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ABSTRACT (Max 150 words without headings) 

Background 

Public health monitoring is commonly undertaken in social media but has never been combined 

with data analysis from electronic health records. 

Aims  

To investigate the relationship between the emergence of novel psychoactive substances (NPS) in 

social media and their appearance in a large mental health database. 

Method 

Data were extracted on the number of mephedrone references in the clinical record, mentions in 

Twitter and related searches in Google and Wikipedia. The characteristics of current mephedrone 

users were also established. 

Results 

Increased activity in Google and Wikipedia preceded a peak in the clinical records followed by a 

spike in the other 3 data sources in early 2010, when mephedrone was assigned a Ǯclass Bǯ statusǤ 
Features of current mephedrone users generally matched those from community studies. 

Conclusions 

Combined analysis of social media and clinical records may assist surveillance for certain substance-

related events of clinical interest.  

 

Declaration of interest  



INTRODUCTION 

 

The need to interpret and act upon information from large-volume media such as Twitter is well-

recognised in business and politics, and increasingly appreciated in health research. For example, 

interactions on social media have enabled researchers to study health-related attitudes and 

behaviours in relation to tobacco smoking in Twitter (Myslin et al, 2013) and Facebook (Struik et al, 

2014), as well as identifying user social circles with common medical experiences (Hanson et al, 

2013), medical malpractice (Nakhasi et al, 2012), HIV prevention (Young and Jaganath, 2013) and 

pharmacovigilance (Sarker et al, 2015) in Twitter. Wikipedia usage has also been utilised to estimate 

the prevalence of influenza-like illness in the United States in near real-time (McIver and 

Brownstein, 2014). Similarly, the size, coverage and longitudinal nature of electronic health records 

(EHR), as well as their potential for data linkage, offer unprecedented opportunities for big data 

analytics. Healthcare is thus emerging as part of a worldwide network of developing technologies 

(Ohno-Machado, 2014) and with the arrival of Web 2.0, the relationship between patients and 

healthcare providers is rapidly changing. Communication can now transcend geographical, cultural 

and language barriers to allow the exchange of information before it reaches the clinical room and a 

suspected flu outbreak could be trending on Twitter within hours, long before specialists have had 

an opportunity to properly examine it (Li and Cardie, 2013).  

 

The number of novel psychoactive substances (NPS), commonly referred to as Ǯlegal highsǯǡ has 

been growing steadily in the last couple of decades with a record 101 not-previously-reported 

substances identified in 2014 (EMCDDA, 2015). The internet is a primary source of information 

about NPS, and the rapid rate with which they appear, as well as the uncertainty over the actual 

Ǯbrandingǯ and composition of these substances, pose substantial challenges for healthcare 

providers. Online user-generated content is increasingly becoming essential to providing an 

informed and up-to-minute portrayal of positive and negative effects, subjective experiences and 

availability of NPS (Davey et al, 2012). As part of the PHEME project (www.pheme.eu), whose wider 

aim is to explore social media veracity and rumours, we investigated the temporal relationship 

between the emergence of NPS in social media and their appearance in a large mental health EHR 

covering an inner urban catchment area.  

  

http://www.pheme.eu/


METHOD 

 

Electronic health record data resource 

Mental healthcare data were collected using the South London and Maudsley (SLaM) Biomedical 

Research Centre (BRC) Case Register (Stewart et al, 2009). The SLaM NHS Foundation Trust 

provides comprehensive mental health services to a geographic catchment area of over 1.2 million 

residents in four south London boroughs, making it one of the largest mental healthcare 

organizations in Europe. A single electronic health record has been used by all SLaM teams since 

April 2006. The Clinical Record Interactive Search (CRIS) application, developed in 2007-2008, 

extracts anonymised data from structured fields as well as unstructured free text from case notes 

and correspondence (Stewart et al, 2009), which are particularly valuable in mental health research. 

The free text fields are used by health care professionals to record clinical information over the 

course of care ranging from diagnoses and mental state examinations to daily nursing entries and 

treatment plans. CRIS contains over 250,000 de-identified patient records, including over 20 million 

text documents (growing at a rate of 170,000 per month) and has supported a number of studies 

(Chang et al, 2010; Hayes et al, 2011; Hayes et al, 2012; Wu et al, 2012; Wu et al, 2013; Patel et al, 

2014). The SLaM Case Register has ethical approval as a database for secondary analysis (Oxford 

REC C, reference 08/H0606/71+5) and a service-user led oversight committee provides governance 

for projects utilising these data (Fernandes et al, 2013). 

