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Abstract

Background: In order to estimate utilities for cancer studies where the EQ-5D was not used, the EORTC QLQ-C30
can be used to estimate EQ-5D using existing mapping algorithms. Several mapping algorithms exist for this
transformation, however, algorithms tend to lose accuracy in patients in poor health states. The aim of this study
was to test all existing mapping algorithms of QLQ-C30 onto EQ-5D, in a dataset of patients with malignant pleural
mesothelioma, an invariably fatal malignancy where no previous mapping estimation has been published.

Methods: Health related quality of life (HRQoL) data where both the EQ-5D and QLQ-C30 were used simultaneously
was obtained from the UK-based prospective observational SWAMP (South West Area Mesothelioma and Pemetrexed)
trial. In the original trial 73 patients with pleural mesothelioma were offered palliative chemotherapy and their HRQoL
was assessed across five time points. This data was used to test the nine available mapping algorithms found in the
literature, comparing predicted against observed EQ-5D values. The ability of algorithms to predict the mean, minimise
error and detect clinically significant differences was assessed.

Results: The dataset had a total of 250 observations across 5 timepoints. The linear regression mapping algorithms
tested generally performed poorly, over-estimating the predicted compared to observed EQ-5D values, especially when
observed EQ-5D was below 0.5. The best performing algorithm used a response mapping method and predicted the
mean EQ-5D with accuracy with an average root mean squared error of 0.17 (Standard Deviation; 0.22). This algorithm
reliably discriminated between clinically distinct subgroups seen in the primary dataset.

Conclusions: This study tested mapping algorithms in a population with poor health states, where they have been
previously shown to perform poorly. Further research into EQ-5D estimation should be directed at response
mapping methods given its superior performance in this study.

Keywords: EQ-5D, QLQ-C30, Mapping, Mesothelioma, Health technology assessment, QALY
Background
With the increasing availability of novel but expensive
therapies for cancer, the accuracy of health technology
assessment becomes ever more important. The National
Institute for Health and Care Excellence (NICE) favours
the use of Quality Adjusted Life Years (QALYs) for such
analyses [1], which combine life years with a measure of
health-related quality of life (HRQoL), called utilities [2].
Utility values are measured on a 1 to 0 (full health-
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dead) scale and are usually obtained using existing off-
the-shelf preference based measures, such as the EQ-5D
[3], SF-6D [4] or HUI [5] instruments. General popula-
tion preference derived tariffs are used to convert the
health states into utilities. General population values are
typically used as the measure will often be used to in-
form allocation decisions of public funds [6]. Utility
values derived from these methods can then be directly
multiplied by life years in each health state to generate
QALYs.
However, the majority of clinical trials do not use ‘pref-

erence based’ measures opting instead for disease specific
measure that are not preference-based so cannot be used
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to estimate QALYs directly. These are deemed more sensi-
tive to subtle treatment benefits, as they contain more var-
ied and disease specific dimensions [7]. In an attempt to
reduce patient burden ‘preference based’ measures are
often not used [8]. However, agencies such as NICE re-
quire the use of preference-based measures to estimate
utility values for use in health technology assessment, and
NICE in particular recommend the use of EQ-5D [1].
If a trial has not included a preference-based measure

such as the EQ-5D, but EQ-5D utilities are required for
health technology assessment, two options are available;
[1] take approximate utility values from other similar pa-
tient datasets available in the literature [2,9-11] use a
conversion algorithm to ‘map’ the results of the disease
specific measures onto the preference based measures.
Method 1 requires existing datasets containing EQ-5D
in the patient population, which may not always be
available. Method 2 uses mapping, a relatively novel
technique with the majority of papers on the topic being
published in the last decade and only mapping between
the most frequently used measures [12].
This study focuses on published mapping algorithms

