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A B S T R A C T

The upper body accelerations of people with Parkinson’s disease (PD) measured by inertial measurement
units (IMUs) may contribute towards diagnostic algorithms and help track disease progression. Before
extracting variables related to upper body motion, acceleration signals require realignment to a global
reference; however, the impact of these techniques on the resulting upper body variables is unclear.
Therefore, the aim of this investigation was to examine the impact of four different realignment methods
designed to correct acceleration signals on a range of upper body variables in older adults and in patients
with PD. Two minutes of continuous gait were measured in 54 community-dwelling older adults
(71.1 �6.7 years) and 60 people with PD (age: 68.5 � 9.1 years). Three IMUs placed on the 5th lumbar
vertebra, 7th cervical vertebra and the back of the head recorded the acceleration of the upper body. A
selection of upper body variables sensitive to impaired upper body control in PD and four acceleration
realignment methods were compared. A mixed-model ANOVA showed that the choice of realignment
method significantly affected the values of upper body variables as well as their ability to discriminate
between the PD and control group. Our findings indicate researchers and clinicians should be cautious
when comparing upper body variables extracted from IMUs using different realignment methods, and
consideration of realignment technique will be important when identifying the most sensitive markers of
disease presence and progression. Therefore, it’s strongly recommend that researchers consider and
report their realignment methods when assessing upper body variables during gait.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Neurodegenerative diseases such as Parkinson’s disease (PD)
reduce an individual’s ability to walk safely and efficiently.
Consequently, gait quantification is potentially a powerful tool
to identify incipient pathology, contribute towards diagnostic
algorithms, and quantify disease progression [1,2]. An emerging
perspective is that the movement of the upper body during gait
plays a critical role in locomotion and may be impaired for people
with a range of pathologies [3–5]. For example, people with
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Parkinson’s disease (PD) have symptoms such as increased axial
rigidity, flexed posture and asymmetrical arm swing [2], which
may affect upper body control [6–8]. As a result, upper body
variables are proposed as potential markers of disease progression
and may help define disease phenotypes [9].

Recently, the development of wearable devices such as inertial
measurement units (IMUs) has permitted their use for routine gait
analysis as they record a range of valid gait and postural control
measurements and overcome many limitations of traditionally
used gait analysis systems [10,11]. However when using IMUs,
caution is required for upper body analysis since their outputs are
relative to their own local reference frames [12]. The likelihood of
varying mechanics of the upper body segment between
participants, such as a possible increased flexed trunk for people
with PD [2], and varying sensor locations upon the upper body
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
The mean (�SD) participant characteristics and spatial-temporal gait variables for
the PD and Control group.

PD (n = 60) Control (n = 54) P (t-test)

Age (years) 68.5 � 9.1 71.1 � 6.7 0.10
Height (m) 1.68 � 0.1 1.71 � 0.1 0.21
Mass (kg) 77.5 � 16.8 78.7 � 16.5 0.69
MDS UPDRS III 26.0 � 21.6 NA NA
Hoehn & Yahr HY I: 1; HY II: 52; HY III: 7 NA NA
Number of strides 20 � 3 21 � 3 0.06
Step frequency (s/m) 109.6 � 9.1 111.7 � 9.0 0.22
Step velocity (m/s) 1.13 � 0.23 1.29 � 0.18 p < 0.001
Step time (s) 0.55 � 0.05 0.54 � 0.04 0.19
Step length (m) 0.62 � 0.11 0.69 � 0.08 p < 0.001
Step width (m) 0.09 � 0.03 0.09 � 0.02 0.39
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does not always allow for uniform alignment between separate
sensors’ local reference frames. The absence of uniform alignment
therefore provides potential for directional crosstalk errors to
occur when comparing different participants, groups and sensor
locations [13,14].

