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ABSTRACT

The eclipsing white dwarf plus main-sequence binary NN Serpentis provides one of the
most convincing cases for the existence of circumbinary planets around evolved binaries. The
exquisite timing precision provided by the deep eclipse of the white dwarf has revealed com-
plex variations in the eclipse arrival times over the last few decades. These variations have
been interpreted as the influence of two planets in orbit around the binary. Recent studies
have proved that such a system is dynamically stable over thecurrent lifetime of the binary.
However, the existence of such planets is by no means proven and several alternative mecha-
nisms have been proposed that could drive similar variations. One of these is apsidal preces-
sion, which causes the eclipse times of eccentric binaries to vary sinusoidally on many year
timescales. In this paper we present timing data for the secondary eclipse of NN Ser and show
that they follow the same trend seen in the primary eclipse times, ruling out apsidal precession
as a possible cause for the variations. This result leaves noalternatives to the planetary inter-
pretation for the observed period variations, although we still do not consider their existence
as proven. Our data limits the eccentricity of NN Ser toe < 10

−3. We also detect a3.3± 1.0

second delay in the arrival times of the secondary eclipses relative to the best planetary model.
This delay is consistent with the expected2.84± 0.04 second Rømer delay of the binary, and
is the first time this effect has been detected in a white dwarfplus M dwarf system.

Key words: binaries: eclipsing – stars: late-type – stars: white dwarfs – stars: planetary
systems

1 INTRODUCTION

Recent years have seen the discovery of planets in a number of
unusual systems. From the initial discovery of the first exoplanet
around the pulsar PSR 1257+12 (Wolszczan & Frail 1992), plan-
ets have also been detected around giant stars (Döllinger et al.
2011), pulsating stars (Collier Cameron et al. 2010; Herrero et al.
2011), brown dwarfs (Chauvin et al. 2005; Han et al. 2013) andin
orbits around binary stars (Doyle et al. 2011; Welsh et al. 2012).
There is now growing evidence for the existence of planets
around white dwarfs, both from observations of rocky plane-
tary material being accreted by white dwarfs (see for example
Gänsicke et al. 2012) and from timing studies (Lee et al. 2009;
Beuermann et al. 2010; Potter et al. 2011; Beuermann et al. 2012;
Marsh et al. 2013). These timing studies make use of the smallsize
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of the white dwarf which, when in an eclipsing binary system,leads
to sharp eclipse features and hence precise times.

The potential existence of planets around these close bina-
ries, which have undergone a common envelope phase of evolu-
tion, raises interesting questions about their formation and evolu-
tion. The fact that many of the proposed planetary systems would
have been unstable prior to the common envelope stage (see for
example Mustill et al. 2013) has led to the idea that these planets
could instead have formed from the common envelope materialit-
self (Beuermann et al. 2011; Veras & Tout 2012). This idea is also
supported by the fact that fewer than 10% of main-sequence bina-
ries host circumbinary planets, whilst timing data has revealed pe-
riod variations in virtually every system with long enough coverage
(Zorotovic & Schreiber 2013), implying that the common envelope
environment could be conducive to planet formation.

Despite the large number of evolved eclipsing binaries show-
ing variations in the arrival times of their eclipses, none of the cir-
cumbinary planets proposed to explain these variations have been
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confirmed. Indeed, many proposed planetary orbits are ruledout as
soon as new data are obtained (Parsons et al. 2010b), whilst many
others are dynamically unstable (Potter et al. 2011; Hinse et al.
2012; Horner et al. 2013). The lack of independent evidence for
the existence of these planets call in to question the planetary ex-
planation for the timing variations. Indeed several other mecha-
nisms are able to drive similar variations in the eclipse arrival
times such as apsidal motion and fluctuations in the gravitational
quadrapole moment of the main-sequence star, known as Apple-
gate’s mechanism (Applegate 1992). However, in some cases the
main-sequence stars are unable to provide the required energy to
drive the observed period variations via Applegate’s mechanism
(Brinkworth et al. 2006).

Apsidal motion is more difficult to rule out since large vari-
ations in eclipse arrival times are possible even with very small
eccentricities. This is because the amplitude of the timingshifts via
apsidal motion is proportional to the orbital period and theeccen-
tricity. Hence an eccentricity of as low as10−3 can still drive a
deviation in the eclipse times of as large as 10 seconds in a binary
with a period of 3 hours. The timescale for this variation canbe
anything from months to decades and hence can mimic the timing
variations caused by a planet. Furthermore, eccentricities this low
are hard to detect by other means (e.g. spectroscopy), making it
hard to rule them out, even for post common envelope systems.

