

This is a repository copy of *The anti-inflammatory effects of prostaglandin E 2 on human lung macrophages are mediated by the EP 4 receptor*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/108757/

Version: Accepted Version

Article:

Gill, S.K., Yao, Y., Kay, L.J. et al. (3 more authors) (2016) The anti-inflammatory effects of prostaglandin E 2 on human lung macrophages are mediated by the EP 4 receptor. British Journal of Pharmacology, 173 (21). pp. 3099-3109. ISSN 0007-1188

https://doi.org/10.1111/bph.13565

This is the peer reviewed version of the following article: Birrell MA, Maher SA, Dekkak B, et al. Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype. Thorax. 2015;70(8):740-747, which has been published in final form at http://doi.org/10.1111/bph.13565. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

The anti-inflammatory effects of prostaglandin E_2 on human lung macrophages are mediated by the EP_4 receptor

Sharonjit K Gill, Yiwen Yao, Linda J Kay, Martin A Bewley, Helen M Marriott and Peter T Peachell

Academic Unit of Respiratory Medicine, University of Sheffield, The Medical School (Floor L), Beech Hill Road, Sheffield, S10 2RX, UK

Author for correspondence: Peter Peachell Email: <u>p.t.peachell@shef.ac.uk</u> Telephone: +44-114-271-2063 Fax: +44-114-271-0275

Running Title: EP₄ receptor inhibition of macrophages

Abstract

Background and purpose: Prostaglandin E_2 (PGE₂) has been shown to inhibit cytokine generation from human lung macrophages. However, the EP receptor that mediates this beneficial anti-inflammatory effect of PGE₂ has not been elucidated definitively. The aim of this study was to identify the EP receptor by which PGE₂ inhibits cytokine generation from human lung macrophages. This was determined by using recently-developed EP receptor ligands.

Experimental approach: The effects of PGE_2 and EP-selective agonists on lipopolysaccharide (LPS) induced tumour necrosis factor- α (TNF α) and interleukin-6 (IL-6) generation from macrophages were evaluated. The effects of EP_2 -selective (PF-04852946, PF-04418948) and EP_4 -selective (L-161,982, CJ-042794) antagonists on PGE₂ responses were studied. The expression of EP receptor subtypes by human lung macrophages was determined by RT-PCR.

Key results: PGE_2 inhibited LPS-induced and Streptococcus pneumoniae-induced cytokine generation from human lung macrophages. Analysis of mRNA levels indicated that macrophages expressed EP_2 and EP_4 receptors. L-902,688 (EP_4 -selective agonist) was considerably more potent than butaprost (EP_2 -selective agonist) as an inhibitor of TNF α generation from macrophages. EP_2 -selective antagonists had marginal effects on the PGE₂ inhibition of TNF α generation whereas EP_4 -selective antagonists caused rightward shifts in the PGE₂ concentration-response curves.

Conclusions and implications: These studies demonstrate that the EP_4 receptor is the principal receptor that mediates the anti-inflammatory effects of PGE_2 on human lung macrophages. This suggests that EP_4 agonists could be effective anti-inflammatory agents in human lung disease.

Abbreviations

COPD, chronic obstructive pulmonary disease

FCS, foetal calf serum

IL-6, interleukin-6

LPS, lipopolysaccharide

PBS, phosphate buffered saline

PDE, phosphodiesterase

PGE₂, prostaglandin E₂;

RT-PCR, reverse transcription-polymerase chain reaction

TNF α , tumour necrosis factor- α

TARGETS	LIGANDS
GPCRs	PGE ₂
EP ₂	misoprostol
EP_4	butaprost
	L-902,688
	ONO-AE1-259
	PF-04418948
	PF-04852946
	CJ 042794
	L-161,982

Tables of Links

These tables list key protein targets and ligands in this article that are hyperlinked to corresponding entries in <u>www.guidetopharmacology.org</u> the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al., 2016) and are permanently archived in the Concise Guide to PHARMACOLOGY 2015/16 (Alexander et al., 2015).

Introduction

Prostaglandin E_2 (PGE₂) is known to have wide-ranging effects on a variety of tissues. These effects of PGE₂ are mediated through specific EP receptors of which four have been identified (Coleman et al., 1994; Breyer et al., 2001; Woodward et al., 2011). In the lung, PGE₂ can act on airway smooth muscle to mediate bronchodilation. This had led to suggestions that targeting EP receptors may be of benefit in the treatment of respiratory diseases (Kawakami et al., 1973; Melillo et al., 1994; Gauvreau et al., 1999). An undesirable effect of PGE₂, however, is that it also induces cough (Maher et al., 2011). Nonetheless, cough and bronchodilation appear to be mediated by different receptors suggesting that selective targeting of the beneficial receptor might be possible. The EP₃ receptor has been linked to cough (Maher et al., 2011) whereas bronchodilation appears to be mediated by EP₄ receptors (Buckley et al., 2011; Benyahia et al., 2012). Identification of the relevant EP receptor that mediates the beneficial effects of PGE₂ is likely to be valuable information from a clinical perspective.

The human lung macrophage plays an important role in host defence in the lung. However, aberrant activation of lung macrophages has been linked to respiratory diseases, chronic obstructive pulmonary disease (COPD) in particular (Barnes, 2008). PGE₂ has been shown to inhibit pro-inflammatory cytokine release from lung macrophages (Rowe et al., 1997; Ratcliffe et al., 2007; Buenestado et al., 2012). This effect of PGE₂ on human lung macrophages has been reported to be mediated by EP₂ and EP₄ receptors (Ratcliffe et al., 2007). However, this conclusion was drawn at a time when the availability of selective pharmacological ligands at EP₂ and EP₄ receptors was limited. The situation has now changed with the recent emergence of novel ligands such as PF-04418948, the first potent and selective EP₂ receptor antagonist reported (af Forselles et al., 2011). Use of these novel experimental tools has provided an opportunity to reappraise the mechanism by which PGE₂ stabilizes macrophage responses. In this regard, use of these tools has shown that the EP₄ receptor is the main receptor regulating functional responses in THP-1 cells, a human monocytic cell line (Birrell et al., 2015).