mapping between the most commonly used cancer spe-
cific quality of life measure [13], the EORTC QLQ-C30
(hence forth the QLQ C30) and the EQ-5D. The major-
ity of published algorithms use linear regression by or-
dinary least squares to estimate the relationship between
the QLQ-C30 and EQ-5D where both measures have
been used on the same patient population (an estimation
dataset). The resultant algorithm is then tested, either
on small samples of the original population (a technique
known as bootstrapping), or ideally onto a different pa-
tient population (a validation sample). The performance of
the mapping algorithm is assessed on its ability to accur-
ately predict the observed mean EQ-5D value, minimise
the mean absolute error where the error is generated using
the difference between predicted and observed EQ-5D
values, both for the entire sample and across the severity
range [14]. It is also of importance that the mapped EQ-
5D values can also detect clinically important HRQoL dif-
ferences between subgroups of the population that were
observed using EQ-5D in the original study. It is of note
that no guidelines exist for acceptable mapping perform-
ance [15]. Several studies have been published which
attempt to map the QLQ-C30 onto EQ-5D and have been
developed from several different patient populations in-
cluding breast, gastric, haematological and lung cancer.
All have been shown to perform well within their valid-
ation samples taken from the same patient populations.
However, performance of algorithms tends to worsen in
patients with poor health states, with over-prediction of
predicted against observed values [16]. A recent Health
Technology Assessment monograph published by Long-
worth et al. supported the use of a response mapping
technique where logistic regression is used to fit models to
the same dimensions of the EQ-5D as opposed to the
index score [17]. The algorithm generated performed well
against its validation dataset, but has not been tested on
external datasets or compared to linear regression map-
ping algorithms.
It is recommended that users should select an algo-

rithm estimated using a sample with similar characteris-
tics to the patient dataset they are applying the
algorithm to [14]. However there is little guidance re-
garding the choice of algorithm where patient character-
istics differ between the estimation and application
dataset both in terms of the condition and hence dimen-
sions of health which are likely to be important, and in
terms of the severity range of the dataset. This study
aims to test the existing mapping algorithms for QLQ-
C30 onto the EQ-5D using a dataset of patients with
inoperable pleural mesothelioma, a patient group with
particularly poor health states where minimal published
EQ-5D literature currently exists and mapping has never
been attempted. It is in such populations where mapping
accuracy is more uncertain and arguably more import-
ant, as therapies may only have modest life year benefits
and a focus on HRQoL.

Methods
Population
The HRQoL data for this study was drawn from the
SWAMP (South West Area Mesothelioma and Peme-
trexed) trial. This UK based multicentre observational
study recruited 73 patients with newly diagnosed malig-
nant pleural mesothelioma deemed unsuitable for surgery
by the multi-disciplinary team. Patients had to have treat-
ment naïve mesothelioma and be in WHO performance
score 0, 1 or 2. Patients were excluded if considered too
unwell for chemotherapy or had a life expectancy of less
than 3 months. Those recruited were offered chemo-
therapy with pemetrexed and cisplatin (the standard
chemotherapy regimen in the UK) after written informed
consent. Pleural mesothelioma is a cancer of the pleural
lining of the lung. It has been directly correlated with oc-
cupational exposure to asbestos, and for this reason pre-
dominates in males [18]. Malignant mesothelioma is a
rapidly progressive cancer with respect to symptomatology
with patients suffering from worsening shortness of breath
(dyspnoea), night sweats, fatigue and chest pain, all of
which have a significant impact on HRQoL. In general sur-
vival is poor, with a median survival of 7 to 11 months
after diagnosis [19].
Health-related quality of life (HRQoL) of these 73 pa-

tients was assessed at 5 different time-points (baseline, 6
weeks, 16 weeks, 9 months and 12 months). The pa-
tients completed the questionnaires for the first 2 time-
points (at baseline and 6 weeks) under the direct
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supervision of either the trial co-ordinator or the trial
research nurse so that they could go through the ques-
tions and answer any queries they had on how to
complete. The other questionnaires were posted to the
patients to complete at home and returned in an
enclosed stamped addressed envelope and advised them
to contact a member of the research team if they were
unsure of how to answer any of the questions. Four dif-
ferent HRQoL measures were used at each time point,
namely the EQ-5D, EORTC QLQ-C30, EORTC LC13
and the Edmonton Symptom Assessment Score. This
study focuses on the comparison between EQ-5D and
QLQ-C30. Due to the rapid progression of this condi-
tion there was significant loss of comparisons at later
time points, due to patient death or being too unwell to
complete the questionnaires, with a total number of
direct comparisons of 250. See Additional file 1 for full
details on missing data by timepoints.

