
This is a repository copy of Building Model-Driven Engineering Traceability.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/109242/

Version: Published Version

Proceedings Paper:
Paige, Richard Freeman orcid.org/0000-0002-1978-9852, Olsen, Gøran K, Kolovos,
Dimitris orcid.org/0000-0002-1724-6563 et al. (2 more authors) (2010) Building Model-
Driven Engineering Traceability. In: ECMDA Traceability Workshop (ECMDA-TW). Sintef ,
p. 49.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Building Model-Driven Engineering Traceability

Classifications

Richard F. Paige, Gøran K. Olsen, Dimitrios S. Kolovos, Steffen Zschaler and

Christopher Power

Department of Computer Science, University of York, UK.

{paige, dkolovos, cpower}@cs.york.ac.uk

SINTEF, Oslo, Norway. Goran.K.Olsen@sintef.no

TU Dresden, D-01062 Dresden, Germany. szschaler@acm.org

Abstract. Model-Driven Engineering involves the application of many differ-

ent model management operations, some automated, some manual. For devel-

opers to stay in control of their models and codebase, trace information must be

maintained by all model management operations. This leads to a large number

of trace links, which themselves need to be managed, queried, and evaluated.

Classifications of traceability and trace links are an essential capability required

for understanding and managing trace links. We present a process for building

traceability classifications for a variety of widely used and accepted operations

(both automated and manual) and show the results of applying the process to a

rich traceability context.

1. Introduction

Traceability is the ability to chronologically interrelate uniquely identifiable enti-

ties in a way that matters. The IEEE Standard Glossary of Software Engineering Ter-

minology [IEEE 2004] defines traceability as “the degree to which a relationship can

be established between two or more products of the development process, especially

products having a predecessor-successor or master-subordinate relationship to one

another; for example, the degree to which the requirements and design of a given

software component match.” Thus, traceability refers to the capability for tracing arte-

facts along a set of chained operations, where these operations may be performed

manually (e.g., crafting a software design for a set of software requirements) or with

automated assistance (e.g., generating code from a set of abstract descriptions). In the

context of Model Driven Engineering (MDE), many of the artefacts of interest are

models, conforming to a metamodel, and are constructed using a set of modelling

tools. Traceability in MDE is therefore predominantly concerned with chronologically

defined relationships involving models and elements of models. The relationships

between models are often called trace links [Olsen 2007]. However, when applying

MDE, we start development of models from other kinds of artefacts: informal, natural

language descriptions of requirements, spreadsheets, etc. Traceability needs to con-

sider these artefacts as well, in terms of how models can be traced to other (non-

model) artefacts and how (non-model) artefacts can be traced to models.

Generating and maintaining traceability information is important in order to help

control the wealth of different artefacts in the development process: as systems be-

come more complex, and as the application of MDE techniques within a process be-

comes more in depth, the need for better management of MDE artefacts increases.

Traceability helps us to understand the many dependencies that exist between MDE

artefacts. If we are able to support end-to-end traceability—that is, between all arte-

facts developed and generated in an MDE systems development process—then we

can support a variety of different kinds of analysis; for example, showing that a re-

quirement is fulfilled in implementation or showing that artefacts are up to date.

 In a realistic MDE context, it is likely that a large amount of traceability informa-

tion will be generated or created; understanding and managing this information will

therefore be challenging, and will require structure to be imposed in order to under-

stand the most appropriate ways to manage it. Traceability information can be better

understood and managed through the help of a traceability classification. Several

classifications have been published (e.g., for requirements engineering) [Ramesh

2001, Limon 2005, Walderhaug 2006]; these vary from abstract, conceptual classifi-

cations that help to systematise our understanding of the traceability problem domain,

to concrete classifications (or traceability metamodels) that help to manage trace in-

formation in an implementation. Our focus in this paper is on the process of building

traceability classifications, and on using this to classify both manual and automated

MDE operations, thus helping to enable the full vision of end-to-end traceability.

The structure of the rest of the paper is as follows. In Section 2 we briefly review

related work. In Section 3 we sketch a simple process for building traceability classi-

fications. In Section 4 we outline how we have applied the process to build a trace-

ability classification for the MODELPLEX1 project, encompassing both manual and

automated trace links.

2. Related Work

Different styles of traceability classifications have been presented in the literature. In

particular, classifications given in terms of scenarios of use of traceability are postu-

lated by [Olsen 2007, Walderhaug 2006]. Classifications in terms of specific domains

have been produced by [Ramesh 2001] for requirements engineering, and for business

applications [Rummler 2007].