The aim of the present study was to identify the EP receptor responsible for mediating the inhibitory effects of PGE_2 on pro-inflammatory cytokine release from human lung macrophages This was determined by using a variety of pharmacological ligands, principally, a range of EP₂-selective and EP₄-selective antagonists. These studies demonstrate that the EP₄ receptor is the principal receptor that mediates the anti-inflammatory effects of PGE₂ on human lung macrophages suggesting that EP₄ agonists could be effective anti-inflammatory agents in human lung disease.

Methods

Buffers

Phosphate buffered saline (PBS) contained (mM): NaCl 137; Na₂HPO₄.12H₂O 8; KCl 2.7; KH₂PO₄ 1.5. PIPES buffer contained (mM): PIPES (22), NaCl (110), KCl (5) and the pH was titrated to 7.4 with NaOH.

Preparation of compounds

Stock solutions (10 mM) of PGE₂, butaprost (free acid), L-902,688, misoprostol (free acid) and indomethacin were prepared in ethanol and stored at -20 °C. ONO-AE1-259 was made up in distilled water (10 mM stock) and stored at -20 °C. All antagonists, PF-04852946, PF-04418948, CJ-042794 and L-161,982, formerly known as EP₄A (Machwate et al., 2001), were prepared as stock solutions (10 mM) in dimethyl sulphoxide and stored at -20 °C. Salbutamol was prepared as a stock solution (10 mM) dissolved in distilled water and stored at 4 °C. Roflumilast was prepared as a stock solution (10 mM) in dimethyl sulphoxide and stored at -20 °C. LPS from E. coli serotype R515 (Re) was provided as a 1 mg mL⁻¹ stock solution and stored at 4 °C.

Preparation of Streptococcus pneumoniae

Type 2 S. pneumoniae (Spn) strain D39 was grown and stored as previously described (Dockrell et al., 2001). Bacteria were opsonized by resuspending pellets in RPMI-1640 with 10% anti-pneumococcal immune serum and incubating at 37 °C for 30 min on a rotating stand. Pellets were then washed three times in PBS and resuspended in RPMI-1640 supplemented with 10% FCS (foetal calf serum) without antibiotics.

Lung tissue

Non-lesional lung tissue was obtained from surgical resections. Most patients were undergoing surgery for carcinoma. Sixty-two preparations were used in this study and these were derived from 31 males and 31 females. Ages of participants ranged from 49 to 88 years with a median age of 71. The use of lung tissue in this study was approved by the National Research Ethics' Service (REC reference: 15/NW/0657). Informed written consent was obtained.

Macrophage isolation

Lung tissue was chopped with scissors in RPMI-1640 and the tissue filtered over 100

μm nylon mesh (Incamesh, Warrington, UK) over a collection vessel. This cycle of chopping and washing was repeated. The filtrate (100-200 mL) was centrifuged (300 g, 10 min) at room temperature, the supernatant aspirated and the pellets resuspended in 40-50 mL of RPMI-1640 supplemented with 10% FCS, penicillin (25 U mL⁻¹), streptomycin (25 μg mL⁻¹), gentamicin (50 μg mL⁻¹) and amphotericin B (1 μg mL⁻¹). The cell suspensions were inverted several times and left to sediment at 4 °C for 1 h according to a protocol modified from Liu et al (1984). After sedimentation, the supplemented RPMI-1640. This sedimented material was resuspended in supplemented RPMI-1640. This sedimentation step at 4 °C was repeated. The sedimented material was resuspended in 30 mL PIPES buffer and centrifuged (300 g, 10 min, room temperature). The resulting pellet was resuspended in PIPES buffer and the suspension was filtered through nylon mesh before being layered on to a discontinuous Percoll gradient.

One 20 mL Percoll gradient was used for cells harvested from every 5 g of lung tissue. Isotonic Percoll (9 parts Percoll to 1 part 10x PIPES buffer) was diluted with PIPES buffer to produce an 80% Percoll gradient. The cell suspension (20 mL) was layered onto the gradient and centrifuged (400 g, 20 min, room temperature) resulting in a flocculent layer containing macrophages. The interface was harvested and two washes were performed with PIPES buffer (50 mL). Following centrifugation, (488 g, 10 min at room temperature) the resulting cell pellet was resuspended in 10 mL of supplemented RPMI-1640 (or for infection experiments, supplemented RPMI-1640 without antibiotics). The cells were counted using a haemocytometer. Macrophages were seeded at 2 x 10^5 per well in a 24-well cell culture plate with 1 mL of supplemented RPMI-1640 (or for infection experiments, supplemented RPMI-1640 without antibiotics) and incubated overnight (37 °C, 5% CO₂).

The purity of cell suspensions was determined by morphology using cytospins (Thermo Shandon Cytospin 3). Cytospins were stained with Quick-Diff and processed according to the manufacturer's instructions. Cell viability was assessed by erythrosin-B exclusion. In this study, macrophage purity was $85\pm2\%$ and cell viability was $92\pm1\%$.

Macrophage activation protocol

After incubation overnight, medium from the wells was removed and replaced with fresh supplemented RPMI-1640 (1 mL) 2 h before the start of the experiment. Where pharmacological agents were used the cells were pre-treated with these (30 to 60 min at 37 °C, 5% CO₂) before addition of stimulus. When agonists were used, macrophages were first incubated with or without indomethacin for 30 min and then with or without agonist for a further 30 min before addition of LPS. When antagonists were used, cells were incubated first with indomethacin (30 min), then with antagonist (1 h) followed by agonist (30 min) before activation. The cells were incubated (37 °C, 5% CO₂) for 22 h with the stimulus. The cell culture supernatants were then harvested and centrifuged (488 g, 4 min, room temperature). The resulting supernatants were stored at -80 °C until analysis for cytokine content. TNF α and IL-6 were analysed using commercially-available ELISA kits (RSG kits, eBioscience, Hatfield, UK). PGE₂ was also analysed using a commercially-available kit (Cayman Chemical Company, Ann Arbor, MI, USA).

Macrophage infection protocol

After incubation overnight, medium from the wells was removed and replaced with fresh supplemented RPMI-1640 without antibiotics (1 mL) 2 h before the start of the experiment. Opsonized Type 2 Spn strain D39 were added to the cells at a multiplicity of infection (MOI) of 1 or mock infected. The cells were incubated at 4 °C for 1 h to maximize bacterial adherence followed by incubation at 37 °C for 3 h for internalization. The wells were then washed with PBS and the cell culture medium replaced with the re-addition of pharmacological agents as appropriate. The cells were incubated at 37 °C until 22 h post-infection. The cell culture supernatants were then harvested and stored at -80 °C until analysis for cytokine content.

