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Abstract

A novel wear prediction framework was developeatbyplinga patient-specific lower extremity musculoskeletalltibbody dynamics model with
the finite element contact mechanics and wear mofdeital knee replacementh@&tibiofemoral contact forces and kinematics wer&griced by
articular surface wear, and in turn, the variatifsom the knee dynamics resulted in increaseserveumetric wear of 404.4mm?® after 30 million
cycle simulation from 380.8Gm’ from the traditional wear prediction using fixedt/motionsThe developed patient-specific wear prediction

framework provided a reliable virtual platform favestigating articular surface wear of total kneglacements.

Keywords:Wear predictionFinite-element methgdvusculoskeletal multibody dynamicEotal knee replacement

1. Introduction

Total knee replacement (TKR) is effective to replace the damaged cartilage disdusslp the patients to restore daily
activities [1]. Although the survivorship of knee implants mayerd beyond two decades [2], wear debris of ultra-high
molecular weight polyethylene (UHMWPE) in TKR induced aseptic loosenisgjlliss major limitation to longevity [3-6]
Laboratory knee wear simulator testing is invaluable for undersmmubtyethylene wear mechanisms and pre-clinically
evaluating new implant designs and materiald4J/-However, the experimental testing is associated with substantial cost and
time, as a large number of low frequency gait cycles are requird®][&hile computational wear modeling is an alternative
attractive solution [116].

Patient-specific load/kinematics play an important role in vivo wear l@hgs 17], however, the majority of previous
computational wear studies,[15, 18, 19] have adopd the load/motions specified in ISO 14243 (20020] [as the input
condition. Although some studie®]] have adopted a patient-specific kinematics, the load was not from tleepsaient. h

vivo contact forces and joint motions are essential for patient-specific weshiction [6]. Although in vivo knee contact forces



and joint motions have been measured using instrumented knekepess?2, 23] and fluoroscopic imaging system [24]

respectivelyit is still difficult to obtain all these information from the sanai@nt simultaneously. Consequently, multibody

dynamics (MBD) modelling of TKR by considering the patient-specific losvgremity musculoskeletal (MSK) system is an

alternative attractive method to the in vivo measuremest7)].

The patient-specific lower extremity MSK MBD models of TKE7] have been established to predict the tibiofemoral

joint forces and secondary knee kinematics with a reasonably goahegbased on the elastic foundation modd] [which

incorporate a deformable knee implant into a rigid MBD simulat&d}, and the force-dependent kinematics (FDK) method

[27] for predicting the secondary motions. The predicted in vivo kviee forces and motions can readily be used to predict

the surface wear of the TKR using the methodology already establishel[fifevious wear predictions have used fixed

load/kinematics for the wear simulation of TKR, and not consideredffbet of the change of kinematics/load due to tibial

insert geometry variation caused by wez(-33]. The use of fixed load/mation in the wear simulation means that thgehan

of these input conditions, which affects the multi-directional cross-shetion [34, 35|, has not been considered. It is feasible

to predict the implant wear under the patient-specific load/kinematics conbitieouplinga lower extremity MSK MBD

model implanted with specific knee prosthegigh the contact mechanics model and wear model. However, to outddgey

such a framework has not been reported.

This study aimed to develop a novel patient-specific computational weactgredramework of TKR by coupling a

lower extremity MSK MBD model implanted with a specific knee prosthdébe contact mechanics model and wear model.

Furthermore, the interaction between the knee joint load and motionisct stress and wear of the bearing surface in the

TKR was investigated.

2. Materialsand methods

2.1 Patient-specific musculoskeletal model

A patient-specific lower extremity MSK model which was validated foljdh load inour previous study?5, 26] was

used in this study. The patient-specific MSK model was developed ihoéiyy(version 6.0; AnyBody Technology, Aalborg,
2



Denmark) using publically available data (https://simtk.org/home/kneelaz@lskpllected from a specific patient (subject PS,
male, 180cm, 75kg) implanted with an instrumented knee implam. gémeric lower extremity MSK model (AnyBody
Managed Model Repository V1.6.2), which is based on the Twente Lowmntity Model B7] anthropometric database, was
scaled to the patient-specific MSK nadaccording to the patient pre-operative bone geometrieg asi advanced bone
morphing method38]. Meanwhile, all related muscle and ligament attachment points ordufé&sl on the given bone were
scaled accordingly to match the patient bone geometries. The patient post-openmativentib the instrumented Zimmer
NK-II cruciate-retaining prosthesis were rigidly registered to the scaledr fantlitibia. A new knee joint model with 11
degrees of freedoms was developed, based on the FDK meiBpdwhich included deformable contact surfaces and
ligaments. The soft tissues crossing the tibial-femof&) @nd patella-femoral (PF) joint included the medial collateral
ligament (MCL), the lateral collateral ligament (LCL), the posterior cruciate ligamehj,(Be posteromedial capsule (PMC)
and the medial and lateral PF ligaments (MPFL, LPFL). Ligaments medeled as non-linear spring elements with a
piecewise forcedisplacement relationshiglQ]. Three contact pairs were defined between the medial and lateral of the tibial
insert and the femoral component and between the patellar button gachtital component based on the elastic foundation
theory R9]. The UHMWPE was considered as a non-linear mate2igl Pll contact forces between tlmntacting surfaces
were calculated using a linear force-penetration volume law with a contactrekésdule of 1.24x18 N/m?in this study
[41]; further details can be found in a previous stuzh}.