Apsidal motion can be detected, or ruled out, using observa-
tions of the secondary eclipse (the transit of the white dwarf across
the face of the M dwarf). This is because the precession of theapses
causes the secondary eclipse to move in the opposite sense tothe
primary eclipse. Hence if the secondary eclipse times follow the
same trend as the primary eclipse times then we can rule out ap-
sidal motion as the cause of the variations. Unfortunately,since
the best primary eclipse timing data usually comes from systems
with hot, dominant white dwarfs (hence very shallow secondary
eclipses), secondary eclipse timings are difficult and onlypossible
in a handful of systems.

One system where secondary eclipse timings are currently
possible is NN Serpentis. NN Ser is an eclipsing binary with ape-
riod of 3.1 hours (Haefner 1989), consisting of a hot, 57,000K
white dwarf (Wood & Marsh 1991) and a low mass (0.111M⊙)
main-sequence companion (Parsons et al. 2010a). The extreme
temperature of the white dwarf and the close proximity of theM
dwarf causes a large reflection effect on one side of the M dwarf.
This large reflection effect actually increases the depth ofthe sec-
ondary eclipse since the white dwarf transits across the bright,
heated face of the M dwarf, making it suitable for timing studies.
Furthermore, the deep primary eclipse has been used to measure
times with precisions as low as 0.01 seconds (Parsons et al. 2010b).
These high-precision times have revealed complex variations in the
eclipse arrival times too large to be caused by Applegate’s mecha-
nism (Brinkworth et al. 2006). Beuermann et al. (2010) foundthat
the timing variations are consistent with the gravitational effects
of a 2.2MJ planet in a 7.7 year orbit and 6.9MJ planet in a 15.5
year orbit around the binary. Recent dynamical studies haveshown
that such a system is stable over the current cooling age of the
white dwarf (Beuermann et al. 2013; Marsh et al. 2013). NN Seris
currently the only system where subsequent timing measurements
have remained consistent with predictions from planetary models
(Marsh et al. 2013), albeit with a greatly reduced number of stable
solutions.

NN Ser represents one of the most compelling cases for the
existence of planets around an evolved binary. The planetary inter-
pretation of the timing variations has proven predictive power and

there are very few alternative mechanisms able to drive the timing
variations. Here we present 15 secondary eclipse times spanning
more than a decade and use them to test if the timing variations
are caused by apsidal motion, one of the few possible alternative
mechanisms.

2 OBSERVATIONS AND THEIR REDUCTION

The majority of the data presented in this paper were obtained
with the high-speed camera ULTRACAM (Dhillon et al. 2007),
mounted as a visitor instrument on the William Herschel Telescope
(WHT), ESO Very Large Telescope (VLT) and ESO New Tech-
nology Telescope (NTT). ULTRACAM is a frame transfer camera
which splits the incoming light into three beams; red, greenand
blue. The secondary eclipse in NN Ser is deeper at longer wave-
lengths (Parsons et al. 2010a), hence we only use data taken from
the red beam, equipped with either ar′ or i′ band filter, as only this
data can provide reliable timings.

We supplement our ULTRACAM data with high-speedJ
band observations of NN Ser using the infrared imager HAWK-
I on the VLT (Kissler-Patig et al. 2008). The reflection effect in
NN Ser is strongest at near-infrared wavelengths, resulting in a
deeper secondary eclipse, which compensates for the overall re-
duction in flux at these longer wavelengths (relative to the UL-
TRACAM optical observations). We used HAWK-I in fast pho-
tometry mode, allowing us to window the detector and reduce the
deadtime between frames to a few microseconds. All data werede-
biased (dark subtracted in the case of HAWK-I), flat-fielded and ex-
tracted using aperture photometry within the ULTRACAM pipeline
(Dhillon et al. 2007).

We initially fitted all of the light curves individually using the
light curve model developed for our previous analysis of NN Ser
(Parsons et al. 2010a) and Levenberg–Marquardt minimisation, al-
lowing only the mid-eclipse times to vary. We limited our out-of-
eclipse data to one eclipse width before and after the eclipse itself
in order to reduce the impact of the reflection effect on the timings.
We used these first estimates of the eclipse times to combine light
curves in order to create high signal-to-noise light curvesin each
band (r′, i′ andJ). NN Ser is ideally suited to this approach since
its light curve is very stable, having never shown a flare or vari-
ations in the shape and size of the reflection effect since ourfirst
ULTRACAM observations in 2002.

We then fitted these high signal-to-noise light curves allowing
for a linear slope in the data. We included a linear slope to try to
account for the possibility of equatorial heat transport effects on the
M dwarf, which could move the peak of the reflection away from
phase 0.5 introducing a slope around this phase. Although wedo
not detect this effect, the secondary eclipse is shallow enough that
it can be affected by such effects. Therefore, we accepted the addi-
tional statistical scatter introduced by including a slope, in order to
reduce the above potential systematics.