Traceability classifications in MDE have been developed that emphasise different

attributes or characteristics of traceability. In particular, two categories of classifica-

tions can be identified in the literature: classifications that focus on explicit trace links

(which are captured directly in models themselves using a suitable concrete syntax),

and implicit trace links where trace information is generated or arises due to applica-

tion of one or more model management operations. The classification we build in

Section 4 includes both explicit and implicit trace links.

More generally, traceability has been identified as an important research issue. The

European project AMPLE, focusing on Aspect-Oriented and Model-Driven product

1 http://www.modelplex.org/

line engineering aims to support traceability across software product lines [Rummler

2007]. The Grand Challenges in Traceability report [GCT 2006] identifies a number

of challenges for managing and maintaining trace information, including evolution of

trace information, trace link semantics, and eliciting trace knowledge.

Many trace tools have been developed for managing trace information. Some of

the most well-known and widely used include Reqtify [ChiasTek 2007], RequisitePro

[IBM 2007], and Acceleo Pro [Obeo 2007]. An approach to trace link generation has

been presented by Egyed [Egyed 2003], who presents a trace tool that automatically

derives traces from code through requirements. [Kolovos 2006] presents support for

trace links where trace information is stored separate from the model; [Jouault 2005]

outlines a loosely coupled trace scheme for model transformations.

3. A Traceability Classification Process

As suggested by the related work presented in Section 2, a number of traceability

classifications have been presented, but there is little guidance yet on how to system-

atically build and maintain them (ranging from conceptual models to concrete meta-

models). A demonstrated process for building traceability classifications is useful for

this, not only for building classifications in the first place, but for maintaining classi-

fications as new MDE operations, new relationships between MDE artefacts, and new

stakeholder requirements, arise. In order to support this, we first describe a very sim-

ple process for building and maintaining traceability classifications, and then in the

next section we use it to develop a classification for the stakeholder requirements of

MODELPLEX.

The simple process is called the Traceability Elicitation and Analysis Process

(TEAP). It is derived from a process developed in [Chan 2005] for elicitation and un-

derstanding different forms of model-based contracts. The aim of TEAP is to elicit

and analyse traceability relationships in order to determine how they fit into a trace-

ability classification. While eliciting new traceability relationships, we improve our

understanding of the key attributes of these traceability relationships: the artefacts

they involve, their semantics, and their domain of applicability.

When applying TEAP, we typically bootstrap from a simple traceability classifica-

tion or metamodel, and iteratively and incrementally refine the classification through

a number of TEAP cycles. Each cycle in the TEAP enriches the existing classification

in terms of one or more key attributes of interest.

TEAP is a triggered process, in which there are three main activities in each itera-

tion: Elicitation, Analysis, and Classification. In elicitation, we identify basic trace

links and relationships. In the second phase, we extrapolate from these the key charac-

teristics of traceability (based on our current understanding) and as a result of this

analysis, identify constraints on relationships and any generalisations of relationships

and trace links. In the third phase, we build a classification. From this, we can itera-

tively enrich, refactor, and improve the classification, for example when customer

requirements dictate.

TEAP is intended for use in building new classifications and for maintaining clas-

sifications. The classification we describe for MODELPLEX is generic, and may be

useful in a variety of settings – however, it can and will be extended over the duration

of MODELPLEX, and TEAP can be used to support this.

TEAP is derived from the spiral software development model, due to Boehm, and

the spiral model in requirements engineering. The main difference is that TEAP pro-

duces metamodels and classifications, rather than software or requirements. The ad-

vantage of defining and using TEAP is that it gives extensibility to its product. This is

essential in providing a generic, flexible framework for classifying and managing

traceability. In other words, the traceability classification can be kept up-to-date by

carrying out additional TEAP cycles.

As mentioned earlier, TEAP is a triggered process; we can identify when TEAP

cycles should be executed. The triggers for executing TEAP cycles include:

• a new model management operation has been defined, in which case cycles

should be executed in order to refine the classification

• the system development process has changed; thus cycles should be executed

in order to refine how to handle sequences of model management operations.

• one or more modelling languages have changed to include new model rela-

tionships, artefacts, or changed model relationships, in which case cycles

should be executed to refine and extend the explicit link classification.

• The existing classification does not capture all requirements for traceability

inherent in a domain or project context.

The TEAP process is meant to provide guidance, not to dictate the way in which

the traceability classification must be extended and refined.