 

To ascertain references to NPS in the clinical records, we searched case note, correspondence and 

discharge summary text fields for the following keywords: spice, methoxetamine, DMT, AMT, 

Benzo Fury, Piperazines (BZP, TFMPP, DBZP and mCPP), mephedrone, 2-DPMP, salvia divinorum, 

morning glory, 2c-B, MDAI, MDPV, bromodragonfly, kanna, 4-Acetoxy-Met, naphyrone and Ǯlegal 

high*ǯ. A list of the slang/street names commonly associated with these substances was also 

produced for searches. Table 1 shows the full list of search terms together with the number of 

retrieved documents containing the search term, the number of retrieved documents checked for 

actual mention of NPS and the number of true references within the checked documents. Due to 

the low frequency at which NPS were mentioned in the clinical records, it was considered 

impractical to explore all associations with social media mentions and subsequent analyses focused 

solely on mephedrone, the most commonly referenced agent.  

 

 

  



Table 1 Search lists for legal highs and related terms in the clinical records 

Keywords Slang terms Documents checked/ 

Documents retrieved  

True references 

Legal high* plant food, mdat, eric 3, 

dimethocaine, bath salts 

173/173 143 

Spice spice silver, spice gold, spice 

diamond, bliss, blaze, genie, 

zohai, jwh-018, jwh-073, jwh-

250, yucatan fire, moon rocks, 

k2, red x dawn, fake weed, x, tai 

high hawaiian haze, spice, mary 

joy, exodus damnation, ecsess, 

devil's weed, clockwork orange, 

bombay blue extreme, blue 

cheese, black 

mamba, annihilation, amsterdam 

gold 

300/693 12 

Mephedrone subcoca-1, 4-mmc, kitty cat, 

miaow miaow, meow meow, m-

smack, m-cat 

250/491 213 

Methoxetamine m-ket, mex, kmax, special m, ma, 

legal ketamine, minx, jipper, 

kwasqik, hypnotic, panoramix, 

magic, lotus, roflcoptr, rhino ket, 

mxe, moxy, mket, mexy, mexxy 

27/27 2 

DMT dimitri, ayahuasca, 

dimethyltryptamine 

90/172 17 

AMT 2-(1h-indol-3-yl)-1-methyl-

ethylamine, indopan, amt 

freebase, alpha-

methyltryptamine 

  

Benzo Fury white pearl, benzo fury, 6-apdb, 

6-apb, 5-apdb, 5-apb, apb 

17/17 12 

Piperazines 

(BZP, TFMPP, 

DBZP and 

mCPP) 

the good stuff, smileys, silver 

bullet, rapture, pep twisted, pep 

stoned, pep love, pep, party pills, 

nemesis, legal x, legal e, happy 

pills, frenzy, fast lane, exodus, 

euphoria, esp, cosmic kelly, bzp, 

bolts extra strength, blast, 

benzylpiperazine, a2 

49/49 3 

2-DPMP vanilla sky, purple wave, ivory 

wave, desoxypipradrol, d2pm, 2-

diphenylmethylpyrrolidine 

0/0 0 

Salvia 

divinorum 

mexican magic mint, holy 

sage, eclipse, salvinorin a 

86/840 15 

Morning glory pearly gates 27/27 2 

2C-B, 2C-T-7 nexus 23/23 1 

MDAI - 0/0 0 

MDPV - 5/5 5 

Bromodragonfly - 0/0 0 

Kanna sceletium tortuosum, 

mesembrine 

0/0 0 

4-AcO-Met 4-acetoxy-met, metacetin 0/0 0 

Naphyrone nrg 38/38 8 



Twitter data resource 

Twitter is a micro-blogging platform which, as of the second quarter of 2015, averaged 304 million 

monthly active users (Statista, 2015). With 500 million tweets on a typical day (5,700 per second) 

and a wealth of text, graph, image and video interaction, Twitter is one of the largest social media 

sources (Twitter, 2013). For our study, we accessed tweets archived from a Twitter feed licensed to 

the University of Sheffield from July 2009 to September 2014 inclusive. These comprise a random 

10% sample of all tweets (Kergl et al, 2014) and are kept in hourly or daily files. The sample was 

searched for terms related to mephedrone by using Aho-Corasick (1975) search first to losslessly 

reduce the number of records processed in detail. . The remaining records were then de-serialised, 

language identification used where available to filter out non-English tweets, and the terms were 

searched for in just the tweet text field. All the above were performed on a Sun Grid Engine cluster. 