Assessment of total cell cyclic-AMP

Macrophages (2 x 10^5 cells) were incubated (30 min) with or without indomethacin (1 μ M) and then with PGE₂ (0.5 to 5 h) in supplemented RPMI-1640 (1 mL). After incubation, the supernatants were removed and the cells solubilised by addition of ice-cold acidified ethanol and snap frozen in liquid nitrogen. After thawing, the ethanol was recovered and centrifuged (13,000 g, 2 min) to pellet any cellular debris. The supernatant was then evaporated off under vacuum using a rotary evaporator. The dried residue was reconstituted in assay buffer (250 μ L) and stored at -80 °C. Total

cell cyclic-AMP content was determined using a commercially-available kit (Cayman Chemical Company, Ann Arbor, MI, USA).

RT-PCR

RNA was extracted from purified macrophages (1 to 5 x 10^6 cells) using Tri-Reagent (1 mL). In order to generate cDNA, samples were processed essentially as described elsewhere (Kay et al., 2013). Amplification of cDNA was performed by PCR using conditions and primer pairs for human EP receptor subtypes (Schlötzer-Schrehardt et al., 2002; Thorat et al., 2008). The house-keeping gene, β -actin, was also amplified. Primers were synthesised by Sigma (Poole, UK). PCR products were sequenced inhouse to ensure that correct amplification had taken place as described in more detail elsewhere (Kay et al., 2013).

Materials

The following were purchased: indomethacin, PGE₂, Percoll, salbutamol, Tri-Reagent (all Sigma, Poole, UK); gentamicin, penicillin/streptomycin, fungizone, RPMI 1640, (Invitrogen, Paisley, UK); butaprost, misoprostol, L-902,688 (Cayman Chemical Company, Ann Arbor, MI, USA); L-161,982 (Tocris Bioscience, Bristol, UK); roflumilast (Santa Cruz Biotechnology, Heidelberg, Germany); Quick-Diff (Reagena, Toivala, Finland); FCS (Promocell, Heidelberg, Germany); LPS (Enzo Life Sciences, Exeter, UK).

PF-04418948, PF-04852946 and CJ-042794 were obtained from Pfizer Global Research & Development (Sandwich, UK). PF-04418948 will be available commercially from Sigma-Aldrich, Tocris and Toronto Research Chemicals Inc (North York, ON, Canada). ONO-AE1-259 was a kind gift from Ono Pharmaceutical Company Ltd (Osaka, Japan).

Data analysis

Antagonist affinity (pK_B) was determined by using the Gaddum equation: $pK_B = log(dose ratio - 1) - log(antagonist concentration)$ (Kenakin, 1984). Maximal responses (E_{max}) and potencies (EC_{50}) were determined by non-linear regression analysis (GraphPad Prism, version 5.0d, La Jolla, CA, USA). Statistical significance was performed utilizing Student's paired t-tests or repeated measures ANOVA as

appropriate. When analyzing data by ANOVA, post hoc tests were either Dunnett's test or Tukey's test. Comparisons were considered significant when P < 0.05. The data and statistical analyses described in this paper conform to guidelines provided by the journal (Curtis et al., 2015)

Results

PGE₂ inhibits cytokine generation from macrophages

In keeping with previous studies, PGE₂ was found to inhibit LPS-induced TNF α generation from human lung macrophages in a concentration-dependent manner. This experiment was carried out in the absence (Figure 1A) and presence (Figure 1B) of the cyclo-oxygenase (COX) inhibitor indomethacin (1 μ M). PGE₂ was a more potent (EC₅₀; 3.2 ± 0.6 cf 10.8 ± 2.0 nM) and efficacious (E_{max}; 77 ± 1.8 cf 53.5 ± 2.0 % inhibition) inhibitor of LPS-induced TNF α generation in the presence of indomethacin (1 μ M), TNF α generation by LPS was significantly (P<0.05) higher than in its absence (2657 ± 496 cf 1648 ±213 pg mL⁻¹; n=13).

These experiments suggested that macrophages produce PGE_2 in response to LPS which acts in a paracrine fashion to limit $TNF\alpha$ generation. Further experiments confirmed that macrophages generate a small amount of PGE_2 spontaneously and larger quantities following challenge with LPS (data not shown). In order to eliminate the potentially confounding influence of endogenous PGE_2 generation in the context of receptor characterizations, in all subsequent functional studies, indomethacin was also included.

In further studies, the effects of PGE_2 on LPS-induced IL-6 as well as $TNF\alpha$ generation were determined (Figure 1D). PGE_2 inhibited $TNF\alpha$ and IL-6 generation with similar potency (EC₅₀; ~1.6 nM) but PGE_2 was less efficacious as an inhibitor of IL-6 generation than $TNF\alpha$.

Macrophages express EP₂ and EP₄ receptors

Expression of EP receptors by human lung macrophages was determined by RT-PCR. The data indicate that human lung macrophages express message for EP_2 and EP_4 receptors but do not express message for EP_1 or EP_3 receptors (Figure 2).

PGE₂ increases macrophage cyclic-AMP levels

Since EP₂ and EP₄ receptors are G-protein receptors coupled to adenylyl cyclase, we investigated whether exposure (30 min) of macrophages to PGE_2 (1 µM) induced increases in total cell cyclic-AMP. Our data demonstrated that PGE_2 induced statistically significant (P<0.05) increases in total cell cyclic-AMP levels over basal

(Figure 3). Further studies demonstrated that PGE_2 maintained these increased cyclic-AMP levels in macrophages for up to 5 hours (data not shown).

EP4 agonists are far more potent inhibitors than EP2 agonists

The effects of alternative EP agonists on macrophage function were explored. The effects of misoprostol (non-selective), butaprost (EP₂-selective) and L-902,688 (EP₄-selective) on LPS-induced TNF α generation from macrophages were investigated. The data show that misoprostol (Figure 4A) was about 26-fold less potent than PGE₂ as an inhibitor of TNF α generation (Table 1). The EP₄ agonist, L-902,688 (Figure 4B), was 7-fold more potent than PGE₂ as an inhibitor of TNF α generation whereas, by contrast, the EP₂-selective agonist, butaprost (Figure 4C), was over 400-fold less potent than PGE₂ in this system (Table 2). In further studies, the effects of an alternative EP₂-selective agonist, ONO-AE1-259, were determined and ONO-AE1-259 was about 40-fold less potent than PGE₂ (Table 1).

