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Abstract 

Externally bonded Fibre Reinforced Polymer (FRP) confinement is extensively used to improve the bond 

strength of substandard lap spliced steel bars embedded in reinforced concrete (RC) components. 

However, the test results from bond tests on such bond-deficient components are not fully conclusive, 

which is reflected in the few design guidelines available for FRP strengthening. For the first time, this 

article presents a comprehensive survey on FRP strengthening of substandard lap-spliced RC members, 

with emphasis on the adopted experimental methodologies and analytical approaches developed to assess 

the effectiveness of FRP at controlling bond-splitting failures. The main findings and shortcomings of 

previous investigations are critically discussed and further research needs are identified. This review 

contributes towards the harmonisation of testing procedures so as to facilitate the development of more 

accurate predictive models, thus leading to more cost-effective strengthening interventions. 
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1 Introduction 

Since the 1994 Northridge and 1995 Hyogoken-Nanbu (Kobe) earthquakes, externally bonded Fibre 

Reinforced Polymers (FRP) have been widely used for the local strengthening of substandard lap-spliced 

regions of reinforced concrete (RC) columns of bridges and buildings. Typical applications involve 

bonding FRP fabric sheets or precured shells around a column to provide additional confinement (see 

Figure 1(a)), thus enhancing the lap bond strength and preventing a premature splitting failure. In the last 

decades, extensive experimental research has confirmed the effectiveness of FRP confinement at 

improving the behaviour of RC members with inadequate short lapped bars (Aboutaha et al. 1996, 

Saadatmanesh et al. 1996, Saadatmanesh et al. 1997b, Seible et al. 1997, Tastani and Pantazopoulou 

2001, Bousias et al. 2006, Harries et al. 2006, Ghosh and Sheikh 2007, Harajli and Dagher 2008, 

ElGawady et al. 2010, Bournas and Triantafillou 2011). Due to the large number of parameters affecting 

the bond behaviour of lapped bars, different experimental and analytical approaches were adopted to 

evaluate the effectiveness of FRP confinement. In general however, two experimental approaches are 

mainly implemented: 

(a) Capacity-ductility approach. The tests in these pioneering studies aim at assessing the enhancement 

in capacity and/or ductility of columns provided by the FRP confinement. Based on these experiments, 

some analytical models were proposed to compute the thickness of FRP required to prevent lap splice 

failure (e.g. Seible et al. 1997, Hawkins et al. 2000, Elnabelsy and Saatcioglu 2004, Elsanadedy and 

Haroun 2005).  

(b) Bond strength approach. The bond strength enhancement provided by FRP reinforcement is 

examined using test specimens recommended in state-of-the-art reports on bond (e.g. fib Bulletin 10 

(2000) or ACI 408 (2012)) including pullout, beam-end and beam specimens. The contribution of the 

FRP reinforcement is evaluated from the increase in the observed bond strength. 

Despite the extensive research, the majority of the previous studies focused on lap-spliced circular 

columns. Conversely, less research has been carried out to investigate the effectiveness of FRP as a 

strengthening solution for substandard rectangular members of RC buildings, and only a few existing 

guidelines (AIJ 2002, BSI 2005, TEC 2007, CNR 2012, EPPO 2012) address these issues. 
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This article presents a comprehensive literature review on substandard lap-spliced RC members 

strengthened with externally bonded FRP. Special emphasis is placed on the experimental methodology 

and analytical approaches adopted to study the effectiveness of this strengthening method. Conflicting 

research findings and aspects requiring further research are discussed and commented upon. This article 

contributes towards the harmonisation of testing and assessment procedures in a timely manner as current 

European guidelines (e.g. fib Bulletin 14 (2001) and Eurocode 8 Part 3 (2005)) are currently under 

revision and both of them are envisaged to adopt bond strength approaches for the FRP strengthening of 

laps. 

2 Assessment of FRP reinforcement effectiveness through testing 

The experimental methodologies used to assess the effectiveness of external FRP reinforcement on lap-

spliced RC members can be classified according to the approaches (a) and (b) described before. 

2.1 Capacity-ductility approach: tests on cantilever columns 

Cantilever columns have been extensively tested in the past (Priestley et al. 1992, Priestley and Seible 

1995, Saadatmanesh et al. 1996, Saadatmanesh et al. 1997b, Saadatmanesh et al. 1997a, Seible et al. 

1997, Xiao and Ma 1997, Haroun et al. 1999, Ma and Xiao 1999, Chang et al. 2000, Ma et al. 2000, 

Chang et al. 2001, Saatcioglu and Elnabelsy 2001, Haroun et al. 2003, Elnabelsy and Saatcioglu 2004, 

Sause et al. 2004, Schlick and Breña 2004, Yalçin and Kaya 2004, Haroun and Elsanadedy 2005, Bousias 

et al. 2006, Bousias et al. 2007, Breña and Schlick 2007, Youm et al. 2007, Chung et al. 2008, Eshghi and 

Zanjanizadeh 2008, Harajli 2008, ElGawady et al. 2010, Bournas and Triantafillou 2011, Kim et al. 

2011). Column specimens are usually cast on a stiff concrete block simulating the structure’s foundation, 

as shown in Figure 1. The longitudinal column reinforcement is lapped at the base for typical short 

lengths l b≈20-30db (where db=bar diameter) to replicate old construction practices and to promote bond 

splitting failure. Columns are commonly tested in vertical position by applying increasing quasi-static 

cyclic lateral loads or displacements, although horizontal specimens have been also tested (Harajli and 

Rteil 2004, Ilki et al. 2004, Ghosh and Sheikh 2007, Thermou and Pantazopoulou 2009). A constant axial 

load is usually applied to the column, but columns with no axial load have been also tested (Harajli and 

Dagher 2008, Harajli and Khalil 2008, ElSouri and Harajli 2011, Kim et al. 2011). The effectiveness of 
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the FRP strengthening is assessed by comparing the results of the original ‘as-built’ and FRP-

strengthened columns in terms of enhancements in capacity, ductility and energy dissipation (hysteresis 

loops). 

As expected, unstrengthened ‘as built’ columns failed prematurely due to splitting of the concrete cover 

around the lapped bars, leading to a rapid strength and stiffness degradation. Comparatively, the FRP-

confined columns generally failed in a ductile manner by yielding of the lapped bars, accompanied by 

partial splitting (i.e. less severe cracking), bar pullout or bar buckling. Whilst all studies reported 

significant enhancements in the capacity and ductility of the strengthened columns, the magnitude of the 

enfacement varies considerably from one study to another given the different geometries and test 

conditions adopted. 

2.2 Bond strength approach 

Specimens tested using this approach provide insight into the basic behaviour of anchorages and lap 

splices in FRP-strengthened members. In general, the unstrengthened specimens are designed to fail 

prematurely by cover splitting. Short bonded lengths are commonly selected to produce a uniform 

distribution of bond force along the bars and to prevent bar yielding. The effectiveness of the 

strengthening is evaluated by comparing the bond strength of unstrengthened and FRP-strengthened 

specimens, as well as load-deflection and/or bond stress-bar slip relationships. 