4. Example: Building the MODELPLEX Classification

In this section we outline how we used TEAP (from Section 3) to build a conceptual

traceability classification for use in the MODELPLEX European project. We start

with a very short overview of the traceability requirements for MODELPLEX, then

summarise a few iterations of TEAP applied to these requirements.

4.1 MODELPLEX traceability requirements

MODELPLEX is a three-year integrated project funded by the European Commis-

sion, with a mandate to improve productivity in the development of complex systems

through use of MDE. The project is case-study driven, with four industrial partners -

SAP, Telefonica, Western Geco, and Thales Information Systems - providing real

complex system scenarios, to which MDE technology (e.g., architectural modelling,

model transformation, performance analysis, simulation, model composition) is to be

applied. Each case study has traceability requirements. These can be summarised as:

• the ability to record traceability information that results from applying model

management operations: model-to-model (M2M) transformations, model-to-text

(M2T) transformations, compositions, simulations, and refinements;

• the ability to manually create trace links between MDE artefacts, e.g., between an

architectural model and a use case model, between a weaving model and a design

model. Manual creation of trace links can involve modelling tools, or the use of a

textual domain-specific language tailored for one or more of the case studies;

• the ability to (typically manually) create trace links between MDE artefacts (e.g.,

models) and non-MDE artefacts (e.g., requirements stored in a MANTIS reposi-

tory, PDF documents). This is a necessary requirement as some of the

MODELPLEX partners do not currently use MDE technologies in their everyday

practice; moreover, non-MDE artefacts will always play a substantial role in the

MDE process, e.g., for early requirements elicitation and description.

• the ability to store and retrieve trace links and trace metadata from a repository.

We decided to initially produce a conceptual traceability classification that ad-

dressed the basic information that needed to be recorded for the first three sets of re-

quirements above. This would then be refined and implemented in a traceability tool,

which also provided repository features.

4.2 Basis for TEAP iterations

To apply TEAP, we initially constructed simple traceability infrastructure that would

evolve over the TEAP iterations. This infrastructure is depicted in Fig. 1. It is, effec-

tively, a very simple traceability metamodel that expresses the fundamental concepts

of artefacts, trace links, and operations. We specialise this model in the following

subsections. Artefacts may be both MDE artefacts (e.g., domain-specific models) and

non-MDE artefacts (e.g., spreadsheets), and operations (either manual or automated)

elaborate the traceability information to be recorded. Finally, the different kinds of

trace links will be discussed in the following sections.

Artefact Operationproduces

*

consumes 1..*

Trace Link

source

1..*

target*

generates

*

Fig. 1: Basic traceability classification infrastructure

The classification in Fig. 1 is generic, and could thus be used to produce a variety

of specialised traceability classifications for different domains and contexts. In each

case, TEAP can be used to maintain and extend the basic infrastructure for new do-

main-specific requirements and contexts.

4.3 Adding explicit and implicit traceability relationships

We start to extend our simple traceability infrastructure by carrying out TEAP cycles.

Our initial cycle was triggered by the obvious observation that the trace link model in

Fig. 1 did not satisfy all MODELPLEX requirements for traceability. We thus carried

out elicitation (what general kinds of trace links exist?), analysis (what information

did these trace links require?), and built a simple classification. The cycle focused on

the notions of implicit and explicit traceability. Implicit traceability involves trace

links that are created and manipulated by application of MDE operations. Explicit

traceability is defined in terms of trace links that are concretely represented in models.

Therefore, our initial TEAP cycle was very simple and refines the traceability infra-

structure to that shown in Fig. 2.

Artefact Operationproduces

*

consumes 1..*

Trace Link

source

1..*

target*

generates

*

Implicit Link Explicit Link

Fig. 2: Explicit and implicit trace link classification

4.4 Iterations for implicit trace link classification

The next cycle was triggered by two observations: the classification of implicit trace

links was weak; and, by obtaining more precise requirements about the operations that

were to be supported in MODELPLEX. We thus carried out a TEAP cycle for im-

proving our classification of implicit trace links. As usual, there is elicitation (what

kinds of MDE operations are relevant?), analysis (what information do operations

require, and how should this information be constrained?), and classification.