To overcome potential crosstalk problems, different methods
have been proposed to align IMU local reference frames to a global
reference [14–16]. This realignment might impact gait variables
and their ability to discriminate between patient groups, as shown
by a previous study focusing on the pelvis movements [13]. Other
upper body variables and segments, not previously investigated,
might be similarly affected. Currently, a variety of realignment
methods being used in the literature but their influence on the
wide selection of upper body acceleration-based variables is still
unknown. It can be hypothesised that differences in realignment
methods will influence upper body variables for both healthy
elderly and people with PD, and that the resultant changes in the
upper body variables might differ in the two groups. Therefore, if
upper body variables are to be used to quantify gait impairments
for people with PD, an understanding of the impact of pre-
processing techniques is essential, particularly if results are to be
compared across studies [13]. This paper aimed to describe how
different methods designed to realign IMUs to a comparable global
reference alter acceleration derived upper body variables known to
be sensitive to impaired upper body control. To exemplify the
potential impact of these alterations, we also investigated whether
the choice of realignment method impacts the ability of upper
body variables to discriminate PD from age-matched controls.

2. Materials and methods

2.1. Subjects

Participants were recruited into ICICLE-GAIT within 4 months of
diagnosis. This is a collaborative study with ICICLE-PD, an incident
cohort study (Incidence of Cognitive Impairment in Cohorts with
Longitudinal Evaluation – Parkinson’s disease). ICICLE-GAIT
recruited a subset of the cohort. Participants were excluded if
they had any neurological (other than PD), orthopaedic, or
cardiothoracic conditions that may have markedly affected their
walking or safety during the testing sessions. The PD participants
had to be diagnosed with idiopathic PD according to the UK
Parkinson’s Disease Brain Bank criteria and were excluded if they
presented significant memory impairment (Mini Mental State
Exam (MMSE) �24 [17]), dementia with Lewy bodies, drug induced
parkinsonism, “vascular” parkinsonism, progressive supranuclear
palsy, multiple system atrophy, corticobasal degeneration, or poor
command of English. None of the participants demonstrated
severe tremor or dyskinesia. This study was conducted according
to the Declaration of Helsinki and had ethical approval from the
Newcastle and North Tyneside research ethics committee. All
participants signed an informed consent form.

2.2. Measurement protocol

Fifty-four community dwelling older adults and sixty people
with early onset PD walked at their preferred pace for two minutes
around a 25 m circuit containing 7 m long Gaitrite pressure
activated electronic walkway (Platinum model Gaitrite, software
version 4.5, CIR systems, United States of America) (see Table 1 for
participant sand spatiotemporal information) [18]. Upper body
accelerations were measured using three IMUs (128 Hz, OpalTM,
APDM Inc, Portland, OR, USA) located at 5th lumbar vertebra to
represent movements at the pelvis level (P), the 7th cervical
vertebra to represent movements at the shoulder level (S) and
upon the back of the head (H). The sensors were placed so that the
X axis pointed downwards representing the vertical direction (V),
the Y axis pointed to the left representing the medio-lateral
direction (ML) and the Z axis pointed backwards representing the
anterior-posterior direction (AP). The Gaitrite and the IMUs were
synchronised (�1 sample) using a custom-made cable and the data
was collected using the same A/D converter.

2.3. Data analysis

Four methods to realign upper body IMU data during gait were
compared. All realignment methods have been implemented
following the descriptions from the papers where they were
proposed and are described here briefly:

Method 1 (M1): Raw data was used to represent studies
whereby no realignment correction was applied [3,8]. Variables
calculated based upon the uncorrected data were also shown to act
as reference to see how the following methods impacted the
original signal and the subsequently calculated variables.

Method 2 (M2): M2 performs a dynamic tilt correction of the
acceleration signal towards the vertical gravitational acceleration
axis [14]. For gait data, the method relies upon the assumption that
the acceleration in the anterior-posterior (AP) direction are
constant (i.e. the AP axis is aligned with the vector representing
the subject’s mean velocity of progression, and moving consis-
tently with it).

Method 3 (M3): Proposed as a progression from M2, M3
attempts to improve it through removing low-frequency move-
ments not associated to gait such as “head nodding’. This is
obtained by continuously aligning measured accelerations with
the global coordinate system using pitch and roll corrections about
a floating unit vector. These corrections are quantified by
identifying the low frequency movements in the original signal
using a low-pass filter scaled to one quarter of the step frequency.
[15].

