UNIVERSITY of York

This is a repository copy of A note on rational points near planar curves.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/107616/

Version: Accepted Version

Article:

Chow, Samuel Khai Ho (2017) A note on rational points near planar curves. Acta Arithmetica. pp. 393-396. ISSN 1730-6264

https://doi.org/10.4064/aa8622-11-2016

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

A NOTE ON RATIONAL POINTS NEAR PLANAR CURVES

SAM CHOW

ABSTRACT. Under fairly natural assumptions, Huang counted the number of rational points lying close to an arc of a planar curve. He obtained upper and lower bounds of the correct order of magnitude, and conjectured an asymptotic formula. In this note, we establish the conjectured asymptotic formula.

1. INTRODUCTION

Let f be a real-valued function defined on a compact interval $I = [\rho, \xi] \subseteq \mathbb{R}$. For positive real numbers $\delta \leq 1/2$ and $Q \geq 1$, define

$$\tilde{N}_f(Q,\delta) = \# \left\{ \begin{array}{ll} (a,b,q) \in \mathbb{Z}^3 : & 1 \leqslant q \leqslant Q, a/q \in I, \gcd(a,b,q) = 1, \\ & |f(a/q) - b/q| < \delta/Q \end{array} \right\}$$

Roughly speaking, this counts the number of rational points with denominator at most Q that lie within δQ^{-1} of the curve $C_f = \{(x, f(x)) : x \in I\}$. Huang [3, Theorem 2] estimated this quantity. As discussed in [3], such estimates are readily applied to the Lebesgue theory of metric diophantine approximation.

Theorem 1.1 (Huang). Let $0 < c_1 \leq c_2$. Assume that $f : I \to \mathbb{R}$ is a C^2 function satisfying

$$c_1 \leqslant |f''(x)| \leqslant c_2 \qquad (x \in I),$$

with Lipschitz second derivative. Assume further that

(1.1)
$$1/2 \ge \delta > Q^{\varepsilon - 1},$$

for some $\varepsilon \in (0, 1)$. Then

(1.2)
$$\frac{2\sqrt{3}}{9\zeta(3)} + O(Q^{-\varepsilon/2}) \leqslant \frac{\tilde{N}_f(Q,\delta)}{|I|\delta Q^2} \leqslant \frac{1}{\zeta(3)} + O(Q^{-\varepsilon/2}).$$

The implied constant depends on I, c_1, c_2, ε and the Lipschitz constant; it is independent of f, δ and Q.

²⁰¹⁰ Mathematics Subject Classification. Primary 11J83; Secondary 11J13.

Key words and phrases. Metric diophantine approximation, rational points near curves.

S. CHOW

Theorem 1.1 sharpened the upper bounds obtained by Huxley [4] and Vaughan–Velani [5], as well as the lower bounds obtained by Beresnevich–Dickinson–Velani [1] and Beresnevich–Zorin [2].

The purpose of this note is to squeeze together the constants in (1.2), so as to confirm Huang's conjectured asymptotic formula

(1.3)
$$\tilde{N}_f(Q,\delta) \sim \frac{2}{3\zeta(3)} |I| \delta Q^2 \qquad (Q \to \infty)$$

within the range (1.1). The asymptotic formula (1.3) follows straightforwardly from our theorem, which we state below and establish in the next section.

Theorem 1.2. Assume the hypotheses of Theorem 1.1. Let $\eta > 0$ and

$$0 < \tau < \varepsilon/2.$$

Then

$$\frac{2}{3\zeta(3)} - \eta + O(Q^{-\tau}) \leqslant \frac{\tilde{N}_f(Q,\delta)}{|I|\delta Q^2} \leqslant \frac{2}{3\zeta(3)} + \eta + O(Q^{-\tau}).$$

The implied constant depends on $I, c_1, c_2, \varepsilon, \eta$ and the Lipschitz constant.