EP₄ antagonists reverse the effects of PGE₂

The effects of the antagonists PF-04418948 (EP₂-selective) and CJ-042794 (EP₄selective) were investigated (Murase et al., 2008; af Forselles et al., 2011). Macrophages were incubated with either PF-04418948 (300 nM) or CJ-042794 (300 nM) before incubation with PGE₂ and then challenged with LPS. CJ-042794 effectively antagonised the PGE₂ inhibition of TNF α generation (Figure 5A). No antagonism of the PGE₂ inhibition was seen with PF-04418948 (Figure 5B).

An alternative EP₄-selective antagonist, L-161,982 (Machwate et al., 2001), was also evaluated and, in agreement with data obtained with CJ-042794, L-161,982 (300 nM) was found to be effective as an antagonist (Figure 5C). An alternative EP₂selective antagonist, PF-04852946, was also studied. PF-04852946 is structurallydistinct from PF-04418948 and about ten-fold more potent than PF-04418948 at EP₂ receptors (Kay et al., 2013). PF-04852946 (30 nM) was found to be an ineffective antagonist of the PGE₂ inhibition of TNF α generation (data not shown).

 pK_B estimates for the antagonism of PGE₂ by CJ-042794 and L-161,982 were 8.77 ± 0.13 (K_B, 1.7 nM) and 8.46 ± 0.12 (K_B, 3.5 nM), respectively. These affinities are consistent with effects of these compounds at EP₄ receptors (Jones et al., 2009).

In further studies to determine whether a contribution of the PGE_2 effect on macrophages might be mediated by the EP_2 receptor, the effect of a combination of

 EP_{2} - and EP_{4} -selective antagonists on the PGE_{2} inhibition was investigated. The data demonstrate that combined use of PF-04418948 (300 nM) and CJ-042794 (300 nM) caused marginally greater antagonism of the PGE_{2} response than CJ-042794 alone (Figure 5D). These data indicate that if the EP_{2} receptor does contribute to the PGE_{2} response in macrophages then the contribution is, at best, minimal. These data further emphasize that EP_{4} is the principal receptor mediating the anti-inflammatory effects of PGE_{2} on macrophages.

PGE₂ inhibits TNFa generation induced by Streptococcus pneumoniae

While LPS is an effective tool to activate macrophages, we also investigated whether the response of macrophages to a respiratory pathogen, Streptococcus pneumoniae (Spn), could be attenuated by PGE₂ (Figure 6). Preliminary studies indicated that Spn induced TNF α generation from macrophages in a concentration-dependent fashion with maximal levels of release at an MOI of 1 (data not shown). Further studies demonstrated that PGE₂ concentration-dependently inhibited TNF α generation induced by Spn (MOI of 1). The effects of alternative agonists, L-902,688 and butaprost on Spn-induced TNF α generation from macrophages were also investigated. The EP₄ agonist, L-902,688 (EC₅₀; ~2 nM) was slightly more potent than PGE₂ (EC₅₀; ~3 nM) as an inhibitor of TNF α generation whereas, by contrast, the EP₂-selective agonist, butaprost, was less potent than PGE₂.

PGE₂ is more effective than either salbutamol or roflumilast

In further studies we compared the effects of PGE_2 with established drugs used in the treatment of respiratory diseases. PGE_2 was found to be both more potent and efficacious than the β_2 -adrenoceptor agonist salbutamol (Figure 7A) as an inhibitor of TNF α generation from macrophages driven by LPS. Similar studies with roflumilast, an inhibitor of the cyclic-AMP specific phosphodiesterase (PDE) PDE4, demonstrated that roflumilast was a considerably weaker inhibitor than PGE₂ (Figure 7B). Further studies were performed to determine whether roflumilast (30 nM) might enhance the effects of PGE₂. The data show that, in the context of inhibiting LPS-induced TNF α generation, the effect of roflumilast on PGE₂ was at best additive (Figure 7C).

Discussion

In this study, we demonstrate that PGE_2 is an effective inhibitor of cytokine generation from activated macrophages. Furthermore, we show that PGE_2 acts principally through the EP_4 receptor to stabilise the pro-inflammatory responses of human lung macrophages. This suggests that in lung diseases in which activated macrophages participate, EP_4 agonists could be effective anti-inflammatory agents.

In order to identify which EP receptors are expressed by macrophages a number of approaches were adopted. Evaluation of mRNA expression by RT-PCR demonstrated that lung macrophages express both EP₂ and EP₄ receptors but not EP₁ or EP₃ receptors. These data suggest that EP₂ and/or EP₄ receptors are involved in mediating the effects of PGE₂ in human lung macrophages. This was further reinforced by the finding that PGE₂ induced increases in total cell cyclic-AMP in macrophages. Because both EP₂ and EP₄ receptors are known to be coupled to adenylyl cyclase, increases in cyclic-AMP are consistent with the expression of EP₂ and/or EP₄ receptors in macrophages (Wilson et al., 2004).

In attempts to characterize EP receptors further, a range of EP agonists were studied for effects on cytokine generation. The non-selective agonist, misoprostol, was about 26-fold less sensitive than PGE_2 as an inhibitor of LPS-induced TNF α generation. This potency ratio is consistent with an effect of misoprostol at EP₄ receptors since misoprostol is about 29-fold less potent than PGE_2 at EP_4 receptors whereas at EP_2 receptors misoprostol is about 7-fold less potent than PGE_2 (Abramovitz et al., 2000). Alternative agonists were also studied and it was of interest that the EP₄ agonist L-902,688, was about 7-fold more potent than PGE₂. This finding provides preliminary evidence that the EP₄ receptor is involved in mediating the effects of PGE₂. Although EP₂-selective agonists were active in this system the concentrations of both butaprost and ONO-AE1-259 required for inhibition were higher than those usually associated with effects at EP₂ receptors. In this system, butaprost was over 400-fold less potent than PGE₂ whereas at EP₂ receptors but approximate has been reported to be about 18-fold less potent than PGE_2 (Abramovitz et al., 2000). Also, it is noteworthy that butaprost is known to activate EP₄ receptors when used at high enough concentrations (Tang et al., 2000; Clarke et al., 2004; Wilson et al., 2004; Benyahia et al., 2012). Overall, these data provide

strong evidence that the EP_4 receptor is responsible for mediating the effects of PGE_2 but evidence for involvement of the EP_2 receptor cannot be excluded.