The patient’s standing reference trial used to scale the other remaining segmdrdgtarmine original model marker
locations, and a patient-specific walking gait trial with experimental groemction forces were imported into the developed
MSK model to calculate the medial, lateral and total TF contact forces, PF contact folagaeaaht forces, as well as the
knee joint motions using the FDK solver during a simulated walg&ig25].

2.2 Finite element model
A finite element FE) model (Fig. 1) of the corresponding TKR of the above patient was devalsjgdAbaqus/Explicit

(Abaqus 6.12, Simulia Inc., Providence, RI) to calculate the contact mechBmécsbial insert was modeled as a diorear

3



material with a modulus of elasticity of 463 MPa and a Poisson’s ratio of 0.46 [1]. The tibial insert and the femoral component
were meshed using linear hexahedral elements (C3D8l) and quadratic tefrahecents (C3D10M) respectively. Mesh
densities were determined by convergence studies, which resulted in aximpfalobal size of 1.0 mm for the insert, 1.5
mm for the femoral component. A penalty contact was defined betweeoniact surfacesincluding acoefficient of friction

of 0.04, and this value was in accordance with artificial joints andrempntal pinen-disk (POD) tests, as well as previous
computational modelgip-45].

The outputs from the gait simulation of the patient-specific loweeaxty MSK model were used as the boundary
conditions BCs) for the developed FE model. The total contact force was applied on thenpefenode of the femoral
component, defined at the axis through the center of the femoral contactesarfd offset 5 mm in the medial direction
according to 1ISO 14242()]. The flexion-extension of the femoral component was also prescribedjithtioa reference node
(Fig. 1b) The adductionabduction motion was left free. All other degrees of freedom effémoral component were
constrained. Anterior-posterior displacement and internal-external rotation were apptlealtibial reference node. All other
degrees of freedom of the tibial insert were constrained.

2.3 Wear model

In this study, the model developed and validated by Abdelgaied[&] alas adopted to predict the articular surface wear
of the UHMWPE tibial insert in the presence of bovine serum lubriddais. wear model was used widely in wear prediction
[1, 46, 47]. The wear model was based on the idea that wear volume (V) isrfpoopbto the contact area (A) and sliding
distance (B
where C is a non-dimensional wear coefficient dependent on a crossrati@gCS, determined from the experimental
measurementsf a multi-directional POD wear test in the presence of bovine serum lubtricachieve the same boundary

and mixed lubrication condition as in artificial join85[ 48-50]:

C=(a+bxCg"* )



where ab and c are constants, and €&8was defined on the unified theory of wear and w@#, B5, 51], as the component
of the frictional work perpendicular to the principal molecular orientation directigh{k.), divided by the total frictional

work (Etotal) .

CS= Ev:ros;sr shear
Elotal (3)

The effect of UHMWPE creep was also considered, based on the experinagmtaipbriedq2]. The creep was modeled

as:

~[3.491x 10°+ 7.966 10 (log() 4L.h

5creep (4)
where tis time (min),o,, is the average pressure (MPa), and h is the thickness (mm).

The total linear damaged(,,, ) of each node on the insert surface, which was the sum of lineai(#gg,) and creep

deformation 6creep), was used to update the surface geometry

o, Opear T O

total — @wear cree| (5)

2.4 Coupling prediction framework

A novel computational framework was established by coupling the ataiientppecific MSK model, FE model and
wear model of the knee implant (Fig. 2). The patient-specific MSK MBidehof the TKR calculated joint forces/motions
during gait simulation, then these were input into the FE model as the BCkutateathe contact pressure and sliding
distances of the insert at each node and each time increment. Custam $&yripts were used to extract the results from
Abaqus output database, and a Matlab script was developed to calculate weaeprfdrceach node of the contact surfaces
and output the worn insert geometry. The updated worn insert geomgetigubsequently imported into the MSK MBD model
to calculate new joint load/motions for the n&& analysis. The insert surface was updated, using the totat lila@@age
depth at each node. Two iterations were performed for the first 1 miljicdes, to account for the large cresphe early stage,
and then every 2 million cycles were considered till 30 million cyclerAaoupled wear model with the constant BCs as the

initial gait cycle for the whole simulation was also considered for theoparpf comparison.