Method 4 (M4): M4 differs as it uses the IMU’s quaternion
output to provide a global reference frame [16,19]. The method
requires a uniform magnetic field throughout the area of testing
and a calibration trial to be performed to establish the laboratory’s
global reference [19]. Both requirements were checked via
assessing the consistency of the quaternion output of all IMU’s
throughout the testing area of the laboratory and by placing an
external sensor on the floor to create the global reference. The
sensor acting as the global reference was placed with its vertical
component aligned to the earth’s vertical axis, the (AP) direction
aligned to the direction of the participant’s walking direction and
the medio-lateral (ML) axis was defined according to a right-
handed reference frame. The participant’s gait data was realigned
to the quaternion based reference on a single sample basis.

Following realignment, the acceleration data was segmented
based upon the foot-contact values obtained from the Gaitrite. The
mean value was removed to allow comparison of all signals. A low-
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pass 4th order Butterworth filter with a cut-off frequency of 20 Hz
was applied. Data for each stride was normalised to 100 data points
using linear interpolation. Each upper body variable was calculated
on a single stride basis. All signals were processed using MATLAB
(version 8.4.0, R2014b).

2.4. Upper body variables

Upper body variables obtained from acceleration signals that
have previously been reported to be sensitive to impaired upper
body control and promoted as a discriminative variable for people
with PD by those who have implemented each realignment
method were selected [9].

Acceleration Root Mean Square (RMS): Acceleration RMS was
calculated using the root mean square (RMS) of the accelerations,
measured by each sensor for each stride and all directions [20].

Jerk RMS (jerk): The first time derivate, i.e. the jerk, of each
component of the acceleration signal was calculated and its RMS
was then computed [21]:

jerk ¼ RMS _að Þ ð1Þ
Harmonic ratio (HR): The harmonic ratio describes the step-to-

step (a)symmetry within a stride which has been found to be
reduced as a result of PD [5,7,8]. The HR was calculated via discrete
Fourier transform for each of the acceleration components
measured at the three levels [8]. The fundamental frequency
was set equal to the stride frequency.

For the AP and V components, the HR was defined as:

HRAP;V ¼ SAmplitudes of even harmonics
SAmplitudes of odd harmonics

ð2Þ

For the ML component the HR was defined as:

HRML ¼ S Amplitudes of odd harmonics
S Amplitudes of even harmonics

ð3Þ

Jerk ratio (JR): The jerk ratio is calculated by making log ratios
from the derivatives of the AP, ML and V signals to obtain normally
distributed and dimensionless gait parameters [22]:

JRAP ¼ 10log10
jerkAP
jerkV

� �
ð4Þ

JRML ¼ 10log10
jerkML

jerkV

� �
ð5Þ

Coefficients of attenuation (CoA): these parameters describe
the ability to attenuate accelerations from inferior to superior
locations through the upper body [16].

The CoAs were computed using the RMS values of the head
(RMSH), shoulder (RMSs) and pelvis (RMSP) as follows [16]:

CoAPH ¼ 1 � RMSH
RMSP

� �
� 100 ð6Þ

CoAPS ¼ 1 � RMSS
RMSP

� �
� 100 ð7Þ

CoASH ¼ 1 � RMSH
RMSS

� �
� 100 ð8Þ

CoAPH represents the attenuation from the pelvis to the head, CoAPS

represents the attenuation from the pelvis to the shoulder and
CoASH represents the attenuation from the shoulder to the head.
2.5. Statistical analysis

A mixed-design ANOVA was used to determine if the
realignment method affected each characteristic regardless of
group (method main effect) and whether the group differences
were impacted by the use of the different methods (interaction
effect). The within repeated measures factor was defined by the
realignment methods. If the residuals from the ANOVA were not
normally distributed for each variable, a transformation was
performed on the participants’ values to ensure normality. To
further investigate the discriminant ability of the investigated
variables, and to reduce the chance of occurring a type-1 error,
paired samples t-tests were only performed for the upper body
variables where an interaction occurred. This analysis tested if the
two groups differed significantly independent of realignment
method. The p value (significance set at 0.05) and effect size of each
comparison was calculated.

3. Results

Fig. 1 provides a visual example of the impact of each
realignment method upon the acceleration signal for all levels
and directions analysed during an example stride. Vertical signals
varied the least between the realignment methods and the
realignment method had most impact for acceleration signals
measured at the shoulder level.

There was a significant method main effect for all upper body
variables, meaning that each upper body variable differed
significantly between the four realignment methods irrespective
of group.