Ethical approval and registration
Ethical and regulatory approval for the primary study
was obtained before recruitment commenced (UK REC
Reference: 08/H0102/46). The trial was registered in the
national portfolio (UKCRN ID: 8450).

Instruments
The EQ-5D is a widely used preference based generic
HRQoL instrument. It measures health-related quality of
life on 5 dimensions (mobility, self-care, usual activities,
pain/discomfort, and anxiety/depression) with 3 severity
levels for each dimension, producing 243 health states in
total. A utility score can be generated for each health state
by applying country specific general population-elicited
tariffs, which can then be used to calculate QALYs. This
dataset used the UK population EQ-5D tariff [3].
The QLQ-C30 (version 3) is a disease specific ques-

tionnaire developed specifically for use in cancer. There
are 5 functional scales (physical, role, emotional, cogni-
tive and social), a global health item, 3 symptom scales
(fatigue, nausea/vomiting and pain), and single symptom
items (dyspnoea, appetite loss, constipation, diarrhoea
and financial difficulties). All items are converted onto a
0 to 100 scale. It is important to note that higher scores
for the global health and functional categories indicate
higher functioning, whereas higher symptom scores de-
note worse symptomatology. With a total of 30 questions
the instrument gives a broad and sensitive assessment of
HRQoL in patients with cancer [13]. Preference-based
measures have been derived from the QLQ-C30 enabling
the QLQ-C30 to be directly used to estimate QALYs
[20,21]. However, some agencies, and NICE in particular,
recommend utility values generated using a generic
preference-based measure and for the purposes of com-
parability across health technology assessment undertaken
across different conditions and patient populations recom-
mend the use of EQ-5D in particular [14].
Mapping algorithms
A literature search of Pubmed and a recently con-
structed database of mapping algorithms [12] identified
9 studies that had attempted to map the QLQ-C30 onto
the EQ-5D [8,22-28]. Table 1 summarises the mapping
algorithms found and the estimation populations they
were derived from, as well as the validation population
used to test the resultant algorithm. The full algorithms
can be found in the Additional file 1. Also included are
the county specific tariffs used in the calculation of the
original EQ-5D values. The tariff used has a major im-
pact on the EQ-5D values produced. The UK tariff for
example will generate significantly lower utility values
than the US alternative for the same questionnaire
responses in the order of 0.05 to 0.23 [29-31]. For this
reason this study has generated EQ-5D values using the
UK, US, Korean and Dutch tariffs, so the mapping algo-
rithms are tested against their country specific EQ-5D
values.
Statistical analysis
Several statistical methods were used to assess the ability
of the algorithms to map the QLQ-C30 to the EQ-5D.
Firstly, the raw differences between observed and pre-
dicted mean EQ-5D for the entire dataset (with all 250
comparisons pooled) and across sub-groups were calcu-
lated to give an indication as to overall algorithm per-
formance across the dataset. For the pooled data (n-250)
a paired T-test was carried out to comparing the ob-
served versus predicted EQ-5D means (p < ·05). A sig-
nificant result indicates that the mapping has not
accurately predicted the observed mean. To give an indi-
cation as to the spread about the mean generated by the
algorithms, mean absolute error (MAE) and root mean
squared error (RMSE) figures were generated. MAE is
generated using the difference between observed and
predicted EQ-5D at the observational level. RMSE is
more sensitive to extreme deviations from the mean and
is calculated by root of the average of the squared differ-
ences between observed and predicted EQ-5D. Smaller
values of MAE and RMSE indicate better algorithm
performance.
Given that previous literature has shown that the algo-

rithms perform less well in poor health states the entire
dataset was divided into 3 groups depending on ob-
served EQ-5D value (UK tariff ) and the above statistical
tests repeated. Functional cut-offs were selected to give
good distribution of comparisons between the 3 groups,
namely observed EQ-5D 1.0 to 0.75, 0.75 to 0.5, and less
than 0.5.