In order to obtain a definitive characterization of EP receptors, the effects of EP₂- and EP₄-selective antagonists on the PGE₂ response in macrophages were evaluated. It is noteworthy that the EP₂ antagonists, PF-04418948 and PF-04852946, that were used in this study are highly selective ligands (af Forselles et al., 2011; Kay et al., 2013) and considerably superior to AH6809 which until now was the only EP₂ antagonist available. Indeed, AH6909 has been used in recent studies to invoke a role for EP₂ receptors (O'Brien et al., 2014). However, AH6809 shows poor selectivity and potency such that data generated with this antagonist are unlikely to be reliable (Abramovitz et al., 2000; Jones et al., 2009). Neither of the two EP₂ antagonists used in this study had any effect on the PGE₂ inhibition of TNFa generation. By contrast, two EP₄ antagonists, CJ-042794 (K_B; 1.7 nM) and L-161,982 (K_B; 3.5 nM) effectively reversed the PGE₂ inhibition of TNFa generation with affinities consistent with antagonism at EP₄ receptors (Jones et al., 2009). Combining an EP₂ antagonist with an EP₄ antagonist did lead to a marginal rightward shift in the PGE₂ concentration response curve over that seen with an EP₄ antagonist alone. This could mean that a very small component of the PGE₂ inhibition is driven by EP₂ receptors. Overall, these data provide strong evidence that the principal receptor that mediates the antiinflammatory effects of PGE_2 in human lung macrophages is the EP_4 receptor.

The suggestion has been made that the EP₄ receptor could be a target for respiratory diseases. This contention has been based largely on recent studies showing that PGE₂ mediates bronchodilation via the EP₄ receptor (Buckley et al., 2011; Benyahia et al., 2012). The present study has demonstrated that targeting the EP₄ receptor may provide desirable anti-inflammatory effects by preventing cytokine generation from macrophages. In this regard, it is of interest that PGE₂ attenuated the generation of both TNF α and IL-6 in human lung macrophages which differs to findings reported for mouse alveolar macrophages in which PGE₂ inhibited TNF α but by contrast potentiated IL-6 generation (Konya et al., 2015).

The potential therapeutic value of targeting EP receptors is reinforced by the finding that PGE_2 was effective at attenuating cytokine generation from macrophages activated by not only LPS but the respiratory pathogen, S.pneumoniae. Moreover, it is noteworthy that PGE_2 was considerably more efficacious and potent than either salbutamol or roflumilast as an inhibitor of LPS-induced TNF α generation from

macrophages. Bronchodilators such as salbutamol are β_2 -adrenoceptor agonists that may possess some anti-inflammatory activity (Donnelly et al., 2010). The mechanism of action of the PDE4 inhibitor roflumilast is not entirely known although antiinflammatory effects have been suggested (Giembycz and Field, 2010). However, our data suggest that EP₄ agonists are likely to show far greater anti-inflammatory potential than either β_2 -adrenoceptor agonists or PDE inhibitors.

In an allied context, it was notable that the PGE₂ response was relatively consistent among macrophage preparations (see Supplemental Information, Figure 1). This could be important from a therapeutic perspective since the possibility exists that factors such as disease state, smoking status and age could influence macrophage functionality (Berenson et al., 2006; Hodge et al., 2007; Suzuki et al., 2008). While we were unable to stratify effectively our population according to disease state, we were able to stratify according to smoking status and age (see Supplemental Information, Figure 1). There was clearly no difference in the inhibitory response to PGE₂ among macrophages isolated from smokers, ex-smokers or never smokers. Moreover, there was no infuence of age on the inhibitory response to PGE₂. This consistency in response could be an advantage when considering the potential of targeting the EP₄ receptor therapeutically.

To conclude, our studies demonstrate that the EP_4 receptor is the principal receptor that mediates the anti-inflammatory effects of PGE_2 in human lung macrophages. This suggests that EP_4 agonists could be effective anti-inflammatory agents in lung diseases that are associated with aberrant macrophage activation.

Authorship Contribution Statement

SK Gill, Y Yao, LJ Kay and MA Bewley performed the experimental work; HM Marriott and PT Peachell designed the study; PT Peachell and SK Gill wrote the manuscript.

Acknowledgements

The authors thank Mr J Edwards, Mr J Rao, Miss L Socci and Mr D Hopkinson (Cardiothoracic Surgery, Northern General Hospital), Dr SK Suvarna, Dr P Kitsanta and Dr J Bury (Histopathology, Royal Hallamshire Hospital) for their invaluable help in providing lung tissue specimens. We thank Professor Stephen Renshaw for insightful suggestions. We thank Dr Nick Pullen (Pfizer, USA) for facilitating provision of PF-04852946, PF-04418948 and CJ-042794. Sharonjit Gill is supported by a BBSRC-Pfizer CASE studentship.

Conflicts of Interest

None

References

Abramovitz M, Adam M, Boie Y, Carrière M-C, Denis D, Godbout C et al (2000). The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim Biophys Acta 1483: 285-293.

af Forselles KJ, Root J, Clarke T, Davey D, Aughton K, Dack K et al (2011). In vitro and in vivo characterisation of PF-04418948, a novel, potent and selective prostaglandin E₂ receptor-2 (EP₂) antagonist. Br J Pharmacol 164: 1847-1856. Alexander SPH, Davenport AP, Kelly E, Marrion N, Peters JA, Benson HE et al (2015). The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br J Pharmacol 172: 5744-5869.

Barnes PJ (2008). Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 8: 183-92.

Benyahia C, Gomez I, Kanyinda L, Boukais K, Danel C, Leséche D et al (2012). PGE₂ receptor (EP₄) agonists: Potent dilators of human bronchi and future asthma therapy. Pulmon Pharmacol Ther 25: 115-118.