Significant interactions were seen for 12 of the 42 upper body
variables. All variables are shown for both groups and the four
realignment methods (Table 2). Post-hoc analysis revealed that for
select upper body variables, significant differences and between
groups effect sizes were inconsistent between the realignment
methods (Table 3). For example, the CoAPS in the AP direction
showed the control group had significantly greater levels of
attenuation for M2 (p = 0.01, d = �0.10), M3 (p < 0.01, d = 0.62) and
M4 (p = 0.02, d = 0.44) as opposed to M1 where the control group
had reduced amount of attenuation and no significant difference
(p = 0.76, d = �0.10).

4. Discussion

To our knowledge, this is the first study to test the impact of
different realignment techniques upon acceleration signals
obtained at different locations of the upper body during gait.
Results showed that the realignment method significantly altered
the values of variables derived from upper body accelerations,
irrespective of group. In some cases, the amount of these
alterations were such to even impact the variables ability to
discriminate between PD and healthy controls.

The effect of the realignment technique on the sensitivity of
upper body variables to discriminate pathology has previously
been investigated, comparing realignment method M1 and M2, at
sensor location (P), during treadmill walking and considering
different variables than this investigation (HR being the only
variable in common) [13]. Similar to this study, it was shown that
tilt correction can impact discrimination amongst patient groups
[13]. This agreement both confirms the need to realign raw
acceleration signals and additionally shows that different realign-
ment methods can have clear implications for interpretation of
results when assessing upper body variables’ ability to detect
pathological movements.

A limitation of this study was not controlling for gait speed.
Although this would not impact the within group comparisons, the



268 C. Buckley et al. / Gait & Posture 52 (2017) 265–271
post hoc analysis results must be interpreted with caution as some
group differences, particularly those reported for the RMS and jerk
values, will merely be a reflection of gait speed [20,22,23]. In
addition to gait speed, inconsistencies found within the literature,
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such as varying populations, group ages, disease severity and
processing techniques do not easily allow for cross investigation
comparisons. Nonetheless, the current investigation’s results did
reflect similar findings to past investigations. For example,
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Table 2
The PD and control group upper body variables values for the four realignment methods. Group by method interactions are highlighted in bold and the post hoc between
group differences are indicated.

Variable M1 M2 M3 M4

PD Control PD Control PD Control PD Control

RMS (ms�2) H AP 0.73 � 0.27 0.75 � 0.22 0.67 � 0.24 0.66 � 0.17 0.75 � 0.27 0.75 � 0.22 0.68 � 0.19 0.69 � 0.17
ML 0.81 � 0.28 0.86 � 0.22 0.81 � 0.28 0.85 � 0.22 0.77 � 0.25 0.82 � 0.20 0.68 � 0.19 0.69 � 0.17
V 1.34 � 0.49 1.68 � 0.56 1.37 � 0.52 1.73 � 0.57 1.30 � 0.48 1.64 � 0.56 1.36 � 0.52 1.72 � 0.58

S AP 1.02 � 0.37 1.29 � 0.42** 0.74 � 0.27 0.81 � 0.31 0.75 � 0.28 0.81 � 0.26 0.72 � 0.23 0.79 � 0.23
ML 0.81 � 0.26 0.90 � 0.24 0.80 � 0.26 0.89 � 0.24 0.79 � 0.27 0.89 � 0.24* 0.71 � 0.21 0.77 � 0.22
V 1.11 � 0.43 1.27 � 0.43 1.32 � 0.49 1.63 � 0.51 0.74 � 0.39 0.85 � 0.36 1.33 � 0.49 1.65 � 0.51

P AP 1.02 � 0.39 1.24 � 0.43 0.93 � 0.37 1.11 � 0.31 0.94 � 0.39 1.21 � 0.41 0.97 � 0.35 1.15 � 0.35
ML 0.85 � 0.32 1.01 � 0.37 0.85 � 0.32 1.00 � 0.36 0.92 � 0.35 1.07 � 0.36 0.87 � 0.34 1.03 � 0.35
V 1.41 � 0.56 1.70 � 0.52 1.48 � 0.57 1.80 � 0.59 1.38 � 0.57 1.64 � 0.49 1.47 � 0.57 1.78 � 0.58

