
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 78.144.38.225

This content was downloaded on 13/10/2016 at 07:27

Please note that terms and conditions apply.

You may also be interested in:

2007 International Symposium on Nonlinear Dynamics (2007 ISND)

Ji-Huan He

Employment of Jacobian elliptic functions for solving problems in nonlinear dynamics of

microtubules

Slobodan Zekovi, Annamalai Muniyappan, Slobodan Zdravkovi et al.

Nonlinear dynamics of solid-state ring lasers

Nikolai V  Kravtsov and E G  Lariontsev

Nonlinear Dynamics of Semiconductor Lasers

Guest editor: D Lenstra

Tracking Consensus for Second-Order Multi-Agent Systems with Nonlinear Dynamics in Noisy

Environments

Lu Xiao-Qing and Chen Shi-Hua

Dynamic Equations and Nonlinear Dynamics of Cascade Two-PhotonLaser

Xie Xia, Huang Hong-Bin, Qian Feng et al.

Nonlinear Dynamics of Structures with Material Degradation

View the table of contents for this issue, or go to the journal homepage for more

2016 J. Phys.: Conf. Ser. 744 012123

(http://iopscience.iop.org/1742-6596/744/1/012123)

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/article/10.1088/1742-6596/96/1/011001
http://iopscience.iop.org/article/10.1088/1674-1056/23/2/020504
http://iopscience.iop.org/article/10.1088/1674-1056/23/2/020504
http://iopscience.iop.org/article/10.1070/QE2006v036n03ABEH013124
http://iopscience.iop.org/article/10.1088/1355-5111/9/4/013
http://iopscience.iop.org/article/10.1088/0253-6102/59/4/08
http://iopscience.iop.org/article/10.1088/0253-6102/59/4/08
http://iopscience.iop.org/article/10.1088/0253-6102/45/6/018
http://iopscience.iop.org/1742-6596/744/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Nonlinear Dynamics of Structures with Material

Degradation

P. Soltani 1, D.J. Wagg 1, C.Pinna 2, R. Whear 3, and C. Briody3

1 Dynamic Research Group, The University of Sheffield, S13JD, UK
2 Department of Mechanical Engineering, The University of Sheffield, S13JD, UK
3 Jaguar Land Rover Ltd, CV35 0RR, UK

E-mail: payam.soltani@sheffield.ac.uk

Abstract. Structures usually experience deterioration during their working life. Oxidation,
corrosion, UV exposure, and thermo-mechanical fatigue are some of the most well-known
mechanisms that cause degradation. The phenomenon gradually changes structural properties
and dynamic behaviour over their lifetime, and can be more problematic and challenging in the
presence of nonlinearity. In this paper, we study how the dynamic behaviour of a nonlinear
system changes as the thermal environment causes certain parameters to vary. To this end, a
nonlinear lumped mass modal model is considered and defined under harmonic external force.
Temperature dependent material functions, formulated from empirical test data, are added into
the model. Using these functions, bifurcation parameters are defined and the corresponding
nonlinear responses are observed by numerical continuation. A comparison between the results
gives a preliminary insight into how temperature induced properties affects the dynamic response
and highlights changes in stability conditions of the structure.

1. Introduction
From a macroscopic point of view, degradation can be defined as the changing of mechanical
properties over the working life of a material component. Dynamical design of structures
and machine components is usually performed based on the assumption of constant material
properties. This is despite the fact that materials typically deteriorate gradually under their
operating conditions and, as a result, their characteristics deviate from the original design
assumptions.

Dynamic failure and fatigue are the most serious and well-known consequences of degradation,
usually as a consequence of prolonged periods of cyclic loading. Other dynamic effects that lead
to degradation include impact, rattle, freeplay and contact/friction effects. These occur in
many applications relevant to the automotive industry. Among all different types of materials
used in a vehicle, a high rate of change in properties is usually observed in elastomeric
materials. Mechanical behaviour of elastomers can vary with external and working conditions
over the operational life. As a wide range of parts with different functions are made from
elastomeric materials, elastomer degradation is naturally a big concern for the automotive
industry. However, the dynamic response of elastomers is nonlinear, which can make the
degradation even more challenging to understand. In extreme cases, it can potentially change
the stability behaviour of the system over the working life of the part and at different external
conditions.
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The main goal of this paper is to investigate the changes in dynamic behaviours and stability
of a nonlinear system with mechanical property changes and/or material degradation. An
specific elastomer widely used in automotive industry is chosen and its experimental thermal
degrading function is coupled to a 1-DoF nonlinear dynamic model. The numerical continuation
technique is then used to mimic the nonlinear dynamics of the system and track the stability
changes as the elastomer degrades with temperature.