Berenson CS, Wrona CT, Grove LJ, Maloney J, Garlipp MA, Wallace PK et al (2006). Impaired alveolar macrophage response to Haemophilus antigens in chronic obstructive lung disease. Am J Resp Crit Care Med 173: 991–998.

Birrell MA, Maher SA, Dekkak B, Jones V, Wong S, Brook P et al (2015). Antiinflammatory effects of PGE_2 in the lung: role of the EP_4 receptor. Thorax 70: 740-747.

Breyer RM, Bagdassarian CK, Myers SA, Breyer MD (2001). Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 41: 661-690. Buckley J, Birrell MA, Maher SA, Nials AT, Clarke DL, Belvisi MG (2011). EP₄ receptor as a new target for bronchodilator therapy. Thorax 66: 1029-1035. Buenestado A, Grassin-Delyle S, Guitard F, Naline E, Faisy C, Israël-Biet D et al (2012). Roflumilast inhibits the release of chemokines and TNF-α from human lung macrophages stimulated with lipopolysaccharide. Br J Pharmacol 165: 1877-1890. Clarke DL, Belvisi MG, Catley MC, Yacoub MH, Newton R, Giembycz MA (2004). Identification in human airways smooth muscle cells of the prostanoid receptor and signalling pathway through which PGE₂ inhibits the release of GM-CSF. Br J Pharmacol 141: 1141-1150. Coleman RA, Smith WL, Narumiya S (1994). International union of pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46: 205-229.

Curtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SPA, Giembycz, MA et al (2015). Experimental design and analysis and their reporting: new guidance for publication in BJP. Br J Pharmacol 172: 3461-3471.

Dockrell DH, Lee M, Lynch DH, Read RC (2001). Immune-mediated phagocytosis and killing of Streptococcus pneumoniae are associated with direct and bystander macrophage apoptosis. J Infect Dis 184: 713–722.

Donnelly LE, Tudhope SJ, Fenwick PS, Barnes PJ (2010). Effects of formoterol and salmeterol on cytokine release from monocyte-derived macrophages. Eur Respir J 36: 178-186.

Gauvreau GM, Watson RM, O'Byrne PM (1999). Protective effects of inhaled PGE₂ on allergen-induced airway responses and airway inflammation. Am J Respir Crit Care Med 159: 31-36.

Giembycz MA, Field SA (2010). Roflumilast: first phosphodiesterase 4 inhibitor approved for treatment of COPD. Drug Des Develop Ther 4: 147-158.

Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN (2007). Smoking alters alveolar macrophage recognition and phagocytic ability. Am J Respir Cell Mol Biol 37: 748-755.

Jones RL, Giembycz MA, Woodward DF (2009). Prostanoid receptor antagonists: development strategies and therapeutic applications. Br J Pharmacol 158: 104-145. Kawakami Y, Uchiyama K, Irie T, Murao M (1973). Evaluation of aerosols of prostaglandins E1 and E2 as bronchodilators. Eur J Clin Pharmacol 6: 127-132. Kay LJ, Gilbert M, Pullen N, Skerratt S, Farrington J, Seward EP et al (2013). Characterization of the EP receptor subtype that mediates the inhibitory effects of prostaglandin E₂ on IgE-dependent secretion from human lung mast cells. Clin Exp Allergy 43: 741-751.

Kenakin TP (1984). The classification of drugs and drug receptors in isolated tissues. Pharmacol Rev 36: 165-222.

Konya V, Maric J, Jandl K, Luschnig P, Aringer I, Lanz I et al (2015). Activation of EP₄ receptors prevents endotoxin-induced neutrophil infiltration into the airways and enhances microvascular barrier function. Br J Pharmacol 172: 4454-4468.

Liu MC, Proud D, Schleimer RP, Plaut M (1984). Human lung macrophages enhance

and inhibit lymphocyte proliferation. J Immunol 132: 2895-2903.

Machwate M, Harada S, Leu CT, Seedor G, Labelle M, Gallant M et al (2001).

Prostaglandin receptor EP_4 mediates the bone anabolic effects of PGE_2 . Mol Pharmacol 60: 36-41.

Maher SA, Dubuis ED, Belvisi MG (2011). G-protein coupled receptors regulating cough. Current Opinion Pharmacol 11: 248-253.

Melillo E, Woolley KL, Manning PJ, Watson RM, O'Byrne PM (1994). Effect of inhaled PGE₂ on exercise-induced bronchoconstriction in asthmatic subjects. Am J Respir Crit Care Med 149: 1138-1141.

Murase A, Taniguchi Y, Tonai-Kachi H, Nakao K, Takada J (2008). In vitro pharmacological characterization of CJ-042794, a novel, potent, and selective prostaglandin EP(4) receptor antagonist. Life Sci 82: 226-232.

O'Brien AJ, Fullerton JN, Massey KA, Auld G, Sewell G, James S et al (2014). Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E₂. Nat Medicine 20: 518-523.

Southan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander SPH et al (2016). The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucl Acids Res 44: D1054-D1068.

Ratcliffe MJ, Walding A, Shelton PA, Flaherty A, Dougall IG (2007). Activation of E-prostanoid₄ and E-prostanoid₂ receptors inhibits TNF- α release from human alveolar macrophages. Eur Respir J 29: 986-994.

Rowe J, Finlay-Jones JJ, Nicholas TE, Bowden J, Morton S, Hart PH (1997).

Inability of histamine to regulate TNF- α preoduction by human alveolar

macrophages. Am J Resp Cell Mol Biol 17: 218-226.

Schlötzer-Schrehardt U, Zenkel M, Nüsing RM (2002). Expression and localization of FP and EP prostanoid receptor subtypes in human ocular tissues. Invest Opthalmol Vis Sci 43: 1475-1487.

Suzuki M, Betsuyaku T, Ito Y, Nagai K, Nasuhara Y, Kaga K et al (2008). Downregulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 39: 673-682.

Tang L, Loutzenhiser K, Loutzenhiser R (2000). Biphasic actions of prostaglandin E_2 on the renal afferent arteriole, role of EP₃ and EP₄ receptors. Circ Res 86: 663-670.

Thorat MA, Morimiya A, Mehrotra S, Konger R, Badve SS (2008). Prostanoid receptor EP1 expression in breast cancer. Modern Pathol 21: 15-21.