The resulting data were read in Microsoft Excel format as in one tweet per line. Annotating of the 

tweets was performed in two phases. First, a proportion of the extracted tweets were manually 

double-annotated based on whether they were a true, false or unclear reference to mephedrone. An 

inter-annotator agreement analysis using the Kappa statistic was performed to determine 

consistency between the two annotators and a collective resolution of the disagreements from the 

first round of annotating was implemented to reach 100% agreement. 

 

To develop an automatic application for identifying genuine mentions of mephedrone in the 

remaining tweets, a natural language processing (NLP) approach was taken. This involved applying 

an algorithm that was able to determine if the semantic meaning of the text was a reference to 

mephedrone or not. The algorithm was developed using a subset of the tweets already annotated. 

These tweets were analysed and the linguistic patterns that indicated a true reference to 

mephedrone were determined, which were then used to create identification rules implemented on 

General Architecture for Text Engineering software (GATE; Cunningham et al, 2011; Bontcheva et 

al, 2013). GATE also supported the rapid deployment of these applications over the larger set of 

tweets retrieved. Rules were tested over another Ǯgold standardǯ subset of tweets already 

annotated.  

 

Google Trends data resource 

Google Trends (Google, 2012) is a public web facility that can show users how often a particular 

term has been entered on Google Search relative to the maximum volume of searches over a 

certain time-period. It also has a useful function whereby it can show news stories related to the 

search-term overlaid on the results chart and can potentially demonstrate how events occurring 



worldwide affect search-term popularity. We used the Google Trends interface to search for 

mephedrone-related terms and calculate the relative number of times mephedrone was entered as 

a keyword in Google search. 

Wikipedia data resource 

Wikipedia, launched in 2001, is a multilingual, open-access, web-based library based on a model of 

editable content provided by anonymous volunteers (Wikipedia, 2015a). It consists of over 37 million 

pages and attracts around 374 million unique visitors every month, making it one of the largest 

reference websites and surpassing all other encyclopaedias in both size and coverage. We collected 

and analysed page view statistics  (Wikipedia, 2015b) for the English Wikipedia between 10/12/2007 

and ͙͘Ȁ͙͘Ȁ͚͙͘͜ and the page Ǯmephedroneǯ (Wikipedia, 2015c). After processing, our statistics 

provide the number of visits on a daily basis for the target entry-page, based on search term 

Ǯmephedroneǯǡ from ͙͘Ȁ͙͘Ȁ͚͘͘͠ until ͙͘Ȁ͙͘Ȁ͚͙͘͜Ǥ 

 

Further analysis 

In order to compare temporal trends in mephedrone mentions on Twitter, Google Trends, 

Wikipedia and the EHR, we performed a two-fold normalisation of the data. Firstly, there had 

occasionally been technical issues resulting in less than 10% of all tweets being captured each 

month. To control for the effect this may have had on the true number of mephedrone mentions in 

Twitter, we divided the number of positive mephedrone tweets by the number of total tweets 

captured for each month. Secondly, since data were measured on different scales for the three data 

sources, we normalised values between 0 and 1 (representing the maximum and minimum 

frequencies within the observation period) to allow comparisons on a common scale. Data were 

then overlaid to generate a graph showing the relative timing of references to mephedrone in 

clinical records, mephedrone mentions in Twitter and mephedrone-related searches in Google and 

Wikipedia.  

 

Finding ourselves in a unique position to conduct a post-hoc analysis specific to mephedrone 

references, we sought to establish the wider context within which mephedrone appeared in the 

clinical records and, in particular, identify the characteristics specific to the case notes where 

current mephedrone use was reported. The NLP software package TextHunter (Jackson et al, 2014) 

was used to extract information on mephedrone mentions in the clinical records. All terms related 

to mephedrone were searched for and all sentences containing these terms were annotated as a 

positive, negative or irrelevant reference to mephedrone use by the patient. All positive references 

were further annotated based on present or past mention of mephedrone use. As there could be 



multiple references to mephedrone in one patient record, the document where use was first 

reported was selected for each patient. Data on demographic status (age, gender and ethnicity), 

primary diagnosis and primary service contact for all such patients aged 18-65 were utilised. Date of 

birth and type of primary service contact were extracted at the time-point closest to the first 

mention of current mephedrone use and most recent primary diagnosis was obtained from records 

between 1st January 2007 and 31st September 2014. All data were analysed using Stata (V.13; 

StataCorp, 2011).  

