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Abstract

Background: Surgical interventions are complex, which complicates their rigorous assessment through
randomised clinical trials. An important component of complexity relates to surgeon experience and the rate at which
the required level of skill is achieved, known as the learning curve. There is considerable evidence that operator
performance for surgical innovations will change with increasing experience. Such learning effects complicate
evaluations; the start of the trial might be delayed, resulting in loss of surgeon equipoise or, if an assessment is
undertaken before performance has stabilised, the true impact of the intervention may be distorted.

Methods: Formal estimation of learning parameters is necessary to characterise the learning curve, model its
evolution and adjust for its presence during assessment. Current methods are either descriptive or model the learning
curve through three main features: the initial skill level, the learning rate and the final skill level achieved. We introduce
a fourth characterising feature, the duration of the learning period, which provides an estimate of the point at which
learning has stabilised. We propose a two-phase model to estimate formally all four learning curve features.

Results: We demonstrate that the two-phase model can be used to estimate the end of the learning period by
incorporating a parameter for estimating the duration of learning. This is achieved by breaking down the model into a
phase describing the learning period and one describing cases after the final skill level is reached, with the break point
representing the length of learning. We illustrate the method using cardiac surgery data.

Conclusions: This modelling extension is useful as it provides a measure of the potential cost of learning an
intervention and enables statisticians to accommodate cases undertaken during the learning phase and assess the
intervention after the optimal skill level is reached. The limitations of the method and implications for the optimal
timing of a definitive randomised controlled trial are also discussed.
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Background
Surgical interventions are complex multi-factorial pro-
cedures, which makes their formal statistical evaluation
through randomised controlled trials (RCTs) more chal-
lenging compared to pharmaceutical interventions [1]. A
pivotal aspect of surgical complexity concerns the abili-
ties of the professionals delivering the intervention. A new
procedure that is more technically demanding than the
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current standard of care may require a period of training
to achieve satisfactory performance. Published guidance
for the assessment of surgical interventions recognises the
potential hazard of patient harm induced by surgeons at
the initial phases of delivering a new intervention due to
inexperience and emphasises the need for efficient train-
ing schemes to ensure satisfactory surgical standards [2].
Improvement in surgical performance over time is

described as the learning curve and is expected to be most
rapid in the initial stages of practice and then tail off over
time. Three features were proposed by Cook et al. to char-
acterise it: the initial level of performance, the learning
rate measuring how quickly performance improves, and
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an asymptote or plateau representing the level at which
performance stabilises [3].
Although learning curve modelling is in itself of inter-

est, it is additionally useful as it may inform the design of
RCTs. For instance, the requirement for a learning period
influences the time of trial initiation. Early randomisa-
tion of patients may include cases undertaken during the
learning phase, so that the imbalance in surgical exper-
tise between the established and novel procedures may
lead to biased estimates of treatment effects and ulti-
mately to false conclusions against the novel procedure
[3–5]. However, an RCT should begin only if equipoise
still holds; if we wait too long, so that a pool of surgeons
has reached their optimum skill level, it may be too late
to randomise due to the surgeons forming strong opinions
as to which treatment is best, despite the lack of scientific
evaluation [6].
Formal statistical methods are required to estimate the

optimal timing of an RCT assessment in the presence of
learning. The timing of trial funding applications must
also consider the duration of training for participating sur-
geons [7]. Furthermore, reliable estimation of the learning
period and training required is also necessary for estimat-
ing the cost-effectiveness (monetary and clinical) of the
new intervention [8].
Currently adopted approaches to learning curve accom-

modation include expert mentoring and completion of
a predetermined number of training cases by each sur-
geon [3, 9]. However, performing a pre-specified number
of operations does not guarantee the learning curve will
be surpassed [3, 5]. Surgeons learn at different rates,
their learning process may be influenced by external fac-
tors, and extended learning may be needed for complex
procedures, which may not be finalised prior to trial
initiation [5]. Notably in multicentre studies, different
training and mentoring schemes between centres may
result in different learning effects across both centres and
surgeons [3, 10].
Further, as learning curves for many procedures are