2. Dynamic Behaviour of the system including ageing
To investigate the effects of the changes in material properties and/or degradation on the
behaviour of a system, a one degree-of-freedom (1-DOF) dynamic model is considered with
the following governing equation

M Ẍ(t) + C Ẋ(t) +KX(t) + Fnl = F0 cos(ω t), (1)

where an overdot denotes derivative respect to time t, and M , K and C are the mass, stiffness,
and damping matrices, respectively. The system is excited by a harmonic load of amplitude F0

and frequency ω and a nonlinear restoring force

Fnl =
∑

Ki nlX
i(t), (2)

is assumed. Where Ki nl s are the nonlinear stiffness coefficients of the corresponding nonlinear
terms Xi(t).

Now a non-dimensional form of Equation (1) is introduced

δ2 x′′(τ) + αx(τ) + 2 δ β ζ x′(τ) + fnl = f0 cos(τ), (3)

with dimensionless polynomial nonlinear restoring force fnl given by

fnl =
∑

ϕi ki nlx
i(τ). (4)

In Equation (3), prime now stands for the differentiation with respect to the dimensionless time
(τ = ω t), and the other dimensionless parameters are defined as

δ = ω
ω0
, ω0 =

√
K
M , x = X

l ,

ζ = C
2Mω0

, f0 =
F0
K l , ki nl =

li−1Ki nl
K .

(5)

Equation (3)represents a generalized model for a nonlinear system under material degradation.
α, β and ϕi are the dimensionless degrading parameters added to the equation , that control
the variations of linear stiffness, damping, and nonlinear stiffness of the system, respectively.

In general, if n different degradation variables are considered, the degradation parameters
are written as

α = α(X1, ...Xj , ...Xn) , β = β(X1, ...Xj , ...Xn) , ϕi = ϕi(X1, ...Xj , ...Xn), j = 1, 2.., n (6)

withXj as the degradation variables such as time, mechanical loading, frequency, temperature,...
. Variation of the degrading parameters with Xj is usually determined by experimental tests. In
this paper, as is described in Section (3), it is assumed that the material properties are changed
only by temperature (i.e. n = 1 and X1 = θ). It is also assumed, for the sake of simplicity, that
the nonlinearity of the system is degraded with a similar trend to the linear stiffness α = ϕi.
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3. Material Degradation of the elastomer
The primary mechanism of degrading for elastomers is not yet fully understood. However, the
most significant phenomena that affect an elastomeric component during its service life are
temperature, UV exposure, oxidation, ionizing radiation, and mechanical loading [3]. Thermal
degradation, which has already been thoroughly investigated in the literature [4, 5, 6], refers to
the chemical and physical processes in elastomers that occur as a result of temperature changes
at a microstructural scale. This will in turn will lead to a change in macroscale mechanical
properties.

To capture the variation of mechanical properties of elastomeric materials Dynamic
Mechanical Thermal Analysis (DMTA) is often carried out. By applying harmonic deformation,
DMTA can measure the storage modulus Est and the loss modulus Elos of elastomer coupons
against different parameters such as time, temperature, and frequency. As a viscoelastic
material, the complex form of the elastic modulus can be approximated for the rubber as
Est + i Elos. Where the storage modulus is associated with the equivalent stiffness and the
loss modulus represents the damping characteristics of the structure.

The elastomer under analysis in this paper is a carbon black filled, sulphur-cured rubber
widely used in engine mounts. Dynamic mechanical analysis of the elastomer was performed on
a MK-II DMTA in the shear mode. The experiments were carried out at a frequency of 10Hz,
at a heating rate of 2◦C/min and a double strain amplitude of 64µm over a temperature range
of ±100◦C . Two samples were used and the storage modulus Est and the loss modulus Elos

were measured for each sample in this temperature range.
It should be noted that Equation (3) presents a generalized model for structures with material
degradation and/or with parameters-dependent materials. For material degradation, parameters
in Equation (6) are usually defined as functions of lifetime, while for parameters-dependent
materials, the degrading parameters are described as functions of the specific parameters.
Elastomers are considered as parameters-dependent materials as their properties may vary
with different parameters such as temperature, frequency, and displacement. They also
represent a high rate of degradation during their working life. In this paper, and as a
preliminary step in nonlinear dynamics of degrading elastomers, the rubber is considered as
a temperature-dependent material, where the overall variations of the storage and loss stiffness
with temperature are shown in Figures (1) and (2).