 

  



RESULTS 

 

The mephedrone-related Twitter query produced 27,806 tweets of which 5,000 were double-

annotated with an inter-annotator agreement kappa statistic of 0.861 (95% CI 0.846, 0.877). 

Following arbitration of disagreements, the final annotations were as follows: 903 positive, 3,932 

negative and 165 unclear. The NLP algorithm was developed through the use of 2,400 annotated 

tweets (training set). The rules created to identify the linguistic patterns indicating a positive 

reference to mephedrone were then tested on another 2,400 annotated tweets (gold standard set) 

using GATE. The development of the GATE application was successful in identifying true instances 

of mephedrone in the tweets with a precision score (positive predictive value) of 0.988 and a recall 

score (sensitivity) of 0.896.   

 

Mapping of mephedrone presence in the four information sources is shown in Figures 1 and 2. In the 

first figure, all sources show peaks in mephedrone mentions in early 2010 shortly before its re-

classification to a Ǯclass Bǯ drug under UK law in April ͚͙͘͘, followed by virtual disappearance on 

Twitter, longer-term low-grade activity on Google Trends and a steady rise in mentions in the 

mental health record. A steady decrease was noted in Wikipedia searches, with the exception of 

spikes associated with two news-related events in June 2012 and January 2014. Pre-2010, activity 

was evident on Google Trends and Wikipedia but not substantial in the clinical record or Twitter. 

Figure 2 provides a more detailed representation of the emerging mentions during the 01/01/2009-

01/08/2010 period. A rise in activity on Google Trends and Wikipedia was the first observation, 

preceding any rise in Twitter activity by 3-4 months. Although mephedrone mentions on Twitter, 

Google Trends and Wikipedia simultaneously reached their peak in the first quarter of 2010, this 

was marginally preceded by an increase in mephedrone references in the clinical records. Activity 

sharply declines in all four sources by the middle of the year. 

 

 

 

 

 

  



Figure 1 Mapping of mephedrone references in Google Trends, EHR, Twitter and Wikipedia (2007-2014) 

 
 

 

 

 

 

Figure 2 Mapping of mephedrone references in Google Trends, EHR, Twitter and Wikipedia (2009-2010)

 

Absolute values at 1 

Google trends ʹ 290 

CRIS ʹ 67 

Twitter ʹ 1,319 

Wikipedia ʹ 355,789 



 

We retrieved 2,799 sentences containing mephedrone-related terms in the clinical record database. 

Of these, 2,578 were annotated as a positive occurrence of the drug and current use was implied in 

2,187 of these 2,578 sentences. Following restriction of documents to the first mention of current 

mephedrone use for each patient, 468 records were returned. Median age in this case sample was 

30 (IQR= 18-55), 84.0% were male, and 65.2% were from a white ethnic background (black 11.7%; 

other 12.4%; not stated 10.7%). Primary ICD-10 diagnoses at the time of mephedrone use being first 

recorded were as follows: 40.0% disorder due to drug use; 7.3% depressive disorder; 7.0ά Ǯother 

disorderǯ; 7.0% personality disorder; 6.2% anxiety disorder; 6.0% developmental disorder; 4.9% 

disorder to due to alcohol use; 4.9% psychotic disorder; 3.6% schizopreniform disorder; 2.6% 

bipolar disorder; 0.9% eating disorder; 9.6% not available). Finally, 28.8% were under the care of 

addiction services at the time of first mention of mephedrone use (18.4% liaison psychiatry; 12.0% 

A&E; 12.0% general mental health services; 5.8% psychosis services; 3.2% HIV services; 9.0% other; 

10.9% not stated). 