not formally quantified, existing criteria for trial partici-
pation may be based on poor evidence. Two systematic
reviews of methods used to assess surgeon learning indi-
cate that the majority of studies involving some statisti-
cal analysis employ exploratory or descriptive methods,
which are often inefficient and are suitable only for iden-
tifying the existence of learning but not for estimating
learning curve parameters [7, 11]. The use of formal, sta-
tistical modelling methods is infrequent and limited to
estimating, at most, the three features described by Cook
et al. [3]. Such models at least account for confound-
ing factors but nevertheless cannot estimate the learning
period.
No process for estimating the endpoint of the learning

period was found in the literature, with recommendations

based on either expert opinion or simple exploratory
methods.
In this study we aim to develop a formal methodology

to inform the timing of a definitive RCT in the
presence of learning. A novel two-phase model esti-
mating the time taken to reach the plateau in skill
is developed. The methodology is illustrated using a
high-risk cardiac surgery cohort undergoing pulmonary
endarterectomy.

Methods
The two-phase model
Suppose we have a single case series for a novel inter-
vention and we are interested in using formal statistical
methods to determine the time point of learning comple-
tion. Our approach is to view the series of measurements
in two phases:

1. the cases occurring during the learning phase,
represented by the (non-linear) decreasing section of
the curve and,

2. the cases occurring after the final performance level
is reached, represented by the asymptotic part of the
curve.

The point at which the split between these two
phases occurs represents the number of cases at which
the asymptote is reached and, naturally, the learning
period duration. We refer to this as the two-phase
model.
To model the learning phase, we propose curve-fitting

through generalised (non-)linear models as they are sim-
ple to fit in standard statistical software, they allow
for inclusion of confounding factors and they are flex-
ible in that they include a wide range of functional
forms and response variables, conditional on appropri-
ate link functions. This approach is also an intuitively
attractive method as we have a priori an idea of the
expected shape of any learning curve [12]. Finally, the
approach allows the exploration of individual surgeon
differences.
We note that the split point can be estimated only for

surgeons who have performed a sufficiently long series
and have reached their plateau in the observed data. It
is possible that some surgeons will reach a plateau that
is subpar compared to the expertise levels required by
the surgical community; stability in performance does not
ensure competence [13]. The lack of guidelines indicating
the clinically important distance from the asymptote has
been highlighted previously [7]. We recommend eliciting
expert opinion on the final surgeon competence and using
it to interpret the two-phase model. In the next section,
we discuss methods for establishing whether the desired
skill level has been achieved.
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Assessment of competence
Figure 1 presents four potential scenarios in which
surgeons could be included in a Phase III RCT. Figure 1a
depicts a surgeon who has performed enough procedures
to have reached the asymptote and his plateau matches
the predefined expertise level required; this is the value
that should be, at the very least, achieved by a surgeon to
be eligible for trial participation. Thus, the split point can
be estimated and the plateau reached justifies sufficient
expertise for the surgeon to be randomised in a definitive
RCT.
In Fig. 1b, if the observed surgical series is sufficiently

long to have reached the asymptote and the surgeon’s final
skill level is superior to the preset expertise level, we can
assume expertise has been achieved. However, the sur-
geons under study should be compared to the surgeons
whom the required expertise estimate was based on, as it
is likely that the performing surgeons are innovators and,
thus, learn faster and accomplish superior final skill levels
to those expected when the procedure was disseminated
to the general community.
Figure 1c introduces the more complex scenario where

the surgeon reaches a plateau in knowledge during the
observed series, but the final skill level is inferior to
the predefined skill level required. A pragmatic approach
might be to accept that there will be heterogeneity in
the final skill levels of surgeons and allow the trial to
start as soon as the surgeon-specific skill level has sta-
bilised. A more cautious approach might be to include
in a trial only surgeons for whom the 95 % confidence
intervals at the asymptote include the predefined exper-
tise level. However, such an approach will be subject
to type II error if the model parameters are estimated

imprecisely. The final decision will depend on the nature
of the measure of performance and the stage of the
evaluation.
Finally, Fig. 1d depicts a case where the learning curve

plateau is not reached but the learning curve has crossed
the required skill level. This surgeon could still be consid-
ered as sufficiently experienced for trial participation but
the treatment effect estimate may be underestimated by
the RCT.