The resulting models (one for each band) were then used to
refit the individual light curves allowing only the central eclipse
time to vary and using Markov chain Monte Carlo (MCMC) min-
imisation. Fig. 1 shows an example of the model fit, and the fit-
ted eclipse times are listed in Table 1. Our HAWK-I light curves
showed some small scale correlated noise. We estimate what effect
this had on the fits using the “time-averaging” method described in
Winn et al. (2008), whereby the residuals of the fit are binnedover
various timescales and the RMS recalculated. We found that the re-
sultingβ parameter was small< 1.1, and therefore any red noise
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The secondary eclipse of NN Ser3

Figure 1. HAWK-I J band secondary eclipse data (cycle 69598.5) with
model fit (red line) overplotted. The lower panel shows the fitresiduals

has a very minor impact on the overall fits, not enough to affect our
overall conclusions.

In poor conditions, such as those experienced in 2004 (cycle
numbers around 44475), the secondary eclipse is often difficult to
detect and leads to large uncertainties in the mid-eclipse times (∼8
seconds). However, generally we are able to measure eclipsetimes
to better than 4 seconds, and with our VLT+ULTRACAM data (cy-
cle 53176.5) we reach a precision of 1.8 seconds.

3 RESULTS

Fig. 2 shows the observed minus calculated secondary eclipse times
for NN Ser relative to the planetary fits of Marsh et al. (2013). We
also show a vertically reflected version of the best planetary model.
If the variations seen in the primary eclipse times were due to ap-
sidal motion then the secondary eclipse times should followthis
reflected trend. However, they show the same variations as the pri-
mary eclipse times, counter to what we would expect from apsidal
motion. The most recent HAWK-I eclipse times are key to this,
since they are more than 30 seconds (or∼6σ) from this reflected
trend.

The lower panel of Fig. 2 shows the residuals between the sec-
ondary eclipse times and the best planetary model. The secondary
eclipse times do not completely agree with those of the primary
eclipse, they generally appear slightly later than expected (i.e. they
do not occur precisely at phase 0.5). A weighted mean of this off-
sets gives a delay of3.3 ± 1.0 seconds in the arrival time of the
secondary eclipse.

4 DISCUSSION

4.1 No evidence of apsidal motion

Eccentricity causes a shift in the secondary eclipse arrival times,
relative the those of the primary eclipse, of the form (Barlow et al.
2012)

2

π
Pe cosω (1)

Table 1. Secondary eclipse times for NN Ser

Cycle BMJD(TDB) O-C Source
No. (mid-eclipse) (sec)

38960.5 52412.012165(44) 5.9 WHT/ULTRACAMr′

38967.5 52412.922698(53) 3.5 WHT/ULTRACAMr′

38976.5 52414.093377(52) -0.1 WHT/ULTRACAMr′

41797.5 52781.049453(46) 3.5 WHT/ULTRACAMi′

41798.5 52781.179464(61) -2.5 WHT/ULTRACAMi′

41805.5 52782.090016(50) -3.1 WHT/ULTRACAMi′

41828.5 52785.081966(53) 6.1 WHT/ULTRACAMi′

44472.5 53129.013865(95) 12.6 WHT/ULTRACAMi′

44473.5 53129.143641(92) -13.7 WHT/ULTRACAMi′

44480.5 53130.054368(95) 0.6 WHT/ULTRACAMi′

49662.5 53804.129634(82) 12.0 WHT/ULTRACAMr′

49663.5 53804.259706(53) 11.3 WHT/ULTRACAMr′

53176.5 54261.231056(24) 2.7 VLT/ULTRACAMi′

61226.5 55308.375950(68) 4.1 NTT/ULTRACAMi′

69598.5 56397.407037(52) 3.9 VLT/HAWK-IJ
70456.5 56509.015866(56) 5.3 VLT/HAWK-IJ

whereP is the period of the binary,e is the eccentricity andω is the
angle of the apsides. For NN Ser this means that an eccentricity as
low as10−3 would cause variations in the eclipse times of around
10 seconds, a similar magnitude to the variations detected.

The rate of secular apsidal motion (ω̇) is the sum of the tidal,
rotational and relativistic terms. Ignoring the white dwarf’s contri-
bution (which is negligible compared to the M dwarf) these are

ω̇tide = 15Ω
(

RdM

a

)5 MWD

MdM

1 + 1.5e2 + 0.125e4

(1− e2)5
kdM (2)

ω̇rot = Ω
(

RdM

a

)5 MWD +MdM

MdM

(ΩdM/Ω)2

(1− e2)2
kdM (3)

ω̇GR = Ω
(

3G

c2

)

MWD +MdM

a(1− e2)
, (4)

whereΩ = 2π/P , MWD is the mass of the white dwarf,MdM

andRdM are the mass and radius of the M dwarf,a is the orbital
separation,kdM is the apsidal precession constant for the M dwarf
(Claret & Gimenez 1991) andΩdM is the rotational angular veloc-
ity of the M dwarf.

