the standard

Finite Element method.

In addition, we approximated and solved by means of IGA the monodomain equation based on the

Mitchell-Schaeffer model on a realistic geometry of the human left atrium (LA), which we geometrically

represented as a NURBS surface. In particular, we highlighted that the spatial approximation based on

NURBS basis functions of degree p = 2 and mostly C1-continuous over the LA geometry yields very

accurate results already for relatively coarse meshes and few degrees of freedom, thus resulting potentially

advantageous with respect to approximations based on the Finite Element method.
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