2.2.1 “ Pullout” tests 

Kono and co-workers (1997, 1999, 2000) tested “Schmidt-Thrö” pullout specimens with a single or four 

anchored bar as shown in Figure 2(a)-(b) and (d)-(e). A vertical slot defined the bonded length at the end 

of the specimens (l b=4-12db or 100-300 mm) and prevented the application of compression forces in the 

concrete around the bar. The use of a single layer of Carbon FRP (CFRP) fabric across the anchorage 

length led to a more ductile pullout failure and enhanced the bar bond strength by an average of 80%. 

Kono et al. concluded that the bond strength enhancement was independent of the bonded length of the 

bar.  

More recently, Tastani and Pantazopoulou (2010) performed direct pullout tests using two bars anchored 

concentrically in a concrete prism (Figure 2(c)). Specially machined steel bars with two different nominal 
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rib heights were anchored for short lengths (l b=5db or 12db) at the testing end of the specimens, whereas 

a commercial bar with sufficient bonded length was anchored at the support end (shown as l r  in Figure 

2(c)). Two layers of CFRP fabric were bonded on each face of the specimens (parallel to the longitudinal 

axis) to transfer forces between the testing ends and to prevent failure of the concrete prism in tension. A 

confinement sheet was added around the support bar to improve its development capacity. For the 

specimens designed to evaluate to effect of confinement on the bond strength, and FRP sheet was also 

wrapped around the test bar. Presplit specimens with a radial crack 1.0 mm wide were also tested (see 

testing end in Figure 2(c)). Average bond strengths increased by up 130% and 44% in non-split and 

presplit specimens, respectively, but the bond strength results showed a large scatter. This was attributed 

to the highly variable properties of concrete in tension (Tastani and Pantazopoulou 2010). 

2.2.2 Beam-end specimens 

Kono et al. (1999, 2000) conducted tests on small beam-end specimens with two or four bars anchored for 

a length l b=300 mm as shown in Figure 2(d)-(e). One, two or three layers of Aramid FRP (AFRP) or 

CFRP strips were wrapped along the anchorage length of the bars, whereas internal steel stirrups were 

also provided to confine the bars and the specimens’ core. The confinement enhanced the bond strength 

of the bars by a minimum of 18% and up to 44%. Despite the heavy internal reinforcement, the diagonal 

cracking observed across some of the specimens at failure suggests that shear (rather than splitting) 

dominated the behaviour. This can be possibly attributed to the small shear span ratio used in the tests 

(close to 1) and the resulting high shear forces. 

In an attempt to eliminate shear and ‘active’ confinement effects due to loading at the supports, Ozden 

and Akpinar (2007) tested H-shaped beam-end specimens with an anchored bar confined with either 

Glass FRP (GFRP) or CFRP sheets (see Figure 2(f)). Very short anchorage lengths of l b=3.5db and 7db 

were selected to study local bond conditions. No internal steel stirrups were provided. The concrete cover 

was set constant and equal to 1db in all specimens. The bond strength of the anchored bars was enhanced 

by 16% and up to 42% when compared to unconfined specimens. 
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2.2.3 Beam specimens 

Kono et al. (1997, 1999) also tested large-scale beams in double curvature in an attempt to produce cover 

splitting within the midspan zone (see Figure 3). Different confining configurations were investigated 

including: a) one layer of CFRP strips or continuous confinement (Kono et al. 1997), and b) one or two 

layers of AFRP or CFRP strips (Kono et al. 1999). The beams failed at midspan due to a combination of 

shear and cover splitting. The shear strength of the beams was enhanced by approximately 80% with 

reference to unconfined counterparts. Although bond strength of the bars was enhanced by up to 115%, 

the different force mechanisms involved in the final failure make the interpretation of results difficult.  

Hamad and Najjar (2002), Salwan (2003) and Hamad and co-workers (2004a, 2004b, 2004c) tested beam 

splice specimens in four-point bending to examine the effect of FRP wraps on the bond strength of lap 

splices (see Figure 4). The specimens were designed to fail by splitting at midspan, where the main 

flexural reinforcement was lapped for a short length l b=16db to prevent bar yielding. One or two layers of 

GFRP or CFRP were bonded along the midspan zone using partial (1 or 2 strips) or continuous U-wraps. 

Whilst the unconfined beams experienced sudden brittle failure due to severe splitting and spalling of the 

concrete cover around the lapped bars, the FRP-strengthened beams failed gradually. The FRP 

reinforcement also enhanced the bond strength of the splice by a minimum of 6% and up to 34% when 

compared to unconfined beams (Hamad and Rteil 2006). Unlike Kono et al.’s specimens, beam splice 

specimens are subjected to simple bending at the midspan, thus simplifying the comparison of results.  

Harajli (2006) tested beam splice specimens to investigate the local bond-bar slip relationship of very 

short lap splices with l b=5db (see Figure 5). The beams were subjected to four-point bending using static 

and cyclic loading. Two notches at the bottom of the beams defined the lap length and exposed the main 

flexural bars for slip measurements. As expected, failure of the unconfined specimens was controlled by 

splitting. The use of one or two layers of CFRP at the lap zone was effective at delaying failure and 

enhancing the bond strength of the lapped bars by up to 70% with reference to the unconfined 

counterparts. 

Rteil et al. (2007) performed four-point bending tests (as shown in Figure 6) on beam anchorage 

specimens under static and fatigue loading. A bond splitting failure was promoted at the beam ends by 
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anchoring the bottom bars for a short length of approximately l b≈13db. The rest of the bar length was 

unbonded from the concrete using polyethylene pipes. Two notches at the bottom of the beams defined 

the lap length at the beam ends and exposed the main flexural bars for measurements. The anchored bar 

zone was strengthened with one layer of U-shaped CFRP fabric. The bond strength of the CFRP-confined 

beams subjected to static load was enhanced by 38% with reference to the unconfined counterparts. 

Likewise, the bond strength of CFRP-confined beams subjected to fatigue load increased by 41% at 1000 

cycles, and by 22% at 100,000 cycles compared to unconfined specimens. Whilst bar slip increased with 

the number of applied cycles, the slip in the unconfined beams increased exponentially during the last 

10% of the beams’ life, whereas the slip increased constantly up to failure in CFRP-confined beams. 

Similar beam anchorage specimens were tested by Hage Ali (2003), but in this case the bond strength was 

enhanced by 6% and up to 9% only. Due to the test set-up, bond strength results obtained from these 

beams may be influenced by additional confining stresses generated by the reaction forces at the supports. 

It is unclear if this effect was considered in the reported results. 

More recently, Garcia et al. (2014, 2015) investigated the bond strength enhancement resulting from the 

confinement provided by CFRP sheets in 24 beam splice specimens tested in flexure, similar to those 

tested by Harajli et al. (2006) and Hamad et al. (Hamad et al. 2004a, Hamad et al. 2004b, Hamad et al. 