Using the parameters from Parsons et al. (2010a) and zero ec-
centricity (which gives an upper limit on the apsidal period) gives
ω̇tide ∼ 22◦/yr, ω̇rot ∼ 9◦/yr and ω̇GR ∼ 5◦/yr. Hence
ω̇ ∼ 36◦/yr or 1 full cycle in∼ 10 years, which is comparable to
the timescale of the eclipse timing variations (even with aneccen-
tricity as high as 0.1 the timescale remains similar). Any significant
eccentricity would have been detected in our data, since it spans 11
years (i.e. at least one full apsidal cycle).

Given that such a small eccentricity (currently undetectable
spectroscopically in NN Ser) can create timing variations of a sim-
ilar amplitude and period to those seen in NN Ser means that itis
important to rule out this mechanism if the planetary hypothesis is
to survive. Therefore, our secondary eclipse timings, which follow
the trend seen in the primary eclipse times and hence rule outap-
sidal motion, are an important result and, although not proving the
planetary hypothesis, they certainly support it.

We place an upper limit on the eccentricity of NN Ser using
the residuals of the secondary eclipse times relative to theplane-
tary model (bottom panel of Fig. 2). The sinusoid shows the signal
we would expect if the binary had an eccentricity of5×10−4 (with
an apsidal cycle time of 10 years), it is evident that a largereccen-
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4 S. G. Parsons et al.

Figure 2. Top panel:observed minus calculated (O-C) eclipse arrival times for the secondary eclipses of NN Ser relative to the ephemeris BMJD(TDB)=
52942.934 05+0.130 080 127E. Also shown are 50 best fit planetary models from Marsh et al. (2013) where the eccentricities of both planets were allowed
to vary. The dashed line is a reflected version of the best planetary model. The secondary eclipse times would follow this reflected trend if the variations were
due to apsidal motion. We have spread out observations takenclose together to make them clearer (given the timing uncertainties this has no effect on the
overall trend).Bottom panel:residuals of the secondary eclipse times relative to the best planetary model. The horizontal dashed line shows the meanvalue.
The dashed sinusoid shows the variations we would expect if NN Ser had an eccentricity of10−3, demonstrating that the actual eccentricity is unlikely tobe
larger than this value.

tricity (hence larger amplitude) is ruled out. Therefore, we limit the
eccentricity of NN Ser toe < 10−3.

4.2 The delay in the secondary eclipse times

As previously mentioned, the secondary eclipse times do notoccur
exactly at phase 0.5, but rather occur slightly later than expected, by
3.3± 1.0 seconds. The finite speed of light causes a delay between
the primary and secondary eclipses in binary systems with unequal
mass ratios. This Rømer delay is given by (Kaplan 2010)

∆T =
P

πc
(KdM −KWD), (5)

whereKdM andKWD are the radial velocity semi-amplitudes of
the M dwarf and white dwarf respectively. For the measured pa-
rameters of NN Ser this delay is2.84±0.04 seconds (Parsons et al.
2010a), and hence our measured offset is consistent with this ef-
fect. Rømer delays have been detected in the sdB+dM binary
2MASS J1938+4603 (Barlow et al. 2012) and the white dwarf plus
A star binary KOI-74 (Bloemen et al. 2012), but this is the first de-
tection of this effect in a white dwarf plus M dwarf binary.

5 CONCLUSIONS

We have measured the mid-eclipse times for the secondary eclipse
of the white dwarf plus main-sequence binary NN Ser spanninga
time period of more than a decade. Our results show that the sec-
ondary eclipse arrival times display a similar trend to the arrival

times of the primary eclipse, ruling out apsidal motion as a pos-
sible cause of the observed timing variations. Given that fluctua-
tions in the gravitational quadrupolar moment of the M dwarfhave
also been ruled out (Brinkworth et al. 2006), we are left withno
known alternative explanations as to the origin of these variations
beyond the circumbinary planet hypothesis. This result, along with
recent studies demonstrating that the proposed planetary system
is stable and has some predictive power (Beuermann et al. 2013;
Marsh et al. 2013), makes NN Ser the most convincing case for the
existence of planets around an evolved binary. However, despite the
lack of alternative explanations, the existence of these planets (and
those thought to exist around other compact binaries) are yet to be
proven. Independent evidence is still required, such as direct de-
tection of the planets or evidence ofN -body effects in the eclipse
timings.

The lack of any obvious sinusoidal variations between the pri-
mary and secondary eclipse times of NN Ser limit its eccentricity
to e < 10−3. We have also detected a delay in the arrival times
of the secondary eclipses, relative to the primary eclipse times, of
3.3±1.0 seconds. This delay is consistent with the predicted Rømer
delay of the binary, which is2.84 ± 0.04 seconds.
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