Proxies for learning
One issue in this context is the choice of robust proxy
outcomes for learning. Since surgeon skill cannot be
directly quantified, patient outcomes (e.g. survival and
post-operative complications) and surgical process out-
comes (e.g. operative duration and blood loss) are used
as surrogates [13]. These are analysed as a function of
the number of operations completed, with improvements
in measurements suggesting a gain in expertise. Patient
outcomes should be preferred as they directly concern
the success of the procedure in improving patient health.
However, as these are typically dichotomous rare events,
prohibitively large training series are often needed to
model the learning curve [7, 10]. Process outcomes, for
which more data are available, are widely used despite
being poor representations of surgeon skill. For instance, a
decrease in operative duration does not necessarily imply
an improvement in performance as it may increase the
risk of complications [7]. Additionally, factors such as case
mix and team effects may influence the outcome and dis-
tort assessments [7]; longer operation times can be falsely
interpreted as surgeon learning when they may be due to
an inexperienced theatre team.

Fig. 1 Learning curve scenarios for RCT randomisation (low values on the y-axis represent superior performance). Panels a and b depict scenarios
where both a pre-defined expertise level and a learning plateau are reached; c depicts a scenario where the pre-defined expertise level is not
achieved, and d a scenario where the learning plateau is not reached
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Illustrative dataset
We demonstrate the methods using data from the UK
national referral centre for pulmonary endarterectomy
(PEA), a novel (at the time of data collection), highly
technical surgical intervention for treating chronic throm-
boembolic pulmonary hypertension [14], for which no
other surgical treatment is available [15]. There were
727 consecutive patients who underwent surgery between
January 1997 and August 2011, performed by three sur-
geons. Of the operations, 32.5 % were performed by
surgeon 1, 47.3 % by surgeon 2 and 20.2 % by surgeon 3;
54.2 % of the patients were male. We include age as the
only covariate to illustrate how case mix can be incor-
porated into our model, although a definitive assessment
should include more detailed patient characteristics.
The order of operations in each surgeon’s series was

used to quantify experience. Our data originated from
the national referral centre; hence, we had a record of
all operations performed in the UK, ensuring no external
experience in this technique was gained; considering dif-
ferent formulations of the experience variable was, thus,
not necessary.
The primary outcome considered was in-hospital death,

despite it being a rare binary outcome, as PEA is asso-
ciated with a high risk of adverse events, including post-
operative death, and so learning patterns can be observed.
A decrease in the proportion of in-hospital deaths signi-
fies an improvement in performance.

Limitations of the data
Our dataset had some limitations, which should be con-
sidered when undertaking such evaluations.
In the dataset used there were no records of similar

operations performed outside the UK by the surgeons
involved or of prior training undertaken; however, these
cannot be ruled out. Hence, between-surgeon differences
in the initial skill level are possible.
A further limitation of this dataset concerns the

institutional learning of case selection. Surgeon 1 was the

first to undertake the procedure and hence, he was the
only attending consultant surgeon. However, surgeon 1
selected the first seven cases to be conducted by the next
surgeon joining the team (surgeon 2) and also attended
these as supervising surgeon. Surgeon 3, who was the last
to take up the procedure, was directly supervised for the
whole of his training series, with all his cases preselected
by surgeon 2. For all three consultant surgeons, the degree
of participation of any additional assisting trainees is not
specified and hence, cannot be accounted for.
An issue with non-randomised case series data is that

the different case mix treated by each surgeon can poten-
tially mask the true learning effects; this confounding
effect may be exacerbated by case selection of the first
training cases of surgeons. Ideally, variables that pre-
dict patient risk such as age, severity of disease and
pre-operative procedure-related measurements should be
adjusted for. However, in our dataset there were miss-
ing values in most such variables. Our approach allows
for case-mix adjustment but the lack of consistently
recorded prognostic factors precluded a comprehensive
adjustment.

Model application
We introduce some exploratory plots to give an idea
of the data structure prior to model fitting. The spino-
grams in Fig. 2 demonstrate that even though surgeon 1’s
performance improves, it does not stabilise; there is an
indication of a bimodal density. Further examination of
this surgeon’s series showed that his practice was inter-
rupted for a period of time, during which some skill
was lost. A reduction in in-hospital deaths can be seen
for surgeon 2, which seems to stabilise after the 150th
operation. For surgeon 3, a steep decrease in in-hospital
mortality seems to stabilise by the 25th operation. Notice
there is a difference in the learning pattern between
surgeons.
The general two-phase model can be expressed alge-

braically as follows

Fig. 2 Exploratory analysis of the data structure. Spinograms for a surgeon 1, b surgeon 2 and c surgeon 3
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Two-phase model:

φ(pij) =
{
g(xij; θ) + ∑w

k=1 δkzkij, if xij < τ ,
α + ∑w

k=1 δkzkij, if xij ≥ τ , (1)

with pij the probability of an in-hospital death for the
jth patient treated by the ith surgeon; xij is the operation
order and zkij denote any covariates we wish to include.
The parameter τ represents the time at which the learning
phase ends. The model is fitted using optim() in R; ini-
tial values must be supplied. A detailed description of the
model’s formulation is given in Additional file 1.