2004c). Lap lengths of 10db and 25db were used to examine the mobilised “local” and average bond 

strengths, respectively. 1 or 2 layers of continuous CFRP fabric confined full lap length. The 

experimental results showed that the CFRP strengthening enhanced the bond strength of the lapped bars 

by up to 65% with reference to unconfined beams, thus improving significantly the overall behaviour of 

the beam splice specimens. The results also corroborated research findings by Kono et al. (1997) as the 

bond strength enhancement was relatively independent of the lap length. 

3 Discussion of parameters influencing the effectiveness of FRP 

confinement 

The literature survey indicates that extensive research on the subject has been performed until now. The 

different approaches adopted to investigate the bond behaviour of lap spliced elements strengthened with 
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FRP also reflect the numerous parameters influencing bond behaviour and the effectiveness of FRP 

confinement, as discussed in the following. 

3.1 Type of specimen and lap splice length 

The lap length used to investigate the effect of FRP confinement on lap-spliced members is generally 

selected on the basis of the adopted experimental approach and on the level of stress expected to be 

developed in the bars. When test specimens are designed according to a capacity-ductility approach, FRP 

confinement has a minor influence if laps are relatively short and bar pullout dominates failure. 

Conversely, the influence of confinement is important when concrete splitting dominates failure. For 

instance, in columns with relatively long splices (l b>35-40db), the confinement provided by the concrete 

cover and internal stirrups may be sufficient to develop yielding in the bars, resulting in rather stable and 

ductile hysteresis loops. Consequently, the behaviour of these columns is only slightly improved by 

additional FRP confinement at the lapped zone (Bousias et al. 2007, ElGawady et al. 2010, Bournas and 

Triantafillou 2011). The improvement is particularly evident at higher ductility levels of response when 

the FRP confinement prevents premature spalling of the concrete cover and delay possible buckling of the 

spliced bars (Pantazopoulou et al. 2015).  

Although FRP confinement has proven very effective at improving the behaviour of lap-spliced columns, 

the majority of the tested specimens to date differ considerably in size and geometry, bar and concrete 

characteristics, type and layout of the FRP confinement, and lap length. Due to this lack of uniformity, the 

results and conclusions drawn from an experimental programme may not be directly comparable to 

others. Additionally, the effect of FRP strengthening on the local bond behaviour is difficult to assess due 

to the practical difficulties in monitoring the strains along the lapped bars (unless closely spaced strain 

gauges are fixed on the bars). 

In general, when a bond strength approach is adopted in the investigations, the selected bonded length 

depends on whether local or average bond strength is of interest. Bonded lengths of anchorages and lap 

splices are usually “short” enough to prevent bar yielding so that the bond mechanism is not affected (i.e. 

l b<l b,min, whre l b,min= minimum bonded length), but also sufficiently “long” to allow the contribution of a 

considerable number of bar ribs to bond resistance. The test specimens described previously in Section 
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2.2  follow this rationale and adopted lap lengths in the range 5db≤ l b≤15db. The results of these 

specimens can be also useful, for instance, to adjust existing bond-slip relationships so as to account for 

the FRP strengthening.  

Given the different factors affecting bond, an experimental methodology that combines the use of tests on 

standard specimens (e.g. beam-end or beam splice specimens), along with tests on lap splice lengths 

typical of substandard RC columns (l b=20-30db), can provide a valuable insight into the bond behaviour 

of FRP-confined members. It should be also noted that current bond provisions of modern design codes 

such as ACI 318 (2011) and fib Model Code 2010 (2010) were developed using large databases of test 

results from beam splice specimens. As a consequence, these beams can provide suitable data to develop 

bond strength models that can be included in future revisions of FRP guidelines. 

3.2 Layout and thickness of FRP reinforcement 

The use of different FRP reinforcement layouts and thickness/number of layers (nft f) was investigated by 

several researchers. The effectiveness of discontinuous FRP reinforcement (strips) has been studied in 

columns (Harajli and Rteil 2004), beam-end and beam specimens (Kono et al. 1997, Kono et al. 1999, 

Kono et al. 2000), and beam splice specimens (Hamad et al. 2004a, 2004b, 2004c). Compared to 

continuous strengthening applications, discontinuous reinforcement is less effective and therefore rarely 

used in practical wet lay-up applications. The strengthening of lap-spliced members usually involves the 

full wrapping of the cross section with FRP sheets. Nonetheless, U-shaped FRP sheets have been 

successfully used in beam specimens as shown in Figure 4(b) and Figure 6(b). Whilst U-wraps are less 

effective than full wraps, they are generally more practical for strengthening beams where the presence of 

a slab could prevent full wrapping. Such a confinement layout however is rarely required in columns, 

which are more vulnerable than beams. As a result, it is recommended that future tests focus on 

investigating continuous and either full or U-wrap strengthening applications. 

Practical strengthening applications generally use a minimum of one continuous layer of fully wrapped 

FRP reinforcement. This minimum amount of FRP confinement may be sufficient to develop the full 

capacity of RC columns with typical lap splices of length l b=20-30db (e.g. Breña and Schlick 2007, 

Ghosh and Sheikh 2007, Harajli and Dagher 2008, Harajli and Khalil 2008, ElSouri and Harajli 2011, 
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Garcia et al. 2014). Additional FRP layers can provide more confining pressure to the lap splice, 

enhancing its bond strength and improving further the specimen behaviour. However, similarly to 

confinement by internal steel reinforcement, FRP confinement only enhances bond strength up to the 

point where bar pullout dominates failure. Few researchers have investigated experimentally the 

maximum achievable bond strength enhancement as a function of the amount of FRP confinement 

(Hamad et al. 2004a, Harajli et al. 2004). In addition, the effectiveness of FRP confinement is limited by 

yielding of the lapped bars as bond strength increases only marginally after this point (Harajli and Dagher 

2008). As no significant bond enhancement is expected in the post-yield stage, it seems uneconomical to 

provide more confinement than that necessary to develop yielding of the bars (unless it is required for 

other strengthening objectives). Indeed, previous research (Hamad et al. 2004a, 2004b, 2004c, Garcia et 

al. 2014) suggests that the use of two layers of FRP can be sufficient to mobilise the maximum achievable 

bond strength of typical lap splices. 

3.3 Strains developed in the FRP 

Due to their intrinsic mechanical characteristics, FRP remain essentially elastic until failure. As a result, 

the confining stress (f l) applied by the FRP reinforcement on a lap-spliced member depends on the 

effective strain (ife) developed in the main direction of the fibres. Despite of this, not all experimental 

studies provide sufficient information on the evolution of FRP strains to allow evaluating the effective 

confining stress at bond failure. In the case of lap spliced columns, studies often report “maximum” FRP 

strains recorded at the last test stages, when significant concrete cover spalling, concrete crushing and/or 

bar buckling can affect the strain readings. Additionally, FRP strains are also affected by the location of 

the strain gauges along the member and across the cross section. For instance, large FRP strains are 

usually recorded close to the base of columns (Ma and Xiao 1999, Schlick and Breña 2004). While such 

large strains have been mainly attributed to the variation of flexural moment over the column height, they 

could also be a result of the development of other degradation mechanisms (e.g. bar bucking). Also, very 

high strain values can be recorded near the corner of rectangular sections where rupture of the FRP 

confinement is more likely to occur (Walkup 1998, Sause et al. 2004). 