 

  



DISCUSSION 

 

We initially sought to investigate the temporal relationship between the appearance of a range of 

NPS in social media and their occurrence in a mental health EHR representing an urban catchment 

area. However, a key initial finding was that there were generally very few references to NPS in the 

clinical records. Although we cannot infer prevalence in a clinical sample relying on recorded 

mentions of use, our findings mirror those of studies reporting low rates of NPS use among 

participants in night-time economy (NTE) in south London (Wood et al, 2012) as well as New York 

City (Kelly et al, 2013) and in the general population (Global Drug Survey, 2015). Despite the 

growing number of NPS identified by early warning systems, European reports also suggest that 

lifetime prevalence of NPS use remains low in most countries (EMCDDA, 2015). Mephedrone was 

the most commonly referenced NPS in the EHR and, similarly, the preference for its use over other 

NPS has been documented by the Crime Survey for England and Wales (CSEW; Home Office, 

2012a), in respondents from NTE in London and Lancashire (Measham et al, 2011a, 2011b) and in 

regular clubbers (Mixmag, 2011). A steady decline in mephedrone use has been reported by the 

CSEW with last year use of mephedrone among adults aged 16-59 being 1.3% in 2010/11, then 

falling to 1% in 2011/12 and to 0.5% in 2012/13 between before stabilising at 0.6% in 2013/2014 

(Home Office, 2014b). In our study, however, we observed a steady increase in the number of 

mephedrone mentions in the EHR over the last 3 years. As concern about NPS grows, it is only 

natural that clinical practice will transform to keep pace with these rapid developments in public 

and policy approach and healthcare professionals might therefore be more inclined to ask about 

mephedrone use and record its presence or absence.  

 

Although some research exists on NPS use in mental health service users, to the best of our 

knowledge, ours is the first study to report on the profile of recorded current users in a secondary 

mental healthcare setting. Demographic characteristics were largely compatible in distribution with 

previous findings from general population surveys. Users were primarily male (Home Office, 2014b; 

Mixmag, 2012; Carhart-Harris et al, 2011; Kelly et al, 2013) and the median age was 30; slightly 

higher than the mid-to-late 20s reported in community samples (Winstock et al, 2011; Carhart-

Harris et al, 2011; Kelly et al, 2013). This could be explained by the prominence of young clubbers in 

the surveys as well as the exclusion in our study of mephedrone users younger than 18, which will 

have raised the lower end of the age range. Lastly, the majority of our sample was, similar to other 

research, of white ethnic background (Kelly et al, 2013). Previous investigations of NPS use in 

people with mental disorders has suggested high levels of use by those diagnosed with a psychotic 



or bipolar disorder (Lally et al, 2013; Martinotti et al, 2014). Since we extracted the primary 

diagnosis closest to the time of recorded use, diagnostic instability for mental disorders (Baca-

Garcia et al, 2007) could account for the majority of our sample having been given a diagnosis of a 

disorder due to drug use. The progression of illness, emergence of new information and variability 

in diagnostic instruments (Baca-Garcia, 2007) might have also contributed to this discrepancy. 

 

Exploring the temporal relationships between the four different data sources with regard to 

mephedrone occurrences, we found a similarity in trends between mentions of mephedrone in 

Twitter, mephedrone-related searches on Google Trends and Wikipedia and references to 

mephedrone in the mental healthcare record. Notably, markedly increased mentions in all four data 

sources occurred around the time mephedrone was designated a Ǯclass Bǯ drug in the UK in April 

2010 indicating the influence of key events and news stories in driving public interest as well as 

clinical attention. As Measham et al (2010) discuss, this further illustrates the rapid rise in popularity 

and availability of mephedrone from the summer of 2009 in the United Kingdom. In similar health-

related research, Duh (2014) also reported an overall trend across AskaPatient.com and Google 

Trends on the frequency and pattern of adverse events for atorvastatin with peaks during popular 

media coverage demonstrating the resemblance in trends between Google Trends and other online 

platforms. Our study has taken this comparison a step further to show that social media 

information-seeking and information-sharing behaviour and data from clinical communication 

platforms were largely comparable. Although the implications of this observation are not yet clear, 

an Ǯinfoveillanceǯ (Eysenbach, 2009) approach to substance use appears at least theoretically 

promising for gathering information on levels of internet activity Ȃ particularly with respect to 

emerging drugs, whose low rates of use would normally require a very large sample to identify their 

emergence and where relevant reports are delayed by traditional methods of data collection. Social 

media analysis in healthcare monitoring  is in itself promising and continues to gather momentum; 

however, combined analysis can only be achieved when rates of reference in the EHR are 

sufficiently high to support meaningful comparisons. Murphy et al (2011) conducted a study mining 

Twitter and Google Trends data for salvia divinorum (an NPS with hallucinogenic properties) and 

compared these to general population use data.  Although they found that information sharing 

about salvia divinorum on Twitter may be associated with actual self-reported use in the general 

population, they failed to observe a consistent trend between the three data sources. They argued 

that the rarity of salvia divinorum use, unwillingness to discuss or search for information related to 

illegal behaviours, as well as the slow diffusion rate of emerging drugs of abuse may have influenced 

the results. Inarguably, what both our and their findings emphasize is that using social media data 



to explore behavioural trends might not be suitable for all kinds of health issues particularly those 

which are frequently undisclosed (Murphy et al, 2011). 