We use Landau and Vinogradov notation: for functions f and positivevalued functions g, we write $f \ll g$ or f = O(g) if there exists a constant Csuch that $|f(x)| \leq Cg(x)$ for all x. If S is a set, we denote the cardinality of S by #S.

2. The count

In this section, we prove Theorem 1.2. For positive real numbers $\delta \leq 1/2$ and $Q \geq 1$, define the auxiliary counting function

$$\hat{N}_{f}(Q,\delta) = \# \left\{ \begin{array}{cc} (a,b,q) \in \mathbb{Z}^{3} : & 1 \leqslant q \leqslant Q, a/q \in I, \\ & \gcd(a,b,q) = 1, |f(a/q) - b/q| < \delta/q \end{array} \right\}.$$

With the same assumptions as in Theorem 1.1, Huang [3, Corollary 1] showed that

(2.1)
$$\hat{N}_f(Q,\delta) = (\zeta(3)^{-1} + O(Q^{-\varepsilon/2})) \cdot |I| \delta Q^2$$

Let $t \in \mathbb{N}$, $1/2 < \alpha < 1$ and

$$\alpha_i = \alpha^i \qquad (0 \leqslant i \leqslant t).$$

We will have $t \ll_{\eta} 1$, so the hypothesis (1.1) is satisfied with 2τ in place of ε and $(\alpha_i Q, \alpha_j \delta)$ in place of (Q, δ) , whenever Q is large and $0 \leq i, j \leq t$. In particular (2.1) holds with these adjustments, so

(2.2)
$$\hat{N}_f(\alpha_i Q, \alpha_j \delta) = \left(\frac{\alpha_i^2 \alpha_j}{\zeta(3)} + O(Q^{-\tau})\right) \cdot |I| \delta Q^2 \qquad (0 \le i, j \le t)$$

Employing (2.2), we have

$$\begin{split} \tilde{N}_f(Q,\delta) \\ \geqslant \sum_{i=1}^t \# \begin{cases} (a,b,q) \in \mathbb{Z}^3 : & \alpha_i Q < q \leqslant \alpha_{i-1} Q, a/q \in I, \\ & \gcd(a,b,q) = 1, |f(a/q) - b/q| < \alpha_i \delta/q \end{cases} \\ = \sum_{i=1}^t (\hat{N}_f(\alpha_{i-1} Q, \alpha_i \delta) - \hat{N}_f(\alpha_i Q, \alpha_i \delta)) \\ = \sum_{i=1}^t \left(\frac{\alpha_{i-1}^2 \alpha_i - \alpha_i^3}{\zeta(3)} + O(Q^{-\tau}) \right) \cdot |I| \delta Q^2. \end{split}$$

Now

(2.3)
$$\tilde{N}_f(Q,\delta) \ge \left(\frac{X(\boldsymbol{\alpha})}{\zeta(3)} + O(tQ^{-\tau})\right) \cdot |I|\delta Q^2,$$

where

$$X(\boldsymbol{\alpha}) = \sum_{i \leq t} (\alpha_{i-1}^2 \alpha_i - \alpha_i^3).$$

We compute that

$$X(\boldsymbol{\alpha}) = (\alpha - \alpha^3) \sum_{j=0}^{t-1} (\alpha^3)^j = \frac{(\alpha - \alpha^3)(1 - \alpha^{3t})}{1 - \alpha^3}$$
$$= (1 - \alpha^{3t})(1 - (1 + \alpha + \alpha^2)^{-1}).$$

Choosing α close to 1, and then choosing $t \ll_{\eta} 1$ large, gives

$$X(\boldsymbol{\alpha}) \ge 2/3 - \zeta(3)\eta.$$

Substituting this into (2.3) yields the desired lower bound.