In lap spliced members, the effectiveness of the passive confining action from the FRP relies heavily on 

concrete dilation around the lapped bars, which in turn depends on bar slip (e.g. Tastani and 
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Pantazopoulou 2008, 2010). Test results from lap-spliced circular columns indicate that the ‘onset’ of bar 

slip occurs at dilation strains between 1000 and 2000 µi (Seible et al. 1995). Based on this observation, a 

limiting (effective) FRP strain of 1000 µi was suggested for the design of FRP strengthening solutions to 

‘prevent’ slippage of the lapped bars. This value is in agreement with more recent test data indicating that 

FRP strains measured at peak capacity of rectangular and circular columns never exceed 8% and 15% of 

the ultimate elongation strain of carbon fibres (ɸ fu=15000 µi), respectively (Tastani and Pantazopoulou 

2006, Harajli 2009, Tastani and Pantazopoulou 2010). These results indicate that debonding of lapped 

bars typically occurs at low lateral strain values, which could be still sufficient to develop the full 

capacity of the lapped bars as evidenced by the tests summarised in Section 2.1. 

FRP strains were found to increase with decreasing values of minimum clear concrete cover to bar 

diameter (cmin/db) (Harajli 2008, Harajli and Dagher 2008). This can be attributed to the fact that, as the 

ratio cmin/db reduces, the formation of premature splitting cracks tend to mobilise the FRP confining 

action earlier. Tests results from lap-spliced columns indicate that the additional contribution of FRP 

confinement to the column capacity, with reference to the capacity of an unconfined specimen, is higher 

as the ratio cmin/db reduces (Harajli and Dagher 2008). Although the thickness of the concrete cover is 

crucial in bond splitting failures, its importance is frequently overlooked and actual measured covers from 

tested specimens are rarely reported, thus preventing accurate computations of bond strength.  

3.4 Properties of FRP 

The use of a constant effective strain in the design of strengthening solutions for lap spliced members (see 

previous section) implies that stiff CFRP wraps could be expected to be more effective than AFRP/GFRP 

wraps because the former can mobilise higher confining pressures. However, very few studies have 

compared the effectiveness of different types of FRP confinement at improving the behaviour of lap-

spliced columns (e.g. Haroun et al. 1999, Breña and Schlick 2007, Thermou and Pantazopoulou 2009). In 

these studies, lap-spliced columns confined with the same number of GFRP, AFRP or CFRP layers were 

capable of developing their full capacity. For similar values of axial stiffness nft fEf , the variation of the 

type of the FRP sheet does not affect the observed response (Thermou and Pantazopoulou 2009). 
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The influence of the type of fibre on bond strength has been also studied using a bond strength approach, 

but to a very limited extent. Kono et al. (1999, 2000) found that the use of CFRP strips (see Figure 2(d)) 

only increased marginally the bond strength of the bars when compared to AFRP strips. Hamad et al. 

(2004c) tested beam-splice specimens confined with either GFRP or CFRP sheets (Figure 4), and 

concluded that the type of fibre had no significant effect on the bond strength of the lapped bars. It should 

be noted, however, that similar confinement layouts and FRP axial stiffness were used. Ozden and 

Akpinar (2007) (see Figure 2(f)) indicated that the bond strength enhancement due to FRP confinement 

depended on the type of fibre, but a detailed analysis of their results leads to conflicting conclusions: a 

comparison between specimens with similar FRP axial stiffness shows that bar bond strength is only 2-

6% higher in specimens wrapped with five GFRP layers than in those wrapped with two CFRP layers. 

The marginal bond enhancement difference between wrapping with five and two layers may be due to a 

lower effectiveness of the outer FRP layers in applying confinement compared to the inner layers, and 

also to possible slippage between such layers. In view of these inconsistencies, the effect of the type of 

FRP on anchorages and lap splices failing in bond splitting should be further investigated. 

3.5 Concrete and bar properties 

Both the material properties of concrete and the geometry of the reinforcing bars play a major role in 

defining the bond-slip behaviour at the steel-concrete interface. Whilst the compressive (fc) and tensile 

(fct) strength of concrete affect pullout and splitting bond strength, respectively, rib geometry and relative 

rib area of the bars are critical in ensuring the adequate transfer of bond forces through a rib bearing 

mechanism and are known to influence the extent of bar slippage (fib 2000). 

In order to assess the effect of concrete compressive strength on the additional bond strength provided by 

FRP wraps, the experimental programme conducted by Hamad et al. (2004a) comprised normal and high-

strength RC beam splice specimens (see Section 2.2.3 and Figure 4). Nominal concrete compressive 

strengths of fc=27.6 and 69.0 MPa were examined. As expected, the lapped bars used in high-strength 

beams mobilised a higher bond strength than that of normal-strength beams. Nonetheless, for equivalent 

test parameters and FRP layout, both groups of beams exhibited similar failure modes and bond strength 

enhancement values, thus suggesting that fc has a relatively minor influence such enhancement.  
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Ozden and Akpinar (2007) studied the influence of different concrete strengths and bar diameters on the 

bond strength of anchorages using the specimens shown in Figure 2(f). Nominal concrete compressive 

strengths of fc=20 and 40 MPa were examined. The average bond strength enhancements after FRP 

wrapping were similar and ranged from 16% to 42% for concrete of 20 MPa, and from 18% to 40% for 

concrete of 40 MPa. The bond strength enhancement increased slightly with an increase in the bar 

diameter.  For concrete of 20 MPa, average bond strength enhancements were 28%, 31% and 35% for 

db=12, 16 and 26 mm, respectively. For the same bars anchored in concrete of 40 MPa, similar 

enhancements of 26%, 32% and 37% were obtained. The higher bond strength enhancement observed for 

the 16 and 26 mm bars (over the 12 mm bars) can be partially attributed to the larger contribution of FRP 

confinement on larger size bars, an effect which is also observed in lap splices confined with transverse 

steel stirrups (ACI Committee 408 2012). However, the large scatter observed in the bond strength results 

and the use of a constant cmin/db ratio of 1.0 in the experimental study suggest that additional test data 

would be beneficial to assess the effect of bar diameter. 

Tastani and Pantazopoulou (2010) also examined the influence of concrete properties on the bond 

strength of specially machined bars. Two different types of concrete were examined: a) concrete with 

tensile strength fct=2.05 MPa and apparent porosity of 4.33%, and b) concrete with fct=2.30 MPa and 

apparent porosity of 8.16%. The test results did not confirm any effect of these variables on the bond 

strength of the bars. As the machined bars had nominal rib heights of 0.5 and 1.1 mm and a rib face angle 

of 90°, the authors also investigated the effect of rib height on bond behaviour. Tastani and 

Pantazopoulou (2010) reported that, as expected, bars with higher ribs mobilised higher bond strengths 

due to enhanced rib bearing action, but led to smaller bar slip thus resulting in less ductile failures. 