3. Resultsand discussion

3.1 Musculoskeletal model

Fig. 3 shows the effect of the articular surface wear on the knéegoitact forces and motions duria@0 million cycle

simulation. The insert wear changed the TF lateral-medial load distribliierlateral contact force (Fig. 3a) increased during

the stance phase, especially at 20% gait cycle, the amplitude increased@$ and 33.22% after 20 million cycle and 30

million cycles respectively. At the meantime, the medial contact force (Figiegingased, and the second crest decreased by

2.99% and 7.50% after 20 million cycle and 30 million cycles respectiValy.effect of wear on the total contact fo(Edy.

3c) was slight, and the second peak decreased by 3.08% aptl &1@8 20 million cycle and 30 million cycles respectively.

For the joint motions, the primary flexion-extension motion (Bi). was not sensitive to the wear. However, relatively larger

changes were found in the secondary knee kinematics, especial the aotgedop translation (Fig. 3e) and the

internal-external rotation (Fig. 3f). Compared with the initial values,rdimge of the anterior-posterior translation of the

femoral component decreased 14.43% after 30 million cycles. The arapbfuthe femoral external rotation increased

especially during the stance phase of the gait cycle with a peak increas@%f after 30 million cycles wear. Williams et al.

[53] investigated how the wear changed kinematics and contact stresses usieyedretlyethylene insert of TKR. They

found the worn articular surface resulted in a decrease in the range arguasterior translation and an increase in femoral

external rotation. Our findings were consistent with their results, althitvegbercentage changes were different.

The effects of the wear on the ligament forces are shown iMFithe PCL and LCL forces were not sensitive to the

wear. The PCL was slightly increased during the stance phase, whil€ltheas slightly decreased during the swing phase.

The MCL force hada relatively large decrease of 18.84% after 30 million cycles duringtémees phase. In this study, the

wear of articulating surfaces resulted in the geometry change of the itilsidt, and this further influenced the

muscle/ligaments moment arms, which directly contributed to the change wiutitle/ligaments forces, eventually leading to

the changes in the knee joint forces and motion. The linear wehe afiedial sidevas larger than the lateral side as wear

progressed, which increased the laxity of MCL, and the MCL forceedsed meanwhile the LCL force slightly increased (Fig.
6



4). The changes of MCL and LCL eventually altered the TF medial-lateratistibution and the femoral external rotation.

Although the PCL force decreased along with wear, the range aftierior-posterior translation was not increased, which was

mainly restricted by the worn surface.

3.2 Finite element model

Fig. 5 shows the contact pressure distribution at the maximum loa@ gfthcycle. Generally, for both coupled and

non-coupled model, the contact pressure decreased as wear progressaxulisofthe increased contact area, due to the

increased conformity. After 5 million cycles, the predicted maximum contact peessine non-coupled model was in general

steady with slightly increased at some instances, due to the change aintlact surfaces as wear progressed. While for

coupled model, the maximum value oscillated, especially at 10 million cyolethe change of the TF contact fortke

anterior-posterior translation and internal-external rotation which subsequdtetlgd the contact location. Both wear and

kinematics have combined effect on contact surface change, leading thatitucbf maximum contact pressure for coupled

model. Compared with the non-coupled model, a larger maximum con¢éasupe &spredicted from the coupled model after

5 million cycles although the differences were small. This is mainly due to the chafrije contact surfaces as a result of

both kinematics and wear, decreasing the conformity in part aotim@ct surface compared with the non-coupled mddha

maximum contact pressure of the coupled model was transferred fronettia to the lateral side of the insert, apparently

after 20 million cycles wear simulation, because of the decreased medliattctorce and increased lateral contact force

during the stance phase. Williams et al. predicted the peak contact stress intmesfeld using retrieved insert43], while

the maximum contact pressuxas slightly decreased in our study. The retrieved insert from Walienal. was worn severely

and the rough surface caused stress concentration which led to incréfaseé@ak contact stress. However, our study was

based on a mild surface wear mechanist4pBl, which resulted a smooth worn surface. Therefore, the maximutaaton

pressure did not increase but decrease along with the increasing con&mthéywear simulation continued

Fig. 6 shows the effect of the variation of knee dynamics on the a&vecagact area (Fig. pduringa gait cycle and the

average cross-shear ratio (Fig. 6b). Generally, the contact area increasst footlels as the wear progredswvith a marked

7



increase from the beginning to 1 million cycles due to the effectegpcrCompared with the non-coupled model, a larger
average contact area and average cross-shear ratio were found frompleel ecoodel, mainly due to the change of the
anterior-posterior translation and internal-external rotation. The larger averagetcarea may lead to a smaller average
contact pressure, however the maximum value was determined by tige cifidine contact surfaces as explained above.
3.3 Wear model

The distributions of the accumulated sliding distapicthe insert surface for the coupled (Fig. 7a) and non-coupled model
(Fig. 7b) are shown in Fig. 7. For both models, the distribution anitied stage was apparently different from the latter, and
the maximum values decreased while the distributed area increased as wyesspasmall differences were predicted in the
distributions from the two models.