Table 1 Summary of mapping algorithms

Mapping
algorithm
primary author

Estimation Population
(number of comparisons)

Validation Population
(number of
comparisons)

Mean EQ-5D
(Country
Specific
Tariff used)

Regression
method

No. of
model
variables

Mean
QLQ-C30
Global
Health

Crott [22] RCT of breast cancer therapies (n = 798) Bootstrapping 0.76 (UK) OLS 12 64.4

Jang [8] Consecutive patients attending an outpatient
clinic with non-small cell lung cancer (n = 172)

Bootstrapping 0.76 (US) Linear
regression

15 65.9

Kim EJ [23] Cross sectional survey of patients with
metastatic breast cancer receiving palliative
chemotherapy (n = 149)

Breast cancer patients not
used in the estimation
sample (n = 50)

0.67 (Korean) OLS 5 53.3

Kim SH [24] Cross sectional study of patients with different
types of cancer receiving chemotherapy
(n = 893)

Colon cancer patients
(n = 123)

0.82 (Korean) OLS 5 59.8

Kontodimopoulos
[25]

Cross sectional survey of patients with gastric
cancer receiving chemotherapy (n = 48)

Bootstrapping 0.55 (UK) OLS 3 46.4

Longworth [17] Patients from 3 studies with breast, lung and
haematological cancer (n = 771)

n/a 0.58 (UK) Response
mapping

14 plus age
and gender

53.0

McKenzie [26] RCT of palliative therapies for patients with
inoperable oesophageal cancer (n = 877)

Low risk breast cancer
patients receiving
radiotherapy (n = 991)

0.54 (UK) OLS 15 45.3

Proskorovsky [27] Cohort study of patients with multiple
myeloma (n = 154)

Bootstrapping 0.73 (UK) Linear
regression

4 60.1

Versteegh [28] Patients with multiple myeloma in an RCT
of treatment (n = 723)

Patients with non-
Hodgkins lymphoma
(n = 789)

0.74 (Dutch) OLS 11 68.7

OLS- Ordinary Least Squares, RCT- Randomised Controlled Trial.
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The ability of the algorithms to differentiate between clin-
ical groups was assessed. For this we selected 3 significant
HRQoL findings seen in the primary study (see below),
which used an analysis of co-variance (ANCOVA) test from
baseline EQ-5D to 16 weeks (n.b. the same results are seen
regardless of the country specific EQ-5D tariff used). The
same analysis (ANCOVA) was run using the predicted
EQ-5D and results compared to the primary study findings;

1. Patients who received palliative chemotherapy had
significantly better HRQoL at 16 weeks than those
that did not (ANCOVA p = ·005).

2. Patients with epithelial mesothelioma had
significantly better HRQoL at 16 weeks compared to
the more aggressive sarcomatoid or biphasic
subtypes (ANCOVA p = ·006).

3. Patients with a falling mesothelin (a novel biomarker
for mesothelioma severity) had better HRQoL at 16
weeks compared to those with a rising mesothelin
(ANCOVA p = ·002).

Finally, to investigate the best performing algorithms
ability to correctly predict the observed distribution of
EQ-5D values a Kolmogorov-Smirnov test of equality of
distribution was used. A statistically significant result
(P < ·05) indicates that the predicted distribution is sig-
nificantly different to the observed distribution seen in
the original study.
Results
After post-hoc assessment of the following analyses the
best performing algorithm was the response-mapping
Longworth algorithm. Table 2 presents a summary of
the mesothelioma dataset used to test the mapping algo-
rithms. The population on average have poor health
states with specific difficulties in areas expected with ad-
vanced mesothelioma, namely physical functioning and
dyspnoea. The population is predominately male (86%),
with a mean age of 70 (range 49 to 89). There were 19
(26%), 48 (66%) and 6 (8%) patients in WHO perform-
ance classes 0, 1 and 2 respectively. The median survival
was 406 days from diagnosis (range 67 to 1734 days).
The results of the 9 mapping algorithms tested across

all pooled comparisons (n = 250) are shown in Table 3.
Of the OLS algorithms the McKenzie algorithm predicts
a group mean value closest to our observed mean, but is
not the best performing with respect to root mean
squared error (RMSE), as the Jang model has the lowest
RMSE. Overall the Longworth response mapping algo-
rithm predicts the mean most accurately with lowest
mean absolute error (MAE) and low RMSE. Apart from
the Longworth algorithm (p = ∙192), all the mapping
algorithms tested had significantly different predicted
versus observed EQ-5D means (using a paired T-test at
the p < ∙05 level).
Further analysis was undertaken to assess the perform-

ance of the mapping algorithms in different ranges of



Table 2 Dataset summary

Dimension Mean (SD) Dataset range
(Dimension range)