MDE operations implicitly define a variety of different trace links between two or

more artefacts (note that many artefacts will be models, e.g., for model-to-model

transformation, but non-model artefacts such as code and requirements may be in-

volved too). An MDE operation takes a set of artefacts as input (if the artefacts are

models, they may be from one or more different modelling languages) and produces a

set of artefacts and a set of trace links as output. Trace links can be recorded either in

the source or target artefacts, or as a separate model [Kolovos 2006]. The basic MDE

operations are elicited from studying the relevant standards—particularly UML,

MOF, and QVT—which indicate how trace links can be generated. The operations we

initially identify are: query, transformation, composition (sometimes called merging),

update (also called update-in-place), creation, deletion, model-to-text, and sequences

of operations. The resulting classification (focusing strictly on subclasses of Implicit

Link from Fig. 2) is shown in Fig. 3. As well, new operations (subclasses of Opera-

tion) are added for each, e.g., Query Operation, Delete Operation, etc.

Implicit Link

Update Link M2T Link Composition Link Deletion LinkM2M LinkCreation LinkQuery Link

Fig. 3: Additions for implicit trace links

Examples of the well-formedness constraints elicited and produced in the analysis

phase are shown below.

context QueryOperation inv:
 self.consumes->forAll (a |
 self.generates->exists(t | t.source->includes(a) and
 self.produces->includesAll(t.target)));
 self.generates->forAll(t | t.oclIsTypeOf(QueryLink))

context CreationOperation inv:
 self.consumes->isEmpty();
 self.generates.target->includesAll(self.produces);
 self.generates->forAll(t | t.oclIsTypeOf(CreationLink));

4.4 Iterations for explicit traceability relationships

We next carried out a TEAP cycle for improving our classification of explicit trace

links. This cycle was triggered by refined MODELPLEX requirements for explicit

representation of trace information in models and in domain-specific languages. Re-

call that explicit trace links are explicitly defined between artefacts, using one or more

languages. For example, a UML dependency constitutes a specific kind of explicit

trace link. Obviously, there are many different kinds of explicit trace links, and many

of them will be domain specific (and language specific). We illustrate the results of

the TEAP process for MODELPLEX’s explicit trace links. As was the case for im-

plicit trace links, we carry out elicitation (what kinds of explicit trace links are rele-

vant?), analysis (what information do these links require?), and classification.

The initial elicitation and analysis identified two basic kinds of explicit trace links:

model-model links (e.g., the aforementioned UML dependency), and model-artefact

links (e.g., between a model and a spreadsheet). Trace links entirely between non-

model artefacts were determined to be out of scope, and managed by other tools.

The model-model links were then further analysed. These were determined to be

divisible into static links (which represent structural relationships that do not change

over time) and dynamic links, which represent information regarding models that may

change over time. A variety of both static and dynamic links were collected from

MODELPLEX’s requirements. Some examples of static model-model links are:

• consistent-with links, where two models must remain consistent with each

other, e.g., a sequence and class diagram.

• dependency links, where the structure and meaning of one model depends on a

second. Dependency links can be further subdivided into: is-a links (e.g., sub-

typing), has-a links (e.g., references), part-of links, import and export links,

usage links (e.g., one component uses another’s services), refinement links

(e.g., where a component reduces non-determinism in a second component).

Some examples of dynamic model-model links include: calls links (where one

model calls behaviours provided by a second model), notifies links (where it is neces-

sary to record information that cannot be handled automatically, such as changes that

require human intervention). Furthermore, there are design-time relationships, such as

generates or builds links that indicate where information from one model is used to

produce or deduce the second model; and synchronized-with relationships, where be-

haviours between models are synchronized. These usually apply when there is some

kind of tracking mechanism introduced between models. A further example includes

the consistent-with trace links that can exist between an early requirements specifica-

tion such as those in i*, and models of functional requirements [Alencar, 2000].

Model-artefact links are important in MODELPLEX, to support trace links be-

tween MDE artefacts (including UML models as well as domain-specific models) and

non-MDE artefacts, particularly spreadsheets, requirements databases, and results of

simulations. The scope of model-artefact links is broad, and we did not attempt to

elicit all such links in our classification. We provide important links in

MODELPLEX, while giving a classification that can be extended in the project.

The intent of most model-artefact links is to enable coverage checking, e.g., of re-

quirements. This is the case in MODELPLEX. The trace links of interest in

MODELPLEX were the following:

• satisfies links, to indicate that properties or requirements captured in an arte-

fact are satisfied by a model. Variants on satisfies links include verifies links

(which involve a specific mechanism, such as testing) and certifies links

(which also link to external standards and arguments for safety or security).

• allocated-to links, used when information in a non-model artefact is allocated

to a specific model that represents the information.