Modelling the learning phase
We compared four candidate functional forms on each
surgeon’s series to identify the one best suited to the PEA
data [7]. Linear and logarithmic functional forms were
selected as they are the most commonly used in health
care (see Table 1) [7]. The power curve (with non-zero
asymptote) was further implemented as it is the most
cited in other scientific fields [16] and it suits hierarchi-
cal learning structures such as surgery, where routinely
applied basic skills are taught first, followed by advanced
techniques required for emergency rare cases [17]. Finally,
the exponential model (with non-zero asymptote) was fit-
ted as it has been recommended for analysing individual
series [17].
For each surgeon’s curves, we used the Akaike and

Bayesian information criteria (AIC and BIC, respectively)
asmeasures ofmodel fit. In this dataset, the linear and log-
arithmic models seem to fit best, based on the BIC, for all
surgeons (see Table 2). However, in these models, the final
skill level after large numbers of operations corresponds to
an approximately zero event probability, which is unreal-
istic. Hence, despite their increased complexity, we prefer
the three-parameter power and exponential models since
they allow for more plausible non-zero asymptotes. The
power and exponential models fit equally well based on
BIC; thus, to choose between the two we reviewed the
parameter estimates for each model, compared to the
observed data. Both models converge to log

(
p

1−p

)
= α

with increasing operation order and consequently, the
final skill level can be estimated using p = eα

1+eα .
Note that independent of a surgeon’s skill, a perfect per-

formance level, represented by zero in-hospital deaths,
is not plausible. The asymptote estimates are shown in

Table 1 Functional forms under comparison

g(xij ; θ) θ Model constraints

Linear βxij (β) β ≤ 0

Logarithmic β log(xij + 1) (β) β ≤ 0

Power β(xij + 1)−γ (β , γ ) β ≥ 0, γ > 0, α �= 0

Exponential β exp (−γ xij) (β , γ ) β ≥ 0, γ > 0, α �= 0

Table 2 Comparisons between linear, logarithmic, power and
exponential models

Surgeon 1 Surgeon 2 Surgeon 3

Model AIC BIC AIC BIC AIC BIC

Linear 215.77 226.06 178.61 190.04 63.63 72.52
Logarithmic 216.38 226.66 177.95 189.38 58.83 67.72
Power 218.65 232.37 180.43 195.67 59.63 71.48
Exponential 217.18 230.90 179.02 194.25 58.51 70.36

Table 3. Note that these estimates were calculated by aver-
aging the α estimates obtained by fitting the models with
different initial values, since varying the initial values had
a minor influence on estimates.
For all surgeons, the power model asymptote esti-

mates are unrealistically small. The estimates from the
exponential model for surgeons 2 and 3 fall in the range
suggested by experts (0.02–0.05). For surgeon 1, the
estimate is slightly higher (0.067) but is still reasonable
as the exploratory plots indicate the asymptote was not
reached during his observed series.
In summary, for this dataset the power model under-

predicted final performance, both when short observed
series prevented reliable estimation of asymptotic
performance, and also in the remaining cases, indicating
that this model was inadequate for describing late-stage
performance. Since parameters in these non-linear
functions may be correlated, under-prediction of the
asymptote may distort other parameter estimates. Thus,
even though the BIC difference between the models is
minimal, we prefer the exponential model. This is con-
sistent with evidence from the non-health technologies
literature, which recommends the exponential model for
modelling individual learning curves [17].