Though insightful, these results relate to rib bar geometries that are not typical of commercial 

reinforcement, generally characterised by rib face angles ranging from 30° to 50°. Moreover, it is more 

convenient to compare the relative improvement that the FRP provides to confined specimens over 

unconfined specimens in terms of bond strength and ductility for different rib areas, rather than 

comparing the absolute bond improvement. It has been also argued that FRP-strengthened lap-spliced 

elements have highly variable properties of concrete in tension, but tests performed by the authors (Garcia 

et al. 2014, 2015) and by other researchers (Hamad et al. 2004a, 2004b, 2004c) on beam splice specimens 
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indicate that the FRP strengthening reduced the concrete variability in tension, thus providing more 

consistent bond strengths. In summary, the influence of concrete strength and bar characteristics on 

require further investigation.  

3.6 Cross-section geometry and aspect ratio 

The concrete core of a FRP-confined circular column subjected to pure axial compression is effectively 

confined as the confining action is uniform over the cross section. Conversely, it is generally accepted 

that some regions of a rectangular cross section remain “unconfined” due to parabolic arching action (see 

Figure 7). Hence, reinforcing bars located in the shaded regions of Figure 7 are conservatively considered 

as unconfined, whereas those located at the corners are assumed as fully engaged. Several experimental 

studies have confirmed the lower effectiveness of FRP confinement at improving the response of lap-

spliced columns with rectangular sections (Haroun et al. 1999, Saatcioglu and Elnabelsy 2001, Haroun et 

al. 2003, Haroun and Elsanadedy 2005, Ghosh and Sheikh 2007). In an attempt to bypass this drawback, 

the shape of the cross sections (before applying the FRP) has been modified using oval concrete bolsters 

(Priestley et al. 1992, Priestley and Seible 1995), fast-curing cement (Saadatmanesh et al. 1997b) or 

epoxy grout (ElGawady et al. 2010) to form elliptical cross sections. Precast mortar blocks (Haroun et al. 

2003, Haroun and Elsanadedy 2005) or steel plates (Chang et al. 2000) were also used to form semi-

rounded cross sections. With the exception of the tests by Chang et al. (2000), studies showed that the 

overall behaviour of the oval-shaped columns was only slightly better than that of rectangular columns, 

and thus such shape modifications seem of little benefit.  

Although the arching action shown in Figure 7 can develop in rectangular sections under pure axial 

compression (Mirmiran et al. 1998, Rochette and Labossière 2000), it may not develop in the same way 

during bond splitting failures when part of the concrete and the lapped bars are subjected to tension. 

Under this condition, FRP wraps are mainly expected to control the widening of splitting cracks forming 

on the tensioned side of the section. Indeed, it is the ability of the FRP reinforcement to control the 

development of splitting cracks that determines the effectiveness of the FRP strengthening at increasing 

the bond strength of “unconfined” bars, as confirmed experimentally by Ozden and Akpinar (2007), see 

Figure 2(f).  
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In an attempt to assess the effectiveness of CFRP reinforcement on the seismic performance of members 

with different cross section shapes, Harajli (2009) compared test results from rectangular (Harajli and 

Rteil 2004, Harajli and Dagher 2008) and circular (Harajli and Khalil 2008) lap-spliced columns. Harajli 

concluded that the section shape had no significant effect on column performance when CFRP was used 

for lap splice strengthening. However, a direct comparison of performance between the rectangular and 

circular columns discussed in Harajli (2009) is difficult  due to the confinement effectiveness is different 

in such elements (only corner bars in square sections are effectively confined), as well as to the different 

test conditions and geometry in elevation. More refined standardised methodologies should be developed 

to enable comparisons of tests performed on specimens with different geometries. 

In a column subjected to axial compression, the effectiveness of FRP confinement reduces as the aspect 

ratio of the cross section increases (aspect ratio=long column side/short column side). As a consequence, 

current FRP guidelines suggest ignoring the effect of confinement in rectangular columns with aspect 

ratios larger than 2 or face dimensions exceeding 900 mm (e.g. ACI 440.2R (2008) and CNR-DT 200 

(2012)). It has been shown that CFRP-confined columns with lap splices in the range of l b=30-35db and 

cross section aspect ratio of 2 can perform satisfactorily (Harajli and Rteil 2004, Harajli and Dagher 2008, 

ElGawady et al. 2010, ElSouri and Harajli 2011). Moreover, the use of one CFRP wrap was very 

effective at improving the behaviour of lap-spliced (l b=30db) shear walls with cross-section of 150×1200, 

i.e. an aspect ratio of 8 (Layssi et al. 2012). These results suggest that the aspect ratio limitation imposed 

by current FRP guidelines (that essentially assumes that FRP only confine the section corners) may be 

conservative for lap splice strengthening, and thus such limitation should be revised. 

3.7 Damage level before FRP strengthening 

Only a few studies have investigated the use of FRP as a strengthening solution in lap-spliced damaged 

specimens. Saadatmanesh et al. (1997a) examined the effectiveness of concrete rehabilitation and FRP 

strengthening on circular and square columns that were damaged in a previous experimental study 

(Saadatmanesh et al. 1996). The rehabilitation included the removal and replacement of damaged 

concrete with new quick-setting concrete. After the rehabilitation, an oversized precured GFRP shell was 

wrapped around the column leaving a small gap between the shell and the concrete surface. The gap was 

filled with pressure-injected epoxy to provide active confinement. The rehabilitation and strengthening 
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enhanced the capacity of the columns by up to 38% with reference to the original ‘as-built’ specimens. In 

general, the rehabilitated and strengthened columns had lower flexural stiffness due to bond deterioration 

and damage accumulated during the initial tests.  

Ilki  et al. (2004) tested a damaged lap-spliced rectangular column with plain (smooth) bars rehabilitated 

and strengthened with six layers of CFRP. In this case, the low-strength damaged concrete (fc=13.4 MPa) 

was replaced using high-strength epoxy mortar with a compressive strength of 50 MPa. The rehabilitation 

and subsequent strengthening enhanced the capacity of the column by 34% in comparison to its original 

capacity. Moreover, both capacity and ductility were improved considerably with reference to those of an 

identical undamaged specimen. Ilki et al. (2004) also concluded that the level of pre-damage had no 

significant adverse effect on the performance of the rehabilitated and strengthened specimen, but they 

also suggest performing more tests to draw more general conclusions. However, the individual 

contribution of the rehabilitation solution and that of the CFRP strengthening is unclear.  

Thermou and Pantazopoulou (2009) tested previously damaged square columns (Syntzirma and 

Pantazopoulou 2006) after strengthening. In this testing programme, the damaged concrete at the splice 

zone was not rehabilitated, and GFRP and CFRP wraps with similar axial stiffness were used. The 

adopted strengthening solutions enhanced the capacity of the columns by a minimum of 2% and up to 

55% in comparison to the original specimens. The limited enhancement in capacity was attributed to bar 

yielding promoted by the use of closely spaced internal steel stirrups (spacing=70 mm) and the relatively 

long lap length used in some of the columns (l b=36db). 