Jerk (ms�3) H AP 19.54 � 8.27 18.14 � 6.17 19.37 � 7.41 16.75 � 6.06 20.26 � 8.07 18.35 � 6.67 17.91 � 6.40 16.23 � 5.49
ML 16.66 � 6.35 16.07 � 5.02 16.58 � 6.25 15.76 � 5.13 17.57 � 6.41 17.23 � 5.46 17.47 � 6.03 15.53 � 5.02
V 39.66 � 14.05 43.65 � 16.56 39.41 � 15.41 44.42 � 16.10 38.11 � 13.86 42.49 � 16.34 39.36 � 15.37 44.35 � 16.29

S AP 22.97 � 13.16 25.91 � 10.08 30.67 � 17.49 31.90 � 16.25 30.84 � 17.70 31.82 � 15.90 26.63 � 14.28 28.01 � 12.71
ML 20.36 � 9.34 21.35 � 8.27 20.25 � 9.37 21.10 � 8.13 20.26 � 9.53 21.25 � 8.02 23.67 � 12.05 24.56 � 11.52
V 39.8 � 18.08 42.50 � 17.47 34.16 � 14.23 37.96 � 13.19 26.19 � 14.65 28.02 � 13.14 34.74 � 14.78 38.59 � 13.70

P AP 43.40 � 23.79 50.84 � 25.00 39.48 � 22.09 45.47 � 19.11 41.15 � 21.07 49.69 � 23.22 39.56 � 19.73 46.26 � 19.85
ML 37.49 � 15.95 42.02 � 17.39 37.21 � 15.90 41.77 � 17.02 38.78 � 17.44 44.07 � 17.64 37.91 � 18.04 42.03 � 16.61
V 48.90 � 23.98 56.3 � 25.54 52.48 � 25.24 61.19 � 29.87 47.81 � 24.01 54.2 � 23.96 51.95 � 24.35 60.1 � 28.99

Harmonic
ratio

H AP 1.21 � 0.35 1.38 � 0.42 1.12 � 0.33 1.22 � 0.36 0.87 � 0.38 0.89 � 0.32 0.73 � 0.29 0.75 � 0.32
ML 1.84 � 0.57 2.02 � 0.58 1.89 � 0.57 2.22 � 0.64 1.28 � 0.64 1.24 � 0.52 1.03 � 0.37 1.16 � 0.53
V 1.85 � 0.53 2.37 � 0.62** 1.92 � 0.54 2.49 � 0.66** 1.85 � 0.55 2.37 � 0.63** 1.91 � 0.53 2.48 � 0.66**

S AP 1.88 � 0.62 2.48 � 0.68** 1.28 � 0.38 1.65 � 0.58** 1.23 � 0.37 1.50 � 0.49** 0.94 � 0.38 1.09 � 0.52
ML 1.75 � 0.55 2.04 � 0.50 1.85 � 0.57 2.24 � 0.48 1.70 � 0.57 2.01 � 0.57 1.05 � 0.43 1.11 � 0.53
V 1.65 � 0.48 2.17 � 0.68** 2.17 � 0.62 2.91 � 0.77** 1.61 � 0.48 2.14 � 0.68** 2.16 � 0.62 2.92 � 0.78**

P AP 1.54 � 0.39 2.01 � 0.57 1.48 � 0.39 1.95 � 0.58 0.99 � 0.44 1.40 � 0.57 1.29 � 0.44 1.56 � 0.64
ML 1.24 � 0.40 1.57 � 0.45 1.27 � 0.40 1.60 � 0.45 0.79 � 0.41 1.02 � 0.45 1.02 � 0.39 1.12 � 0.46
V 1.83 � 0.56 2.32 � 0.67** 1.85 � 0.53 2.35 � 0.67** 1.84 � 0.56 2.33 � 0.67** 1.85 � 0.55 2.35 � 0.68**

Jerk ratio (dB) H AP/V �3.14 � 1.29 �3.79 � 1.50 �3.07 � 1.89 �4.26 � 1.28 �2.77 � 1.75 �3.67 � 1.55 �3.36 � 1.53 �4.36 � 1.31
ML/
V

�3.82 � 1.42 �4.27 � 1.25 �3.75 � 1.45 �4.47 � 1.20* �3.37 � 1.28 �3.86 � 1.38 �3.46 � 1.50 �4.53 � 1.20**