Results
We implemented a negative exponential β exp(−γ (xij −
τ)) for the learning phase of the two-phase model,
adjusted for age (centred by the average age treated by
each surgeon). To satisfy the continuity constraint at the
intersection between the two phases, we use β to model

Table 3 Final performance estimates from the simple power and
exponential models

Model α̂ exp(α̂)/(1 + exp(α̂))

Surgeon 1 Exponential −2.626 0.067

Power −18.713 7.47 × 10−9

Surgeon 2 Exponential −3.325 0.035

Power −8.334 2.40 × 10−4

Surgeon 3 Exponential −3.984 0.018

Power −4.859 0.008
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the second phase. The constraints γ > 0 and τ ≥ 0 are
enforced. The final model fitted is

logit(pij) =
{

β exp(−γ (xij − τ)) + δ · (ageij − agei), if xij < τ ,
β + δ · (ageij − agei), if xij ≥ τ .

(2)

Selection of initial values was based on both expert
opinion and estimates from fitting the three-parameter
models. For the duration of learning τ , we get intuition
from exploratory methods.
Figure 3 is a plot of the predicted values from fitting

the two-phase and exponential models for surgeon 3 for
a patient of average age, along with the observed propor-
tion of deaths (in blocks of 20 operations). From Table 4,
the learning duration is estimated at 21 operations. The
gradients evaluated at the maximum likelihood (ML) esti-
mators are practically zero, confirming that a maximum
has been identified. We compare the two-phase to the
exponential model. The preferred model is determined on
the basis of both model fit and interpretational value. The
difference in their BIC values was −1.042, weakly sup-
porting the two-phase model. Since the two-phase model
additionally provides an estimate of the learning period
duration, it is preferred. The profile likelihood for τ is
given in Additional file 2.
For surgeon 2 there are problems of identifiability with

different starting values leading to different estimates. If
the initialising τ0 is chosen in the range 200–220, the
model does not move far from these values. This is possi-
bly because we are already on the asymptote so the second
phase does describe all data beyond τ0, which is then
adopted as a suitable split point. However, starting from

Fig. 3 Two-phase and exponential fitted models for surgeon 3

Table 4 Two-phase model for surgeon 3 including age (centred)

Parameter Estimate 95 % confidence interval

β̂ −3.998 (−5.350,−2.646)

γ̂ −0.120 (−0.241, 0.001)

τ̂ 20.999 (20.133, 21.866)

δ̂ 0.094 (0.013, 0.176)

Diagnostics AIC 57.637

BIC 69.489

smaller τ0 (e.g. 50), following a more data-driven τ0 selec-
tion, results in convergence to lower values and better
BICs. The estimated split point is τ = 125, which agrees
with the observed data (Fig. 4). Note that whatever our
initial choice for τ0, the estimate to which τ converges is
never less than 100, indicating that the learning period for
surgeon 2 is longer than for surgeon 3.
We use the profile likelihood for τ to investigate the pos-

sibility of multiple turning points. The − log likelihood is
plotted to look for a minimum at theML estimators. From
Fig. 5, the global minimum is achieved at approximately
operation 140. The profile likelihood tends towards a sec-
ond turning point, which begins around operation 200, a
maximum; unfortunately, the series is too short to observe
if indeed a maximum is reached or it remains stable. This
change in performance is likely due to a shift in patient
case mix treated by surgeon 2 due to surgeon 3 starting
to operate around operation 200. Subsequent discussions
with the expert surgeons revealed that from there onwards
surgeon 2, as themore experienced operator, took over the

Fig. 4 Two-phase and exponential fitted models for surgeon 2
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Fig. 5 Profile likelihood (τ ) for surgeon 2

higher-risk cases and selected the ones to be left as train-
ing cases for surgeon 3. Hence, the rapid learning demon-
strated by surgeon 3 could be a result of dealing with an
easier case mix than surgeon 2 when he started operating;
only the first seven cases of surgeon 2, in contrast to more
than 50 for surgeon 3, were selected and supervised by a
more experienced surgeon. Hence, he had to complete his
learning on higher-risk cases, making his progress appear
slower. Figure 5 shows it is that performance drop, signi-
fying a change in the mode of learning, which causes the
identifiability issues. Evidence that most learning and the
principal change in performance occurred by the 125th
operation stems from noting the gradient at the ML esti-
mators as well as that between-parameter correlations are
worse for higher τ0.
Consequently, we consider the asymptote was reached

at the 125th operation and any changes in performance
thereafter are not due to a change in expertise but due to a
change in casemix treated. Ideally, one would confirm this
by accounting for confounding factors in the analysis; for
a prospectively collected case series, we recommend the
inclusion of patient and disease characteristics to allow
for sufficient case-mix adjustment. The BIC difference
between the two-phase logistic and the exponential logis-
tic models is −0.656, weakly supporting the two-phase
model. Since the two-phase and exponential models have
similar fit statistics but the two-phase model also esti-
mates the learning period duration, one should prefer it.
Substantial convergence issues present for surgeon 1

and the model seems likely to converge to two differ-
ent sets of estimates. From the profile likelihood for τ in
Fig. 6, two minima can be discerned. A likely explana-
tion is that surgeon 1 stopped performing the operation
for four years, possibly resulting in a loss of skill which,