EQ-5D Utility UK Tariff 0.657 (0.253) −0.135-1.0 (−0.594-1.0)

EQ-5D Utility US Tariff 0.743 (0.174) 0.145-1.0 (−0.109-1.0)

EQ-5D Utility Dutch Tariff 0.711 (0.223) −0.050-1.0 (−0.329-1.0)

EQ-5D Utility Korean Tariff 0.735 (0.159) 0.100-1.0 (−0.171-1.0)

EORTC QLQ C-30

Global Health Status 56.3 (23.3) 0-100 (0–100)

Physical Functioning 65.4 (23.2) 0-100 (0–100)

Role Functioning 54.5 (31.3) 0-100 (0–100)

Emotional Functioning 79.3 (23.8) 0-100 (0–100)

Cognitive Functioning 76.4 (25.8) 0-100 (0–100)

Social Function 63.4 (32.5) 0-100 (0–100)

Fatigue 45.9 (26.6) 0-100 (0–100)

Nausea/Vomiting 12.5 (18.3) 0-100 (0–100)

Pain 27.4 (27.4) 0-100 (0–100)

Dyspnoea 43.7 (28.0) 0-100 (0–100)

Insomnia 30.7 (32.9) 0-100 (0–100)

Appetite 28.4 (31.3) 0-100 (0–100)

Constipation 21.6 (29.0) 0-100 (0–100)

Diarrhoea 7.4 (18.8) 0-100 (0–100)

Financial Problems 10.1 (22.1) 0-100 (0–100)
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our dataset. We chose 3 arbitrary cut offs of observed
EQ-5D levels (UK tariff ), see Table 4.
No one model shows superiority when tested across the

dataset, but all perform worse in poor health states, with
over-prediction of poor health states and larger errors
about the mean. The Jang, Longworth and McKenzie
models map most accurately at observed EQ-5D values
of less than 0.5 but still suffer from significant over-
prediction to a degree of 0.09, 0.17 and 0.13 respectively.
The next analysis tests the ability of the mapping
Table 3 Summary of mapping performance

Mapping
algorithm

Mean predicted EQ-5D
(Observed EQ-5D mean)

Predicted EQ-5D mea
mean. (Paired T-test

Crott 0.7039 (0.6572) +0.0467 (<∙001)

Jang 0.7077 (0.7434) −0.0357 (<∙001)

Kim EJ 0.8498 (0.7354) +0.1144 (<∙001)

Kim SH 0.8010 (0.7354) +0.0656 (<∙001)

Kontodimopoulos 0.7066 (0.6572) +0.0494 (<∙001)

Longworth 0.6425 (0.6572) −0.0147 (∙192)

McKenzie 0.6294 (0.6572) −0.0278 (∙023)

Proskorovsky 0.6032 (0.6572) −0.0540 (<∙001)

Versteegh 0.7641 (0.7114) +0.0527 (<∙001)
algorithms to detect clinical changes seen in observed
EQ-5D values of the original dataset.
All 8 linear regression mapping algorithms failed to

differentiate between 2 of the 3 clinical subgroups seen
in the original study. Only the reduction in HRQoL
values seen in the more aggressive cancer subtypes was
detected and only the McKenzie model shows a stati-
stically significant relationship. However, the Longworth
algorithm selected out all 3 clinical subgroups and was
statistically significant in 2 (at the < ∙05 level). See
Additional file 2 for full results.
An equality of distributions test (Kolmogorov-Smirnov

test) was used to test assess the variability in distribu-
tions between the two best performing algorithms and
observed EQ-5D values. Both had significantly different
distributions (at the p < ·05 level) compared to observed
EQ-5D distribution, although the McKenzie algorithm
was a strongly significant (p < ·001) and the Longworth
was less marked (p = ·026). Visual representations of this
data can be found in the Additional file 2. The graphs of
the Longworth and McKenzie predicted EQ-5D values
against observed values are shown in Figure 1, the lines
represent the result of perfect mapping (i.e. x = y). Both
algorithms suffer from under-prediction in perfect
health, but the Longworth algorithm appears to have less
spread about the mean in the intermediate ranges (0.75
up to 1.0). Both algorithms have large over-prediction
errors when the observed EQ-5D is less than 0.5.