S AP/V �2.46 � 1.11 �2.14 � 0.91 �0.66 � 1.13 �0.94 � 1.21 0.84 � 1.56 0.54 � 1.32 �1.29 � 1.13 �1.49 � 0.96
ML/
V

�2.94 � 1.21 �2.97 � 0.77 �2.36 � 1.21 �2.60 � 0.89 �0.89 � 1.99 �1.07 � 1.22 �1.8 � 1.17 �2.10 � 1.01

P AP/V �0.62 � 1.10 �0.53 � 1.28 �1.36 � 0.98 �1.24 � 1.04 �0.69 � 1.71 �0.47 � 1.37 �1.24 � 1.02 �1.12 � 0.92
ML/
V

�1.02 � 1.45 �1.24 � 1.03 �1.37 � 1.51 �1.58 � 0.99 �0.79 � 1.22 �0.86 � 0.99 �1.32 � 1.31 �1.47 � 0.99

CoA (%) P to H AP 23.28 � 27.70 35.86 � 22.01 19.71 � 31.37 37.86 � 19.93 7.46 � 43.65 32.03 � 33.08 23.69 � 25.71 36.45 � 16.06
P to S AP �4.18 � 26.92 �6.82 � 24.26 15.05 � 23.93 26.32 � 21.90* 10.3 � 38.36 29.69 � 22.23** 21.73 � 20.88 29.5 � 13.29*
S to H AP 24.81 � 23.74 39.46 � 17.73 5.34 � 26.98 13.50 � 21.55 �5.47 � 32.89 3.75 � 23.78 2.41 � 18.85 9.90 � 15.28
P to H ML �3.71 � 38.15 7.41 � 29.08 �4.08 � 38.43 7.61 � 29.55 9.29 � 32.46 17.41 � 23.71 14.11 � 29.26 27.37 � 23.09
P to S ML �0.66 � 30.28 4.90 � 24.39 �0.80 � 30.66 5.29 � 24.57 8.54 � 28.77 11.59 � 21.79 12.88 � 22.59 21.70 � 19.04
S to H ML �1.75 � 16.89 3.14 � 13.68 �2.00 � 16.92 2.98 � 13.86 0.35 � 22.27 6.30 � 15.89 2.45 � 16.79 7.63 � 16.89
P to H V 2.95 � 13.04 1.12 � 9.96 6.84 � 11.75 3.63� 7.86 3.09 � 18.56 �0.09 � 13.52 6.44 � 12.42 3.67 � 8.14
P to S V 18.99 � 19.34 25.25 � 11.78* 9.71 � 9.74 8.9 � 7.58 45.06 � 21.87 48.15 � 14.54 8.66 � 10.68 7.33 � 6.13
S to H V �24.12 � 27.33 �35.36 � 24.45 �3.2 � 7.15 �6.35 � 11.77 �81.74 � 57.2 �90.44 � 53.51 �2.48 � 7.56 �4.01 � 6.47

a. bold indicates the variables where a significant interaction effect was recorded.
b. *highlights a significant difference between groups at the p < 0.05 level.
c. ** highlights a significant difference between groups at the p < 0.001 level.
d. H = head level. S = shoulder level. P = pelvis level.
e. AP = anterior-posterior. ML = medio-lateral. V = vertical.
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although the current investigations HR values where lower than
past investigations, the PD group recorded lower HR values relative
to the controls for all sensor locations and directions [5,8].

Another limitation with the current investigation was that gold
standard reference alignments were not recorded. As such, it was
not possible to objectively establish which realignment method is
the most accurate, or to discriminate the group differences that can
be ascribed to specific aspects such as varying upper body
postures, movement patterns, or solely due to signal processing
choices. As a result, the recommendation for which realignment
method to use for future investigations can only be prescribed
based upon observations found within the current results.

The CoA, which was the only multi-segment variable investi-
gated here, recorded the largest differences between the four
methods. A possible explanation is that differences in posture at
two upper body locations increased the chance of directional
crosstalk impacting upon the CoA. M4 uses a uniform global
reference for all locations rather than an estimated reference that
may vary in accuracy due to the physical orientation of two sensors
and so is theoretically better suited to use a multiple segments
approach. However, M4 is limited by having to predefine and
validate the global reference frame in each experimental setting
prior to data collection. M2 and M3 are not limited by a predefined
global reference and so are best suited across multiple settings. M3
is based on M2 but applies an additional correction of the pitch and
roll angles, and has been proposed to compensate for undesired
low-frequency movements during gait [15]. The amount of change
observed at the head and shoulder in the investigated variables
suggest that approaches similar to M3, attempting to control for
erroneous movements at locations prone to cross-talk will indeed



Table 3
The post-hoc paired sample t-test p values and effect size (d) values for all variables and realignment methods where an interaction occurred.