Fig. 6 Profile likelihood (τ ) for surgeon 1

even though not so acute as to cause a return to the initial
skill level, induced a drop in performance. Upon resum-
ing operations, the surgeon had once more to undergo
a learning period. The set of estimates with smaller τ

includes the final skill level achieved and the time required
to reach it for the first performance cycle whereas the
set with larger τ includes the respective parameters for
the second cycle. Parameter estimates are not very robust
as instead of one long uninterrupted operation series, we
observed two shorter ones, and each on its own was not
sufficient to reach the plateau in skill. Better correlations
and gradients do occur with τ close to the primary learn-
ing phase, suggesting most learning was done during the
first cycle. Neither model is likely to provide a good fit
in this situation and a model with three phases (initial
learning, learning after the interruption in practice and
post-learning) could be explored.

Discussion
The novel contribution to the learning curve methodol-
ogy in this study was to develop and fit a model that not
only represents the distribution of the underlying learn-
ing data but can also be used to extract estimates of the
main learning curve characteristics. Our method allows
individual surgeon differences to be explored and can be
easily extended to adjust for confounding factors.
For surgeon 1, there were probably two learning peri-

ods and a single functional form is unlikely to be adequate
in this situation. We suggest fitting a model with phases
describing the two learning periods, possibly with some
shared parameters, and an additional phase representing
the final skill level achieved. The drawback is that robustly
fitting such a model requires a large amount of data
for each learning period, which is challenging to obtain,
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especially if dealing with rare dichotomous outcomes. We
could not test this multiple-phase model for PEA due to
data constraints.
It would be fruitful to investigate if such a loss of skill

is also observed in other settings, i.e. with different oper-
ation types and surgeons. If this is the case, after com-
pleting a predefined training scheme, a surgeon should
be randomised as soon as possible in order to avoid
losses in skill. In addition, when establishing expertise,
simply considering the number of past procedures a sur-
geon had undertaken would not be sufficient; the time
elapsed since that experience was gained should also be
considered.
Both the fastest learning rate and the shortest learn-

ing period were observed for surgeon 3, the last to take
up the intervention. Further discussions with the partic-
ipating surgeons revealed the existence of institutional
learning as those who joined the team at later stages,
were directly supervised for at least part of their learning
process. This finding is consistent with a group learn-
ing effect; as the environment within which the surgeons
operate evolves and gains experience of the procedure
and surrounding care, improvements in the learning rates
of surgeons are anticipated. The same phenomenon was
reported in other, non-health technology areas [18]. This
shows that the improvement in observed performance is
not solely related to greater surgeon skill and experience,
but incorporates a range of improvements in multiple
components of this complex intervention. In that respect
the learning curve attributed to a surgeon is an inaccu-
rate term and it should be interpreted in a much wider
sense.
In addition, it is likely that the training cases of newly

joined surgeons are selected by the more experienced sur-
geons to be of low to moderate difficulty. This highlights
the importance of comprehensively accounting for patient
case mix at the learning curve assessment. It would be
undesirable to conclude a surgeon is still on their learning
curve simply because they are dealing with more high-
risk cases. Likewise, care must be taken not to fall into
a false sense of security that a surgeon has completed
their learning curve due to only treating very low risk
cases.
Although the two-phase model provides maximum

information, careful thought should be put into the
choice of initial values. Due to its non-linear form,
between-parameter correlations are expected and must
be accounted for to prevent convergence and disconti-
nuity issues. The choice of initial values should be both
expertise-based and data-driven.We recommend, as stan-
dard practice, the investigation of the data by exploratory
methods and the use of expert opinion to inform the
choice of initial values. Pinheiro et al. have also suggested
that the choice of initial values for non-linear models

should have meaningful graphical interpretations [19].
Both the model fit and its sensitivity to the choice of initial
values should be investigated. Model selection should be
based on a balance between the criteria indications and
the ease of interpretation of the model.
In general, we recommend a dynamic approach to

the analysis of learning curves. Initially, simple methods
aimed solely at the identification of learning curves should
be used. If learning effects are detected, more sophisti-
cated modelling methods, designed for quantifying learn-
ing, should be explored; any intuition on the likely shape
or parameters of the curve, obtained from the detection
methods, should be used to enhance the quantification
methods.