Discussion
This study analysed the performance of existing map-
ping algorithms for converting QLQ C30 scores onto
the EQ-5D, a technique required to calculate QALYs for
use in health technology assessment. The mapping algo-
rithms were tested on a population with inoperable
mesothelioma who had, on average, poor health states (a
mean EQ-5D score of 0.66) with 18% of observations
with an EQ-5D score below 0.5 using the UK tariff.
Based on previous literature [16], it was hypothesised
n minus observed
p-value)

MAE between predicted
and observed values. (SD)

Root mean
squared error
(SD)

0.1316 (0.116) 0.1749 (0.230)

0.0351 (0.116) 0.1211 (0.148)

0.1144 (0.101) 0.1527 (0.173)

0.0656 (0.098) 0.1174 (0.149)

0.1574 (0.139) 0.2095 (0.281)

0.0138 (0.166) 0.1661 (0.216)

0.1439 (0.119) 0.1863 (0.241)

0.0541 (0.180) 0.1865 (0.217)

0.0528 (0.184) 0.1906 (0.287)



Table 4 Performance of mapping algorithms in different ranges of observed EQ-5D

Mapping algorithm Observed UK EQ-5D values of
0.75-1.00 used (n = 91)

Observed UK EQ-5D values of
0.50-0.75 used (n = 114)

Observed UK EQ-5D values of
less than 0.50 used (n = 45)

Mean predicted
EQ-5D (observed)

MAE RMSE Mean predicted
EQ-5D (observed)

MAE RMSE Mean predicted
EQ-5D (observed)

MAE RMSE

Crott 0.8433 (0.8750) 0.0851 0.1086 0.6873 (0.6615) 0.1159 0.1457 0.4639 (0.2064) 0.2656 0.3040

Jang 0.8316 (0.8909) 0.0608 0.1033 0.6773 (0.7410) 0.0637 0.1230 0.5397 (0.4518) 0.0879 0.1462

Kim EJ 0.9430 (0.8826) 0.0604 0.0994 0.8219 (0.7111) 0.1108 0.1343 0.7321 (0.4991) 0.2330 0.2527

Kim SH 0.8937 (0.8826) 0.0111 0.0767 0.7758 (0.7111) 0.0646 0.0968 0.6774 (0.4991) 0.1783 0.2031

Kontodimopoulos 0.9145 (0.8750) 0.1225 0.1569 0.6532 (0.6615) 0.1414 0.1854 0.4215 (0.2064) 0.2684 0.3271

Longworth 0.8105 (0.8750) 0.0667 0.1196 0.6176 (0.6615) 0.0439 0.1556 0.3734 (0.2064) 0.1671 0.2496

McKenzie 0.8206 (0.8750) 0.1180 0.1559 0.5954 (0.6615) 0.1496 0.1937 0.3377 (0.2064) 0.1804 0.2200

Proskorovsky 0.7481 (0.8750) 0.1268 0.1622 0.5596 (0.6615) 0.1019 0.1673 0.4206 (0.2064) 0.2143 0.2634