The changesf the volumetric wear (Fig. 8a) and worn area (Fig. 8b) of the TKdRffatent wear stages are shown in
Fig. 8. Compared with the non-coupled model, the volumetric wealighed by the coupled modebs larger. Wear volumes
of 380.86mm® and 404.41 mrmwere predicted from the non-coupled model and the coupled mode respeatieel30
million cycles wear simulation. Worn area (Fig. 8b) was increfmebloth modelsaswear progress) and stabilized after 15
million cycles. Worn areas of 1165.18 rmand 1178.80 mmwere predicted from the non-coupled model and the coupled
model respectively.

Fig. 9 shows the distributions of the linear wefithe insert surface at different wear stages from the coupled9&ig
and non-coupled model (Fig. 9b). Both models predicted a deep wearagad the center of the medial sidlée worn scars
on the medial side from both models were more anterior compared to tla¢ dater There were negligible differences in the
linear wear distributions between two models.

The effects of the changes in knee joint load/kinematics on wedicpion were investigated by comparing with the
non-coupled model. It is also clear from the distribution of accumusditidg distance and the linear wear, the change of the
kinematics, especially the anterior-posterior translation and the internaladxtetation, mostly influenced the contact

location. Compared with the non-coupled model, an increased external rafatienfemur was mainly led to an increase in

8



the cross-shear ratio, further leading to a larger wear volume for tiptedosimulation. The difference of volumetric wear

between coupled and non-coupled model was not obvious, demonsthatinga well-designed knee implant with small wear,

the change of the kinematics and load due to wear was not remarkable.

3.4 Limitations

Although the developed subject-specific wear prediction frameprankided a new method to realistically quéntihe in

vivo wear of TKR, this study still possesbmany limitations. Firstly, the patient-specific lower extremity MSK MBD model

did not consider the potential change of the paBegait due to the wear of the tibial insert. Secondly, only a patientawith

single gait trail and one type of knee prosthesis were considered siutlisand the patient-specific difference and various

implant designs should be investigated in future work. Thirdue to the lack of the relevant patient specific ligament

properties, generic values were taken from the literature, and the ligamentodgimsertion points were located manually to

fit the patient’s bone geometries according to anatomic descriptionsFourthly, although the wear modelsiaeen verified with

experiments [146, 54], the predicted wear volumes weBd%45% lower than the experimental resul&?][ and the

experimental simulator results may be even smaller than the retrieved 5SBKR lie improvement of the wear model may

provide an even more realistic coupled framework. Fifthly, the Tdtadontact forces were used as the axial load apatita

reference node of the femur, according to [B1243[20]. The MSK MBD model outputted the medial/lateral contact forces

respectivelyadduction-abduction motion, and medial-lateral translation. All these input cosdibaid be used directly in

the FE modeling and wear simulation. Furthermore, it is also negdasseonsider the adverse conditions [5, 11] when the

wear of the tibial insert increased markedly, and the consequent effeitts meraction with the biomechanics of the knee

implant. Despite of these limitations, the potential advantages of the coupled-ppdieific biomechanics and wear prediction

framework are evidd.

4. Conclusion

A novel patient-specific wear prediction framework of TKR, couptimg lower extremity MSK MBD model implanted

with a specific knee prosthesis, FE model and wear model of the artificialjdimtewas developed to investigate the

9



interaction between the knee joint load/kinematics and the wear of the inserylseeface. The articular surface wear of the

tibial insert resulted in change of ligament forcekich leading to the changef TF medial-lateral load distribution and

kinematics. In turn, the changes of the knee joint dynamics caettitio the further articular surface wear of the insert

Taking the interaction between in vivo kinematic/load, contact mechanics amdnieaonsideration, this patient-specific

coupled framework can provide a more realistic prediction of weanemtidnal outcomes of knee implant designs.
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Highlights
e A novel patient-specific wear prediction framework was developed
e Coupling a patient-specific musculoskeletal model and finite element wear model
e Knee loads and motions were influenced by the tibial insert wear

e Varied knee contact mechanics further aggravated the tibial insert wear
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