 

Although our observations were exploratory, it is noteworthy that the largest spike of activity 

related to mephedrone in the online sources did not precede but actually succeeded a substantial 

increase in mephedrone mentions in the clinical records. It is intuitive to assume that social media 

analysis has been mostly successful because it relates trends to the general population of which 

online users are regarded as largely representative; that is, it informs events in the group that 

provided the data in the first place. It is not known to what extent mental health service users utilise 

online sources and so combining social media analysis with clinical record data might not follow 

similar patterns. Also, we concentrated on social media and particularly Twitter, as a representative 

medium of trending news and eventsǤ A key eventǡ such as mephedroneǯs reclassificationǡ will have 

been circulating on other mainstream media to which patients and healthcare professionals might 

have already been exposed. This is a good example of the well-known model of social media 

whereby it expresses real-world discussions and events as a latent variable; that is, it reports a 

biased, mediated version of real-world activities. 

 

A strength of this study was the utilization of Ǯbig dataǯ both from online media and mental health 

records. Twitter and Google Trends are widely established as sources for gaining understanding in a 

variety of public health topics (Murphy et al, 2011) and the English Wikipedia has emerged as an 

important source of online health information in relation to other providers (Laurent and Vickers, 

2009). They offer an abundance of information that can be extracted, categorized and analysed for 

health research, providing an insight into online attitudes and behaviours that may replicate general 

population and clinical trends. Another strength was the successful implementation of NLP tools to 

reliably ascertain true references of mephedrone in Twitter, which limits potential bias arising from 

manual identification. Clinical data were collected from a large mental healthcare provider rather 

than from participants selected specifically for NPS research, thus maximising the generalizability 

of our results. It is important to remember, however, that EHR data were derived from a specific 

urban area of south London and we did not attempt to use geo-location parameters to limit the 

extraction of social media data; mephedrone trends indeed appeared to transcend geographical 

restrictions. Data quality from clinical records will also be influenced by the accuracy and timeliness 

with which clinicians ask and record information as well as the information itself communicated by 

service users and this might have accounted at least in part for the very limited information on other 

NPS. A representative, random sample of Twitter data were analysed for this project, although 



caution has to be exercised in inferring population-level attitudes and opinions from this source 

(Bruns and Stieglitz, 2014). Around 23% of online adults are estimated currently to use Twitter but 

the service has seen a significant increase since 2013 in certain demographic groups: men, those 

aged 65 and older and those from white ethnic backgrounds (Duggan et al, 2015) resulting in 

concerns over the level of public identity that is represented in this medium. A further limitation 

inherent in drug use research is reporting bias arising from peopleǯs lack of knowledge of what 

substances they are actually using, particularly since NPS are closely associated with online 

purchasing and high levels of assertive marketing through unregulated and non-prescription 

websites. Finally, it is important to bear in mind that aggregated social media and patient data were 

used for these analyses and no attempt was made to link specific social media accounts to specific 

clinical records. Thus, it is not possible to conclude from coinciding trends on social media and 

clinical records whether these reflected awareness or not of the social media activity by those 

patients in whom NPS use was recorded.   

 

Our study has demonstrated the potential for combined analysis of information from online media 

and data from mental health records in exploring the temporal relationship of NPS emergence. 

From the point of view of public health monitoring and as a promising tool for early warning 

systems for health practitioners, information-seeking behaviour in sources such as Google and 

Wikipedia may forecast increased online activity and clinical interest for emergent novel 

psychoactive substances. In addition, steady increase in online activity does in the mid-term 

precede spikes in particular term occurrence in the clinical record. Peaks and troughs in online 

chatter are heavily influenced by trending news and events putting clinicians at an advantage to 

collect extensive and useful information from a number of media sources in a timely manner. There 

is tremendous capacity for progress in infoveillance for public health monitoring and the first steps 

towards an automatic warning system for health services are well underway.  
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