The results from the aforementioned studies indicate that the effectiveness of an FRP strengthening 

solution depends heavily on the extent and quality of rehabilitation of the concrete around the lap splice 

zone. Overall, the influence of the initial level of damage is difficult to assess due to the limited number 

of test results available in the literature, but also due to the different strengthening objectives between 

experimental programmes. As a consequence, the conclusions of these studies may not be easily 

generalised. 
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3.8 Other parameters 

Other parameters not thoroughly investigated (thus conclusions are difficult to draw) but available in the 

literature are: 

(a) Type of load and load path. These include the influence of dynamic load on lap splices using shake 

table tests, partially spliced columns (50%) subjected to pseudo-dynamic tests PsD (Chung et al. 

2008), quasi-static cyclic tests on repaired and FRP-strengthened lap-spliced square columns using a 

near-field earthquakes (Thermou and Pantazopoulou 2009), and cyclic fatigue load (Alyousef et al. 

2015, Alyousef et al. 2016). 

(b) Use of lap splices with plain (smooth) bars. The activation of the passive confining action from 

FRP wraps relies on concrete dilation produced by the bar ribs reacting against the surrounding 

concrete. Consequently, FRP are less effective at enhancing the performance of RC columns with 

lap-spliced plain bars (Bousias et al. 2004, Ilki et al. 2004, Yalçin and Kaya 2004, Bousias et al. 

2007). 

(c) Corrosion of reinforcing bars. Significant corrosion can deteriorate the bond strength between bars 

and concrete. However, provided the failure is dominated by cover splitting, the bond behaviour of 

corroded anchorages and lap splices can still be effectively enhanced through externally bonded FRP 

reinforcement around columns (Aquino and Hawkins 2007), as well as eccentric pullout specimens 

with L-shaped CFRP wraps (Soudki and Sherwood 2003), concentric pullout specimens confined 

with CFRP sheets (Papakonstantinou et al. 2011) (similar to those shown in Figure 2(c)-(d)), 

damaged beam-end specimens with or without low-strength mortar rehabilitation and strengthened 

with U-shaped CFRP wraps (Tastani and Pantazopoulou 2007), beam anchorage specimens (Craig 

and Soudki 2005) wrapped with U-shaped CFRP sheets, and beam splice specimens wrapped with 

U-shaped CFRP sheets (Shihata and Soudki 2012). 

4 Predictive models and design guidelines 

Table 1 summarises the predictive models available in the literature for FRP strengthening of RC 

members with substandard splices. The models are classified as a) design models, and b) bond strength 

enhancement models, and their main features and limitations are discussed. 
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4.1 Design-oriented models 

In these models, the FRP thickness required to strengthen the lapped zone is computed directly using 

equations derived from test results on circular and rectangular column specimens.  

Priestley and co-workers (Priestley et al. 1992, Priestley and Seible 1995, Seible et al. 1997) proposed the 

first model for FRP strengthening of columns with substandard lapped bars (see model 1 in Table 1). The 

confining stress (f l) required to develop the tensile strength of the bar is computed using a frictional 

resistant approach that assumes a constant shear stress along potential splitting planes forming around a 

lapped bar. Lap splice failure is prevented by limiting the FRP strains to an effective strain ife=1000 たi, a 

value associated to the onset of “significant” slip of lapped bars (Chai et al. 1991, Priestley et al. 1994). 

Although studies indicate that this model may lead to the use of very conservative amounts of FRP 

confinement (Harries et al. 2006, Harajli 2008, Harajli and Khalil 2008), it is still included in current 

guidelines for FRP strengthening (e.g. EN 1998-3 (2005), CNR DT-200 (2012)). Using experimental 

strain readings from tests on GFRP-strengthened lap-spliced circular columns, Youm et al. (2007) 

suggested reducing the conservativeness of model 1 by adopting a higher value of effective FRP strain, 

i fe=2000 µi (see model 5 in Table 1), but this has not been adopted in existing guidelines. 

On the basis of a drift-based design approach for confinement of columns with steel stirrups (Saatcioglu 

and Razvi 2002), Elnabelsy and Saatcioglu (2004) proposed model 2 to compute the thickness of FRP 

required to develop a predetermined drift demand (h) in lap-spliced columns. In this model, the effective 

FRP strain is limited to ife=2000 µi. The applicability of the model is limited to columns under 

significant levels of axial load (see model 2 in Table 1). 

Using Xiao and Ma (1997) bond-slip model for lap splices, Elsanadedy and Haraoun (2005) proposed 

model 3 to calculate the thickness of the FRP required to develop yielding of substandard lapped bars in 

circular columns. A main feature of this model is that the minimum lateral confining stress f l  provided by 

the FRP takes into account the bond strength contribution provided by the column concrete cover. 

However, the equation used to compute this contribution (taken from ACI 408.2R-92 (2005)) may 

overestimate the bond strength of small diameter bars, resulting in low or even negative f l  values for 
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typical lap splice lengths of substandard structures. In addition, the model also implies that the applied 

strengthening will lead to yielding of the bars, which may not happen if the bars pullout. 

Hawkins and co-workers (Hawkins et al. 2000, Aquino and Hawkins 2007) suggested using model 4 to 

compute the thickness of FRP required to strengthen columns with non-contact lap-splices. The model 

assumes that a shearing plane with given crack width develops between the starter bars and the 

longitudinal column bars. Accordingly, sufficient shear stress (vci) should act over the failure surface to 

develop the full tensile strength of the starter bars before a bond failure occurs. The confining stress 

provided by the FRP should be equal to the normal compressive stress (fci) that enables the development 

of the stress vci, computed according to the model by Vecchio and Collins (1986). Hawkins and co-

workers indicated that the use of their model would result in more economical design solutions than those 

given by the FHWA (2006) retrofitting guidelines. 

As all predictive models previously discussed were developed for circular and rectangular columns with 

specific geometries, they may not be easily generalised to account for other cross section geometries. 

Models adopting a general bond approach independent of the cross section geometry, however, are 

available in the literature and are discussed below. 

4.2 Bond strength models 

The models described in the following compute the total bond strength of the anchorages and lapped bars 

as the sum of the contributions from concrete cover, and the bond strength enhancement provided by the 

FRP reinforcement (〉kspl in Figure 8). 

Based on test results from the beam-end specimens shown in Figure 2(c)-(d), Kono et al. (1999, 2000) 

modified a bond equation originally developed for internal steel confinement (Fujii and Morita 1983) and 

proposed computing 〉kspl using model 6 in Table 1. In this model, the effect of the strengthening on bond 

strength is independent of the FRP strains. The nonlinear equation proposed by the authors follows the 

trend of the experimental results and suggests that the effectiveness of the external confinement reduces 

for FRP reinforcement ratios (と f) higher than 0.15%. The applicability of the model is limited to the 

maximum FRP reinforcement ratio examined in the experiments, とf=0.35%. 
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Hamad and co-workers (2004a, 2004b, 2004c, 2006) proposed model 7 based on calibration with limited 

test results from RC beam splice specimens (Figure 4). The model is equivalent to that suggested by 

Orangun et al. (1975, 1977) to compute the additional bond strength provided by steel stirrups on lapped 

bars in RC beams. The influence of the FRP wraps on the bond strength of lapped bars is accounted for 

through an effective stress (f fe) calculated according to the ACI 440.2R (2008) guidelines for shear 

strengthening. According to model 7, the bond strength enhancement due to the FRP reinforcement 

increases linearly with increasing amounts of FRP. 〉kspl is limited to 0.25√fc to reflect the fact that the 

use of additional FRP wraps cannot lead to further enhancement of the bond strength as failure is 

dominated by pullout (see dashed line in Figure 8). The same limiting value was proposed by Orangun et 

al. for internal steel stirrups.  