Wilson RJ, Rhodes SA, Wood RL, Shield VJ, Noel LS, Gray DW (2004). Functional pharmacology of human prostanoid EP₂ and EP₄ receptors. Eur J Pharmacol 501: 49-58.

Woodward DF, Jones RL, Narumiya S (2011). International union of basic and clinical pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 63: 471-538.

agonist	EC ₅₀ (nM)	<u>E_{max} (%)</u>
PGE ₂	2.1 ± 0.6	77 ± 3
misoprostol	54 ± 9.1	80 ± 4
L-902,688	0.3 ± 0.1	63 ± 7
butaprost	878 ± 340	67 ± 5
ONO-AE1-259	82 ± 24	43 ± 4

Table 1 EC_{50} and E_{max} values for the inhibition of $TNF\alpha$ generation by EP agonists

Experimental details relevant to this table can be found in the legend to Figure 4. Values are means \pm SEM from 5 (misoprostol, L-902,688, ONO-AE1-259), 6 (butaprost) and 8 (PGE₂) experiments.

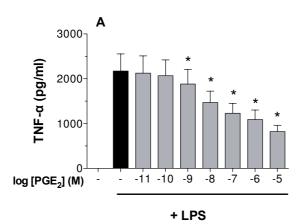
Figure legends

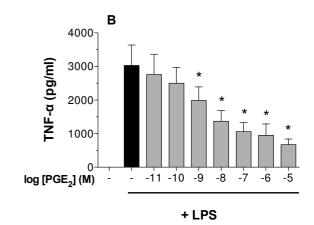
Figure 1 Effects of PGE₂ on cytokine generation from macrophages. Macrophages were pre-incubated without (A) or with (B) indomethacin (1 μ M) for 30 min and then with or without PGE₂ for 30 min before challenge with LPS (1 ng mL⁻¹) for 22 h after which supernatants were harvested and assayed for TNF α generation. The data in (A) and (B) were reworked as % inhibition of the control unblocked release of TNF α and this is shown in (C). In further experiments, macrophages were pre-incubated (30 min) with indomethacin (1 μ M) and then with or without PGE₂ for 30 min before challenge with LPS (1 ng mL⁻¹) for 22 h and both IL-6 and TNF α measured in the supernatants (D). Values are expressed as the % inhibition of control cytokine releases which were 2422 ± 510 pg mL⁻¹ of TNF α and 4992 ± 1980 pg mL⁻¹ of IL-6. Values are means ± SEM, for 9 (A, B, C) or 6 (D) experiments. Statistically significant (P<0.05) levels of inhibition compared to unblocked control levels are indicated by an asterisk.

Figure 2 EP receptor expression in macrophages. Isolated RNA was converted to cDNA by reverse trancriptase (+) and, as a control, this reaction step was also carried out in the absence of reverse transcriptase (-). Amplification of cDNA was performed using primers specific for each of the EP receptor subtypes and β -actin. Expression profiles for three macrophage preparations (MAC1, MAC2 and MAC3) are shown. No mRNA for EP₁ was detected in macrophages but in separate experiments the presence of EP₁ could be readily demonstrated in several breast cancer cell lines, MDA-MB-468, MDA-MB-231 and ZR-75-1 (Kay et al., 2013). No mRNA for EP₃ was detected but, in separate experiments, EP₃ could be detected in the human mast cell line, LAD-2 (Kay et al., 2013). These findings are representative of a total of 5 different macrophage preparations in excess of 95% purity. Lanes at either end of each gel represent a 100 bp ladder.

Figure 3 Effect of PGE₂ on cyclic-AMP. Macrophages were pre-incubated (30 min) with or without indomethacin (indo; 1 μ M) and then with or without PGE₂ (1 μ M) for a further 30 min. After this treatment, the cells were solubilised and total cell cyclic-AMP levels measured. Values are means ± SEM for 5 experiments. Statistically

significant (P<0.05) increases in cyclic-AMP over unstimulated control levels are indicated by an asterisk.


Figure 4 Effects of EP agonists on macrophages. Macrophages were pre-incubated (30 min) with indomethacin (1 μ M) and then with or without either (A) misoprostol, (B) L-902,688, (C) butaprost or PGE₂ for 30 min before challenge with LPS (1 ng mL⁻¹) for 22 h after which TNF α was measured in the supernatants. Values are expressed as the % inhibition of control cytokine release which was 1379 ± 431 pg mL⁻¹ of TNF α . Values are means ± SEM for 5 (A, B) or 6 (C) experiments.


Figure 5 Effects of EP receptor antagonists on PGE₂. Macrophages were preincubated with indomethacin (1 μ M) for 30 min and then without or with EP-selective antagonists (300 nM) for 1 h and then without or with PGE₂ for 30 min before challenge with LPS (1 ng mL⁻¹) for 22 h after which TNF α was measured in the supernatants. The effects on PGE₂ of (A) the EP₄-selective antagonist CJ-042794, (B) the EP₂-selective antagonist PF-04418948, (C) the EP₄-selective antagonist L-161,982 and (D) CJ-042794 with and without PF-04418948 were evaluated. Values are expressed as the % inhibition of control TNF α releases which were, in the absence and presence of antagonist respectively, (A) 2646 ± 562 and 2582 ± 496 pg mL⁻¹, (B) 2912 ± 532 and 2881 ± 507 pg mL⁻¹, (C) 2756 ± 882 and 2873 ± 862 pg mL⁻¹ and (D) 2672 ± 972 to 2212 ± 799 pg mL⁻¹. Values are means ± SEM for 5 (A, B, D) and 6 (C) experiments, respectively.

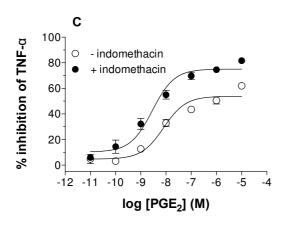

Figure 6 Effects of PGE₂ and alternative agonists on Spn-induced TNF α generation. Macrophages were pre-incubated (30 min) with indomethacin (1 μ M) and then with or without either PGE₂, L-902,688 or butaprost for 30 min before challenge with Spn (MOI of 1) for 22 h after which TNF α was measured in the supernatants. Values are expressed as the % inhibition of the control cytokine release which was 1346 ± 669 pg mL⁻¹ of TNF α . Values are means ± SEM for 4 experiments.