We attack the upper bound in a similar fashion, but there is an extra term to consider. By (2.2), we have

$$\begin{split} \tilde{N}_f(Q,\delta) &- \tilde{N}_f(\alpha_t Q, \alpha_t \delta) \\ &\leqslant \sum_{i=1}^t \# \left\{ \begin{array}{l} (a,b,q) \in \mathbb{Z}^3 : & \alpha_i Q < q \leqslant \alpha_{i-1} Q, a/q \in I, \gcd(a,b,q) = 1, \\ & |f(a/q) - b/q| < \alpha_{i-1} \delta/q \end{array} \right\} \\ &= \sum_{i=1}^t (\hat{N}_f(\alpha_{i-1} Q, \alpha_{i-1} \delta) - \hat{N}_f(\alpha_i Q, \alpha_{i-1} \delta)) \\ &= \sum_{i=1}^t \left(\frac{\alpha_{i-1}^3 - \alpha_{i-1} \alpha_i^2}{\zeta(3)} + O(Q^{-\tau}) \right) \cdot |I| \delta Q^2. \end{split}$$

Now

$$\tilde{N}_f(Q,\delta) - \tilde{N}_f(\alpha_t Q, \alpha_t \delta) \leqslant \left(\frac{Y(\boldsymbol{\alpha})}{\zeta(3)} + O(tQ^{-\tau})\right) \cdot |I|\delta Q^2,$$

where

$$Y(\boldsymbol{\alpha}) = \sum_{i \leq t} (\alpha_{i-1}^3 - \alpha_{i-1}\alpha_i^2).$$

Here

$$Y(\boldsymbol{\alpha}) = \alpha^{-1} X(\boldsymbol{\alpha}) \leqslant \frac{1 - \alpha^2}{1 - \alpha^3} = \frac{1 + \alpha}{1 + \alpha + \alpha^2}.$$

Choosing α close to 1 gives $Y(\alpha) \leq 2/3 + \zeta(3)\eta/2$, and so

(2.4)
$$\tilde{N}_f(Q,\delta) \leq \tilde{N}_f(\alpha_t Q, \alpha_t \delta) + \left(\frac{2}{3\zeta(3)} + \frac{\eta}{2} + O(tQ^{-\tau})\right) \cdot |I|\delta Q^2.$$

For the first term on the right hand side of (2.4), we bootstrap Huang's upper bound (1.2). This gives

$$\tilde{N}_f(\alpha_t Q, \alpha_t \delta) \leqslant \left(\frac{\alpha_t^3}{\zeta(3)} + O(Q^{-\tau})\right) \cdot |I| \delta Q^2$$

Choosing $t \ll_{\eta} 1$ large, so that $\alpha_t^3 \leq \zeta(3)\eta/2$, we now have

$$\tilde{N}_f(\alpha_t Q, \alpha_t \delta) \leqslant \left(\frac{\eta}{2} + O(Q^{-\tau})\right) \cdot |I| \delta Q^2.$$

Substituting this into (2.4) provides the sought upper bound, completing the proof of the theorem.

Acknowledgements. The author is supported by EPSRC Programme Grant EP/J018260/1, and thanks Faustin Adiceam for a discussion.

References

- V. Beresnevich, D. Dickinson and S. Velani, *Diophantine approximation on planar curves and the distribution of rational points*, Ann. of Math. (2) **166** (2007), 367–426, with an Appendix II by R.C. Vaughan.
- [2] V. Beresnevich and E. Zorin, Explicit bounds for rational points near planar curves and metric Diophantine approximation, Adv. Math. 225 (2010) 3064–3087.
- J.-J. Huang, Rational points near planar curves and Diophantine approximation, Adv. Math. 274 (2015), 490–515.
- [4] M. N. Huxley, The rational points close to a curve, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 21 (1994) 357–375.
- [5] R. C. Vaughan and S. Velani, Diophantine approximation on planar curves: the convergence theory, Invent. Math. 166 (2006), 103–124.

Department of Mathematics, University of York, Heslington, York, YO10 5DD, United Kingdom

E-mail address: sam.chow@york.ac.uk

4