Using the experimental results of the beams tested by Hamad and co- workers (2004a, 2004b, 2004c, 

2006), Harajli et al. (2004) proposed computing 〉kspl using an equivalent area of FRP reinforcement to 

account for the different elastic modulus of steel stirrups and FRP (model 8 in Table 1). As FRP 

confinement controlled the widening of splitting cracks more effectively than internal steel stirrups, 

Harajli et al. limited 〉kspl to 0.40√fc (Harajli et al. 2004, Harajli 2007).  

Ozden and Akpinar (2007) developed model 9 on the basis of the thick-walled cylinder analogy proposed 

by Tepfers (1973). Accordingly, the FRP wraps are assumed to exert a lateral confining stress f l  over a 

thick-walled cylinder of diameter 3db. To compute f l , the model adopts an effective FRP strain that 

depends on the concrete surface strain at bond failure (ico), bar diameter and FRP axial stiffness. Model 9 

was calibrated using test results from beam-end specimens (see Figure 2(f)) and was only validated for 

bars with very short anchorage lengths and with a clear concrete cover equal to the bar diameter (c=db). 

Model 10 was developed by Tastani and Pantazopoulou (2008, 2010) adopting the ACI 318 (2011) 

frictional model for bond and a thick-walled cylinder analogy. The model assumes the use of an effective 

FRP strain, which is determined as a function of the clear concrete cover, bar diameter and radial 

displacement produced by concrete dilation due to rib bearing action. The radial displacement is 

considered as half the bar slip based on tests on splitting-prone pullout specimens with a short bonded 

length lb=8.33db (Lura et al. 2002). An important improvement in this model is the recognition of the 
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strong interaction between bar slippage and FRP strains. However, to date such interaction has not been 

examined extensively on large-scale lap-spliced members (Harajli and Dagher 2008). 

Based on modifications of the bond strength equations for internal steel confinement (Zuo and Darwin 

2000, Lettow and Eligehausen 2006), Bournas and Triantafillou (2011) proposed two models to calculate 

〉kspl . In these models, the effective strain developed in the FRP confinement (thus the associated 〉kspl) 

reduce with the increase of the lap length to bar diameter ratio (l b/db), and is taken as zero for “long” lap 

lengths l b>55db. As no studies appear to have examined in detail the development of FRP strains for 

different ratios l b/db, further experimental data are deemed necessary to validate this assumption. Model 

11 in Table 1 was found to predict more accurately FRP strain readings from other tests on columns 

(Harajli and Dagher 2008, ElGawady et al. 2010). 

More recently, Garcia et al. (2014, 2015) proposed a practical strain control approach (model 12 in Table 

1) to calculate the bond strength enhancement due to FRP confinement. The effect of the CFRP 

confinement is considered through an additional confining pressure fo assumed to act over a split cross 

sectional area equal to (cmin(x,y)+db)∙l b, as shown in Figure 9. The model was calibrated using experimental 

data from normal-strength FRP-strengthened beams with different lap splice lengths tested by the authors 

(as described in Section 2.2.3), and by Hamad et al. (2006). Figure 10 compares the predictions of model 

12 with the experimental results from the above beam tests. Despite the different test parameters and lap 

length examined in these different experimental programmes, it is evident that the proposed equation 

matches consistently the trend of results. Moreover, previous research (Garcia et al. 2014, Garcia et al. 

2015) has shown that, compared to existing strain control models (Hamad and co- workers (2004a, 

2004b, 2004c, 2006), Harajli et al. (2004), Bournas and Triantafillou (2011)), model 12 predicts more 

consistently the bond strength enhancement due to FRP confinement, as well as the actual FRP strains 

mobilised at bond failure. 

The accuracy of model 12 at predicting the bond strength enhancement of lapped or anchored steel bars is 

further assessed using an extended test data set collected from the existing literature. The following 

criteria were used to select the data: 
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- The tests were carried out on beam splice or pullout specimens with lap/anchorage lengths in the range 

of l b=5-25db  

- The lapped/anchored bar remained elastic during the tests. 

- The experimental maximum bar stress (or bond strength) mobilised in the lapped/anchored bars was 

explicitly reported, and this value could be assumed as uniform over the lap/anchorage. 

- The FRP properties were either reported, or these could be found in the manufacturers’ technical data 

sheets. 

- Minimum clear concrete cover was reported and complies with the applicability limits of the proposed 

model 12, i.e. approximately 0.8≤cmin/db≤2.0. 

The above criteria led to a dataset of 35 beam splice specimens and 92 pullout specimens, which are 

summarised in Table 2 and Table 3, respectively. In this tables, kspl,t is the bond strength mobilised in the 

test, 〉kspl,t is the bond strength enhancement due to the FRP confinement only, and the rest of the 

variables are as defined in Table 1. The value 〉kspl,t was calculated as the difference between the bond 

strength of FRP-confined specimens, and that of corresponding unconfined control specimens. The tables 

also compare the experimental normalised bond strength enhancement (〉kspl,t /fcm
1/2) with the analytical 

predictions calculated with model 12 (〉kspl /fcm
1/2). For the beam splice specimens (Table 2), model 12 

predicts the results with a mean Test/Prediction ratio (T/P) of 1.13 and a standard deviation (StdDev) of 

0.43. For the pullout specimens included in Table 3, such values are T/P=1.36 and StdDev=0.80.Whilst 

the model predicts conservatively the experimental results, it also yields a relatively larger scatter, which 

was somehow expected given the large variability of concrete in tension, as well as the different test 

programmes considered in the assessment. 

It should be mentioned that the majority of the models described above were calibrated using results from 

a limited number of tests. However, provided the bond strength contributions from concrete cover and 

steel stirrups are known, these models seem to accurately determine the types of bond failure observed 

experimentally (either splitting or pullout, see Figure 8) and that typically dominate the behaviour of 

substandard lap-spliced members strengthened with FRP. This implies that the amount of FRP required to 

develop the full capacity of the lapped bars can be readily computed, thus resulting in a more efficient use 

of FRP reinforcement material and more economical strengthening solutions. The variety of test 
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specimens’ geometries and set-ups that have been used by researchers to date, however, prevents 

compiling a comprehensive database of experimental results and does not allow for more accurate 

calibration of existing predictive models and the development of new improved models.  