Implications for trial design
Estimation of the learning period duration is frequently
hindered by short surgical case series, which do not allow
robust fitting of the two-phase model. Cases where the
plateau in skill has not been reached during the observed
series are quite common [13]. Ideally, long uninterrupted
series are needed to explore the evolution of learning
over time and as much data as possible should be col-
lected after the asymptote is reached and included in the
analysis. Definitive RCTs cannot be greatly extended or
recruit large patient numbers for this purpose, due to
both financial and ethical reasons [5, 20]. We recommend
incorporating the proposed learning curve methodology
in the late Phase I and Phase II stages of assessment, which
provide suitable settings for learning curve modelling, in
preparation for a definitive RCT. At Phase Ib, retrospec-
tive case series studies are often undertaken, which even
though of low value for technical evaluations, can be used
for a primary assessment of learning [5]. They should be
conducted on consecutive cases without omissions and
use a standardised reporting protocol. Although partic-
ipating surgeons are limited to a handful of experts at
this stage, useful indications of the duration of training
required can be derived.
Phase II is pivotal for learning effects modelling.

Designs including multiple professionals and hospitals are
employed and thus, differential learning patterns amongst
surgeons are expected. Since this setting is more represen-
tative of the surgeon population that will ultimately deliver
the intervention, it is important to assess formally the
extent of learning at this stage. We may incorporate learn-
ing curve modelling via prospective thoroughly planned
studies in combination with smaller feasibility studies usu-
ally employed at this phase. Such studies are only viable
if prospective research databases recording well-defined
outcomes are established [10].
A preliminary Phase I learning curve assessment can

readily inform the more valuable Phase II evaluation. The
initial values choice could be informed by the learning
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parameters already observed and a first indication of a
functional form appropriate for modelling the innovation
under study would be obtained. Finally, the additional
practice and training of surgeons participating in both
phases would be recorded and thus accounted for at the
Phase II learning curve assessment.
Ultimately, we suggest using the data obtained from

Phase II to establish the time required by each surgeon
to overcome learning. We recommend fitting the two-
phase model on the individual surgeons’ series at Phase
II to establish when they reach their asymptote and thus,
the optimal point for their randomisation to a definitive
trial. Since it is expected that different surgeons will reach
different final performance levels, an expert level beyond
which surgeons are considered sufficiently experienced
for trial participation should be predefined; individuals
who reach a suboptimal plateau may not be randomised
in a definitive RCT until they have undergone additional
training and improvement. Finally, surgeons will reach the
asymptote at different times due to differential speeds of
learning; the definitive RCT should only be initiated when
an adequate number of surgeons is sufficiently expert for
randomisation.

Conclusions
The evaluation of complex surgical interventions in RCTs
is often complicated due to the existence of operator
learning curves. Current approaches accounting for learn-
ing curves are for the most part exploratory or descriptive,
and only allow the detection but not the quantification
of learning. Formal statistical modelling approaches are
scarcely used and only model three learning curve fea-
tures: the initial skill level, the learning rate and the final
skill level achieved. In this article, we introduced a fourth
feature, the duration of the learning period, and proposed
the two-phase model to estimate simultaneously all four
learning curve characteristics. We demonstrated how the
novel two-phase model could be applied to obtain esti-
mates of the duration of the learning period using an
example from cardiac surgery.
This modelling extension is useful as it provides a

measure of the potential cost of learning the inter-
vention and enables statisticians to accommodate cases
undertaken during the learning phase and assess the
intervention after the optimal skill level is reached. We
further recommend that learning curve modelling is
incorporated both at the late Phase I and Phase II stages
of assessment. A preliminary Phase I assessment could
directly inform the modelling approach employed for the
more extensive Phase II assessment. Finally, the two-
phase model could be applied at Phase II to model
the individual operators’ learning curves comprehensively
and thus, inform the optimal timing of initiation of a
definitive RCT.
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