Versteegh 0.8967 (0.8978) 0.0010 0.0893 0.7387 (0.7134) 0.0255 0.1473 0.5579 (0.3296) 0.2282 0.3598
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that the mapping algorithms would have large errors in
predictions in this dataset with many patients in poor
health.
The best 3 performing algorithms across all of the per-

formance criteria were the Jang, McKenzie and Longworth
models. The Jang model performed particularly well ac-
cording to MAE and RMSE across the severity range of the
EQ-5D, but was only able to detect 1 of the 3 clinical
changes and this was not significant. The McKenzie algo-
rithm overall performed well using all criteria, but was
not particularly strong for any one of the criteria. The
Longworth algorithm had the smallest difference between
observed and predicted mean EQ-5D score, smallest MAE,
and was the only algorithm to detect all 3 of the clinical dif-
ference. Taking into account all criteria, the Longworth
model was selected as the best performing model. It is rec-
ognized that this may be considered arbitrary as there is no
accepted criteria in the literature for choosing the best per-
forming model and research in this area is encouraged.
The results seen have two elements. First, in patients

with ‘perfect’ or ‘near perfect’ health (i.e. values close to
1) the mapping algorithms tended to under-predict the
true health states. This is likely a result of the ceiling ef-
fect secondary to being close to the upper limit of the
scale. This was observed in all 9 mapping algorithms
tested and can be seen in Figure 1. That said, this effect
was small and had little effect on the overall mean. Sec-
ond, in patients with poor health all the mapping algo-
rithms over-predicted compared to the observed EQ-5D
values. This effect is far greater in some algorithms than
others. The algorithms published by Jang, Longworth
and McKenzie map relatively well in the subpopulation
with very poor health (observed EQ-5D less than 0.5)
with a deviation from observed mean of 0.09, 0.17 and
0.13 respectively. In clinical practice this is still a large
deviation, but significantly smaller than those seen in
the Crott, Kim EJ and Versteegh algorithms of 0.26, 0.23
and 0.23 respectively. Given that the test dataset is in
generally poor health the algorithms that vastly over-
predicted in the above subgroup also over-predicted the
overall mean EQ-5D.
The issue of over-prediction in poor health states is

not a novel finding and impacts on health technology as-
sessment when comparisons are made across studies
using mapped utility data and studies that directly
assessed utilities. It has been noted in the majority of
mapping studies, but rarely to the extent seen in this
analysis. Other analyses have found its impact is minimal
when looking at differences over time or between groups
[32] but our results conflict with this conclusion. Its
causation is likely to be multifactorial. Firstly, the popu-
lations from which these mapping algorithms are derived
tend to have better health utilities, so are not designed
to cope with poor health states. This might explain why
the Longworth and McKenzie algorithms performed bet-
ter overall, with mean EQ-5D values in their estimation
population of 0.58 and 0.54 respectively. Secondly, algo-
rithms are constructed based on a heterogeneous disease
population which may have specific characteristics that
impact on the mapping algorithm. For example, dys-
pnoea is an important symptom for the mesothelioma
patient population. Six of the linear regression mapping
algorithms tested had excluded dyspnoea, and in the
other 2 algorithms dyspnoea had a positive (rather than
negative, where increased dyspnoea reduces utility) impact
on EQ-5D (Kim EJ and McKenzie). In this patient group
with mesothelioma, of whom 44% reported some dyspnoea,
this could be significantly contributing to overestimation,
whereas a mapping algorithm estimated from this patient
population would likely include dyspnoea as a negative
variable in its algorithm. It has been recommended that
when mapping is used, the estimation population should



Figure 1 Scatter plots of observed against predicted values (A) Longworth (B) McKenzie. (n.b. diagonal line represents x = y, i.e. the result
of perfect mapping).
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be as clinically similar to the target population as possible
to minimise this effect [14]. The ability of the Jang algo-
rithm to limit error about the mean could be attributed to
having a similar estimation population (patients with non-
small cell lung cancer) to our mesothelioma dataset. Fi-
nally the general assumptions of a linear regression model
may be suitable for predicting a population mean but in-
adequate for discriminating between severity levels or clin-
ical subgroups. The superior performance of a response
mapping technique is exciting given the limited research
in this area to date.
No guidelines exist providing thresholds for acceptable