• performs links, indicating that a task described in an artefact is carried out by a

specified model

• explains and supports links, indicating that, e.g., a model is explained by a

non-model artefact (e.g., natural language documentation).

These trace links are summarised in Fig. 4 (focusing strictly on the explicit trace

link part of the classification).

Explicit Link

Model-Artefact LinkModel-Model Link

Static Link Dynamic Link Satisfies ExplainsSupportsPerformsAllocated-To

Dependency Consistent-With Calls

Synch. With

NotifiesGenerates

Is-A Refines

…..

Fig. 4: Summary of explicit trace links

As this brief discussion suggests, the space of explicit trace links is rich and com-

plicated, and encompasses many domain- and language-specific characteristics.

5. Conclusions

We have presented a lightweight process for building traceability classifications, and

illustrated its application to a conceptual classification for the MODELPLEX process.

The classification identifies basic categories of traceability – implicit and explicit –

and populates these categories with trace links from different MDE operations (such

as transformation and query) and from different modelling scenarios relevant to

MODELPLEX. The classification developed above is a living document, and will be

extended iteratively and incrementally over the course of the project. Furthermore, it

will be refined from a conceptual classification to a concrete design that can be sup-

ported in a trace tool that includes a repository and capabilities for retrieving, storing,

and updating trace links.

TEAP has so far proved to be suitably lightweight, yet helpful in guiding the con-

struction and the iterative improvement of traceability classifications. Since most, if

not all, classifications must evolve with time, the value of an iterative and incremental

process for evolving classifications is substantial.

Acknowledgments

This research has been co-funded by the European Commission within the 6th Frame-

work Programme project MODELPLEX contract number 034081.

References

[Alencar, 2000] F. Alencar, J. Castro, G. Cysneiros, J. Mylopoulos. From Early Re-

quirements Modeled by the i* Technique to Later Requirements Modeled in Precise

UML. In Proc. of Workshop de Engenharia de Requisitos 1ed. Brasil, Brazil, 2000.

[Aizenbud-Reshef 2005] N. Aizenbud-Reshef, R.F. Paige, J. Rubin, Y. Shaham-

Gafni, and D.S. Kolovos. Operational semantics for traceability. In Proc Workshop on

Traceability 2005, Nuremberg, Germany, November 2005.

[Aizenbud-Reshef 2006] N. Aizenbud-Reshef, B. Nolan, J. Rubin, and Y. Shaham-

Gafni. Model traceability. IBM Systems Journal 45(3), 2006: pp 515-526.

[Borland 2007] CaliberRM: http://www.borland.com.

[Chan 2005] Z.E. Chan and R.F. Paige. Designing a Domain-Specific Contract Lan-

guage: a Metamodelling Approach, in Proc. EC-MDA 2005, LNCS 3748, Springer-

Verlag, November 2005.

[Chiastek 2007] Chiastek, Reqtify: http://www.chiastek.com/products/reqtify.html

[Egyed 2003] A. Egyed, A Scenario-Driven Approach to Trace Dependency Analysis.

IEEE Transactions on Software Engineering, 2003. 29: p. 17.

[GCT 2006] Grand Challenges in Traceability, Center of Excellence for Traceability

http://www.traceabilitycenter.org/downloads/documents/GrandChallenges/

[IEEE 2004] IEEE Std 610.12-1990 IEEE Standard Glossary of Software Engineering

Terminology, 2004.

[Jouault 2005] F. Jouault. Loosely Coupled Traceability for ATL. In Proc. ECMDA-

FA Workshop on Traceability, SINTEF Technical Report STF90, November 2005.

[Kolovos 2006c] D.S. Kolovos, R.F. Paige, and F.A.C. Polack On-Demand Merging

of Traceability Links with Models. ECMDA 06 Traceability Workshop Bilbao, 2006.

[Limon 2005] A. Limon and J. Garbajosa. The Need for a Unifying Traceability

Scheme. In Proc. Workshop on Traceability 2005, Nuremberg, November 2005.

[Obeo 2007] Acceleo Pro Traceability, http://www.acceleo.org

[Olsen 2007] G. Olsen and J. Oldevik. Scenarios of traceability in model to text trans-

formations. In Proc. ECMDA-FA 2007, LNCS, Springer-Verlag, June 2007.

[Walderhaug 2006] S. Walderhaug, U. Johansen, E. Stav, and J. Aagedal. Towards a

generic solution for traceability in MDD. In Proc. Workshop on Traceability 2006,

Bilbao, Spain, July 2006.