4. System characterization
To characterize the nonlinear dynamics of the system introduced in Equation (3), a numerical
parameter continuation technique is used. In numerical continuation, the stable periodic solution
is firstly calculated for the harmonically forced system, and the evolution of this solution will
be tracked by changing the system parameters. Different types of instabilities and bifurcation
points such as limit points (LP), Neimark-Sacker (NS) bifurcations, or period doubling (PDB)
can be investigated by proper evolution of the system parameters. The bifurcation analysis for
the system is carried out using the continuation software MatCont [2].

The model in Equation (3) has two important parameters; dimensionless forcing amplitude f0
and, excitation frequency ratio δ. Moreover, the characteristics of the system are also changed
with temperature θ, through parameters α and β. The practical temperature range of the
elastomer in typical usage is in the range of [−20 , 100]◦C , where two different behaviors are
observed. Variation of the parameters α and β (normalized at 40◦C) are shown in Figures (3
and 4) at two different profiles termed as cold (−20 < θ < 0) and hot (0 < θ < 100) scenarios .
Other system specifications and parameters are chosen from Table (1) to perform continuation.
It is also assumed that the second and third order nonlinear restoring force are acting on the
system with k2nl = k3nl = 1.
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Figure 1. Temperature dependent storage modulus Est using DMTA data.
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Figure 2. Temperature dependent loss modulus ELos using DMTA data.
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Figure 3. Variation of the degrading parameters (a) α (b) β against temperature according to
DMTA data (Hot scenario: 0 < θ < 100).
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Figure 4. Variation of the degrading parameters (a) α (b) β against temperature according to
DMTA data (Cold scenario: −20 < θ < 0).

Table 1. System specifications.

parameter value

δ 1
ζ 0.05
f0 3
l 1

5. Results and Discussion
Two different temperatures from different scenarios are selected for analysis. The stable limit
cycles at these temperatures are compared in Figure (5). By doing a continuation on the
dimensionless forcing f0 and from these stable limit cycles, the variation of the maximum
amplitude xmax is plotted for θ = 40◦c and −1◦c. Although the branch is stable in the cold
scenario (Figure(6-b)); two LPs, two PDBs and an unstable branch are detected in Figure(6-a)
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Figure 5. Stable limit cycles at to different temperatures.

for the hot scenario. The unstable solution is created between the LPs and having PDBs present
is known to be an indication of more complex dynamic behaviour including chaos. Hence, as the
system at the cold scenario behaves stably, different types of instabilities and unstable behaviour
are observed at the hot scenario over a relatively wide range of f0.
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Figure 6. Variation of maximum amplitude x against forcing amplitude f0 at (a) hot scenario
(b) cold scenario.

The influence of the exciting frequency on the dynamic behaviour is also investigated by
sweeping δ around the resonant frequency using the continuation procedure. Results for the
degraded system at the sample temperatures in the hot and cold scenarios are plotted in Figures
(7). These figures, termed the nonlinear frequency responses (NL-FRF), disclose any instabilities
that occur for both scenarios. Two LPs and an unstable branch are observed in both figures,
while the unstable solution at the cold scenario occurs at a small range of δ and xmax (Figure(7-
b)).

As the exciting frequency δ changes, the unstable branch moves to different forcing amplitudes
which should be clarified in nonlinear systems. Hence, in the last step, two-parameters
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Figure 7. Variation of maximum amplitude x against dimensionless forcing frequency δ at (a)
hot scenario (b) cold scenario.
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Figure 8. (a) Evolution of the unstable branches at different scenarios against the system
parameters f0 and δ, (b) a zoom-in of the unstable area at the hot scenario .

continuation is conducted over a range of δ and f0, initiated from the LPs. The sweeping
frequency range is assumed as 0 < δ < 1.5. The two-parameters continuation reveals the
evolution of the unstable branches and for the current model, it can be done at different
temperatures. The locus of the LPs at different range of δ and f0 are plotted and compared
in Figures (8). Two different unstable ranges of δ and f0 are observed. As it is expected, the
unstable branch in the hot scenario happens at low forcing amplitudes (f0 < 0.4) on a wide
frequency range and with a narrow unstable area. Whereas, a thicker unstable region is seen for
θ = −1◦c at a higher forcing range (f0 > 2.2), far from the resonant frequency (δ < 1).

6. Conclusion
This paper considers variation of the dynamic behaviour and stability conditions of a nonlinear
structure with thermal induced material degradation. An elastomer is considered as the material
under degradation.The experimental degrading function is coupled to a 1-DOF nonlinear
dynamic model. Nonlinear and stability analysis of the system are performed using numerical
continuation techniques in two different temperature degradation scenarios. The effects of the
material degradation is highlighted when the different responses and instability conditions are
observed as the system varies with temperature degradation.
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