Variable M1 M2 M3 M4

RMS p d p d p d p d
S AP <0.001 0.68 0.246 0.68 0.323 0.19 0.103 0.31
S ML 0.058 0.36 0.070 0.36 0.032 0.41 0.182 0.25

J H ML 0.590 �0.10 0.452 �0.10 0.764 �0.06 0.069 �0.35
H V 0.170 0.26 0.095 0.26 0.127 0.29 0.098 0.32
S AP 0.191 0.25 0.701 0.25 0.760 0.06 0.590 0.10

HR H V <0.001 0.89 <0.001 0.89 <0.001 0.89 <0.001 0.94
S AP <0.001 0.93 <0.001 0.93 <0.001 0.61 0.093 0.32
S V <0.001 0.89 <0.001 0.89 <0.001 0.89 <0.001 1.09
P V <0.001 0.79 <0.001 0.79 <0.001 0.80 <0.001 0.81

JR ML/V ML 0.077 �0.34 0.006 �0.34 0.053 �0.37 <0.001 �0.79

CoA P to S AP 0.589 �0.10 0.011 �0.10 <0.001 0.62 0.022 0.44
P to S V 0.043 0.39 0.628 �0.09 0.386 0.17 0.430 �0.15

a. H = head level. S = shoulder level. P = pelvis level.
b. AP = anterior-posterior. ML = medio-lateral. V = vertical.
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be needed when collecting data in uncontrolled environments (e.g.
during free-living monitoring). Alternatively, if participants do not
have significant postural differences at the location of the sensor
and if erroneous movements can be controlled for by experimental
design, for example instructing the participants to look forward
when measuring movements of the head, or when measuring
locations less prone to crosstalk such as the pelvis, M2 might still
be acceptable. To support this, results showed that, with the
exception of the vertical HR which did record a significant
interaction but showed a consistent significant difference between
the groups for all methods, no significant interaction was recorded
from variables obtained at the pelvis. Therefore, inferring that, M2
can be used interchangeably from M3, and relative to the other
locations investigated, the pelvis was more robust between the
realignment methods.

Visual inspection of Fig. 1 shows the V acceleration signals from
the pelvis were the least affected by the different realignment
methods, meaning, if variables are sensitive to PD from the V signal
alone, they may be able to circumvent the need to realign the
signals. Previous research suggested that movements in the ML
direction, or taken from the head, best highlight postural control
decline, whereas pelvis movements in the V direction primarily
reflect walking speed differences [20,22,24]. Currently it is not
clear what is best between having a robust variable that requires
little or no processing, or from having variables likely to be more
descriptive of postural control decline as obtained using a
realignment method. With additional upper body variables
proposed to measure postural control in the literature (e.g.
autocorrelations and Lyapunov exponent) [9], future research is
needed to establish whether a particular combination of variables
and realignment methods are needed to quantify PD specific
impairments during gait. Nonetheless, at present, the authors
predict that due to the recent abilities to use IMUs over extended
periods and the interest to obtain free living gait analysis [25], the
variables that are least impacted by the environment, sensor
location and requires the least processing, while still being
sensitive to PD, will be the most routinely utilised.

5. Conclusions

The current investigation is the first to show the impact of four
different upper body acceleration realignment methods upon the
selected upper body variables and their ability to detect PD.
Realignment methods altered the results of all variables analysed,
and for specific variables was able to determine their ability to
highlight movements indicative of PD. Based on the strength of
these results, caution is encouraged when comparing studies that
use different realignment methods and that a standardisation for
which method to use for each variable, sensor location and
environment is required. However, prior to this, within a controlled
clinical/laboratory environment and if applied to segments
minimally prone to cross-talk, a tilt correction towards the vertical
gravitational acceleration axis is recommended, due to its
applicability to varying environments and popularity in the
literature, therefore aiding a continued comparison of results.
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