Figure 7 Effects of salbutamol and roflumilast on macrophages. Macrophages were pre-incubated (30 min) with indomethacin (1 μ M) and then with or without either (A) salbutamol, (B) roflumilast or (C) PGE₂ in the absence (control) or presence of a single concentration of roflumilast (30 nM) for 30 min before challenge with LPS (1

ng mL⁻¹) for 22 h after which TNF α was measured in the supernatants. The horizontal grid line in (C) shows the inhibition seen with roflumilast alone (22 ± 5% inhibition). Values are expressed as the % inhibition of the unblocked control TNF α releases which ranged from 2363 ± 835 to 2208 ± 969 pg mL⁻¹. Values are means ± SEM for 5 (A, B, C) experiments.

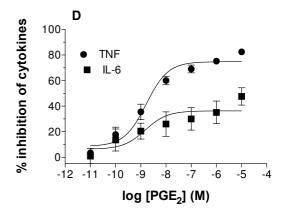


Figure 1

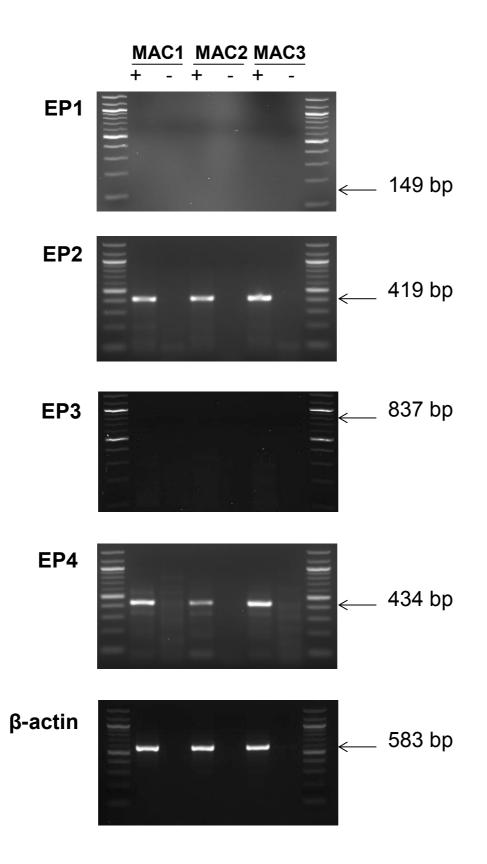


Figure 2

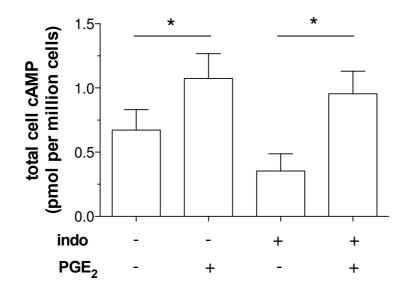


Figure 3

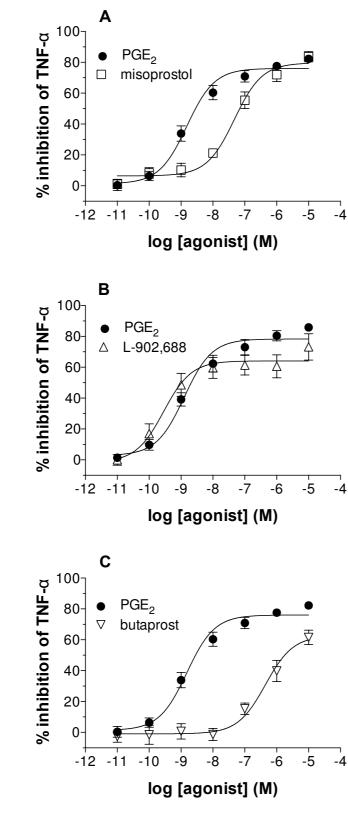


Figure 4

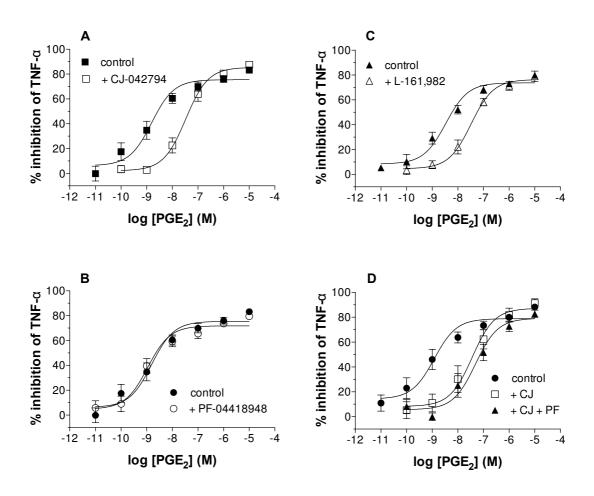


Figure 5

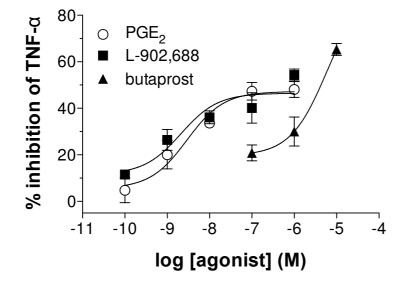
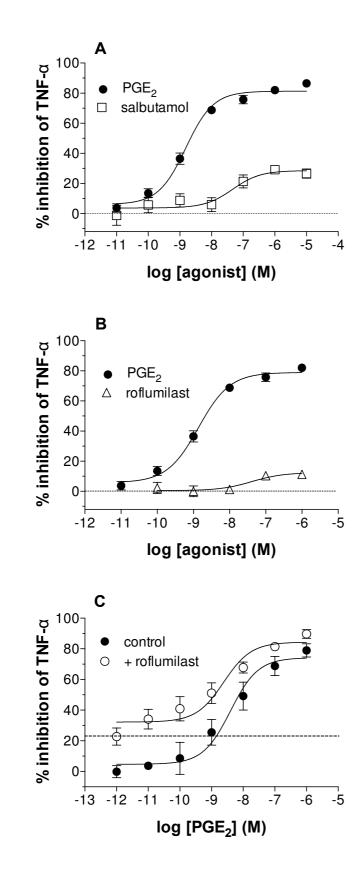



Figure 6