model performance with respect to ability to predict the
mean or error about the mean [14]. The studies that
produce the algorithms validate them on a validation
population or samples of the original population (boot-
strapping), and judge accuracy as differences in means
of predicted vs. actual values. Across the 9 studies the
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differences in means in their validation samples ranged
from 0 [8] to 0.088 [23], compared to the range we
found of 0.028 using the McKenzie to 0.114 with the
Kim EJ algorithm. Also, the root mean squared errors
(RMSE) in these validation samples are usually reported,
ranging from 0.094 [22] to 0.192 [25], compared to our
RMSE ranging from 0.121 in the Jang algorithm to 0.300
with the Kontodimopoulos algorithm. Based on these
criteria, it is apparent that the mapping studies had diffi-
culty mapping our dataset compared to their original
validation studies.
The McKenzie algorithm was the best performing lin-

ear regression mapping algorithm tested in terms of pre-
dicting the entire dataset’s mean EQ-5D value, and this
has been found elsewhere [33]. The algorithm itself was
based on a population undergoing palliative therapies
for inoperable oesophageal cancer and was generally a
population in exceptionally poor health [34]. The aver-
age EQ-5D of this population was 0.54 (the lowest of all
mapping algorithms tested) with a significant number
of patients reporting severe problems within the 5
EQ-5D dimensions. An impressive sample of 877 obser-
vations were used to generate the algorithm, and the
validation dataset was large (991 observations from 254
patients) and clinically distinct from the estimation
sample (trial of radiotherapy for breast cancer in low
risk elderly women [35]). They used an ordinary least
squares regression to map onto the EQ-5D using all cat-
egories of the QLQ-C30. However, despite its robust de-
sign there are still concerns regarding its performance.
The McKenzie algorithm accurately predicts the mean
group EQ-5D, but this may be due to its substantial
under prediction in good health states (it performs
worst in observed EQ-5D values of greater than 0.75)
which may offset the over prediction which still occurs
in the poorer health states. The algorithm generated
considerable error about the mean which may explain
its inability to distinguish between clinically different
groups seen in our original study and actually showed
the opposite finding in 2 of 3 tested relationships. Our
results indicate that response mapping algorithm from
Longworth et al. is the most accurate method of distin-
guishing between clinical subgroups even maintaining
statistically significance in 2 of the 3 categories. It
showed ability in predicting a population mean and dis-
tribution, with reliability in poor health states. It uses a
relatively novel technique of response mapping, where
QLQ-C30 dimensions are mapped onto specific dimen-
sions of the EQ-5D with the addition of age and gender
into the algorithm. The model was constructed from
771 patients with a variety of cancer types (breast- 100,
lung- 99, myeloma- 572) and in generally poor health.
To our knowledge this is the first study to critically ana-
lyse this method outside its estimation dataset.
This study had several limitations which may affect
the generalisability and reliability of our results. The
analyses were conducted using a dataset with only 250
observations. For this reason we did not attempt to con-
struct a mapping algorithm of our own. However, as
datasets of this size are used to generate QALYs, the
mapping algorithms should perform accurately, and in-
deed mapping analysis on pragmatically smaller datasets
was encouraged in a recent review [14]. Our population
is male dominant (86% male), given the relationship of
mesothelioma with asbestos exposure, which could have
affected the functionality of the female predominant
mapping datasets i.e. breast cancer populations (Kim EJ
and Crott). As gender is not included in the EQ-5D or
QLQ-C30 scoring systems the effect is likely to be min-
imal but could further explain why the Longworth algo-
rithm performed well, as it incorporates gender. Although
several versions of the EORTC QLQ-C30 exist, we have
just based our results on version 3. Although functional
levels do vary slightly, the differences are small and ex-
cluding studies using other versions would have signifi-
cantly limited our analysis. Finally we have tested the
mapping algorithms that predict different country tariffs
of the EQ-5D and tested these in comparison to the rele-
vant country tariff that they aimed to predict. However it
is unlikely that a user would be able to choose which
country tariff to apply, as typically the analyses would be
undertaken for a specific country.

Conclusions
In summary, a recently published algorithm by Longworth
et al. was the best performing of 9 mapping algorithms
tested in this poor health population with mesothelioma.
It accurately predicted the EQ-5D population mean from
QLQ-C30 values with small MAE and RSME. Unlike con-
ventionally constructed algorithms this response mapping
technique could discriminate between clinically relevant
subgroups. Mapping is always a second best solution to
direct collection of EQ-5D values but further research
should be directed at response mapping for conversion of
disease specific to preference-based measures.
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