4.3 Guidelines for FRP strengthening  

Few guidelines provide specific recommendations for the strengthening of substandard lap-spliced 

columns with externally bonded FRP confinement. For circular columns, the Eurocode 8 Part 3 (2005),  

Italian CNR-DT 200 (2012) and Turkish Earthquake Design Code TEC 2007 (2007) suggest computing 

the thickness of the FRP confinement using model 1 in Table 1. Both guidelines also extend the use of the 

same model for rectangular columns implementing the following modifications: 

a) In EN 1998-3, the section width bw of the rectangular column replaces the diameter D. The confining 

stress f l  is ‘ reduced’ by a shape factor ks defined by Eq. (1) (Mi rmiran et al. 1998): 
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where r c is the corner radius defined in Figure 7. 

b) In CNR-DT 200 and TEC 2007, the larger column side replaces the diameter D. In this case, f l  is 

‘reduced’ using a factor kH (Eq. (2)) to account for the arching effect shown in Figure 7 (Restrepo and De 

Vino 1996): 
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where b’ and d’ are defined in Figure 7, and Ag is the gross sectional area of the column. 

Whilst the above mentioned codes follow a capacity-ductility approach, the Japanese AIJ guidelines 

(2002) adopt a bond strength approach to compute the contribution of FRP reinforcement to bond 

strength using model 13 in Table 1, which is a modified version of the equation originally developed by 

Fujii and Morita (1983) for internal steel confinement.  

Finally, the Greek Code of Structural Interventions (EPPO 2012) for RC buildings uses a frictional 

approach (model 14 in Table 1) to design the thickness of the FRP strengthening. The effective FRP 
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strains ife are calculated using the development of cracks due to “an acceptable amplitude” of slip sd in 

the lapped bars. The code proposes values sd =0.3 mm for structures with Performance Level A 

(Immediate Occupancy) and sd =0.4 mm for levels B and C (Life Protection and Collapse Prevention, 

respectively). The model considers a design limit state as implied by the inclusion of partial safety 

factors.  Whilst the Greek code is adequately progressing towards a general bond strength approach, the 

adopted model suggests ignoring the contribution of the concrete cover around the lap (そs=0), which may 

actually account for most of the existing bond strength of the lap as demonstrated experimentally (e.g. 

Hamad et al. 2004a, 2004b, 2004c, Hamad and Rteil 2006, Garcia et al. 2014, 2015). 

The comprehensive literature survey in this study indicates that, despite the large number of studies 

available in the literature, existing codes of practice have yet to include more general bond strength 

approach models. However, it is envisaged that future revisions the fib Bulletin 14 and Eurocode 8 Part 3 

(both currently under revision) will include such type of models (e.g. Pantazopoulou et al. 2015). 

5 Summary and conclusions 

This article presented a literature survey on substandard lap-spliced members strengthened with external 

FRP reinforcement. To date, the majority of the studies have adopted a capacity-ductility approach to 

assess the effectiveness of this strengthening method, focusing on the general performance and 

enhancements in the capacity and/or ductility of FRP-strengthened columns over original substandard 

specimens. However, the lack of uniformity of the tested specimens does not enable direct comparisons of 

results between different experimental programmes. Based on this experimental methodology, some 

design models were proposed for the FRP strengthening of circular and rectangular columns, but such 

models may not be easily generalised to account for other cross section geometries. 

In contrast, some studies adopt a bond strength approach to examine the basic behaviour of anchorages 

and lap splices using standard specimens recommended in state-of-the art reports on bond. The 

effectiveness of the FRP strengthening is usually evaluated by comparing the observed bond strength of 

unstrengthened and FRP-strengthened specimens. Predictive models adopting a general bond approach 

are independent of the cross section geometry and compute the total bond strength as the sum of the 
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contributions from concrete cover and internal steel stirrups (if any), and the bond strength enhancement 

provided by the FRP reinforcement. Whilst these models were calibrated using results from a limited 

number of tests, they allow determining the amount of FRP required to develop the full capacity of the 

lapped bars, thus resulting in a more efficient use of FRP reinforcement material and more economical 

strengthening solutions. It is envisaged that future revisions the fib Bulletin 14 and Eurocode 8 Part 3 

(both currently under revision will include bond strength approaches models for design and assessment. 

Additional research is considered necessary to provide further understanding of the following aspects: 

- More results from tests on standard specimens (e.g. beam-end or beam splice specimens) with 

different lap splice lengths would provide instrumental insight into the bond behaviour of FRP-

confined members. In particular, results from beam splice specimens can provide suitable bulk 

data to develop and calibrate more accurate bond strength models. 

- As the effectiveness of FRP reinforcement at enhancing the bond strength of a lap splice is 

limited by bar pullout, suggested values for the maximum achievable bond strength enhancement 

need to be corroborated. 

- The interaction between bar slippage and FRP strains on full -scale lap-spliced members and the 

influence of different ratios l b/db on the development of FRP strains need to be investigated. 

- To date, it is unclear how the different concrete and bar properties, as well as the type of FRP 

material with different axial stiffnesses, affect the bond strength of anchorages and lap splices in 

FRP-strengthened members.  

- The effectiveness of FRP strengthening at improving the behaviour of lap-spliced members with 

rectangular cross sections and different aspect ratios needs to be studied using more standardised 

tests to enable direct comparisons. 

- The effect of type and rate of loading on the behaviour of lapped bars has not been thoroughly 

investigated. 
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FIGURES 

  
 
Figure 1. (a) FRP confinement around a lap-spliced cantilever column specimen. 
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Figure 2. Specimens tested by (a)-(b) Kono et al. (1997); (c) Tastani and Pantazopoulou (2010); (d)-(e) Kono et al. 
(1999, 2000); and (f) Ozden and Akpinar (2007). Dimensions in mm. 
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Figure 3. Beams tested in double curvature by Kono et al. (1999). Dimensions in mm. 

 

 
Figure 4. Beam splice specimens tested by Hamad and co-workers (2004a, 2004b, 2004c) and Hamad and Rteil 
(2006). Dimensions in mm. 

 
Figure 5. Beam splice specimens tested by Harajli (2006). Dimensions in mm. 
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Figure 6. Beam anchorage specimens tested by Rteil et al. (2007). Dimensions in mm. 

 
Figure 7. Cross section effectively confined in rectangular columns under pure axial compression (adapted from fib 
Bulletin 14 (2001)).  
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Figure 8. Bond strength enhancement provided by FRP reinforcement in an existing lap-spliced member. 
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Figure 9. Bond-splitting failure assumptions in CFRP-confined splices assumed to develop model 12 (adapted from 
Garcia et al. 2014, Garcia et al. 2015) 

 

  
Figure 10. Comparison of proposed equation with experimental results, CFRP-confined beam splice specimens 
(adapted from Garcia et al. 2014, Garcia et al. 2015) 
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TABLES 

Table 1. Predictive models for FRP strengthening of RC members with substandard anchorages and lap splices (Units: MPa, mm and N) 

ID Author  Model Comments Additional nomenclature 

a) Design models 

1 Priestley and co-
workers(a)  
(Priestley et al. 1992, 
Priestley and Seible 
1995, Seible et al. 1997), 
also Eurocode 8 Part 3 
(2005), CNR-DT 200 
(2012) & TEC (2007)  
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ife=0.001 

Developed for lap 
splices of circular 
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 fh=confining pressure from internal stirrups at 
a strain of 0.001 or prestressing stress 
As1b=area of one lapped bar 
D’= column diameter at the centreline of the 
lapped bars 
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sections 

P0 and P =nominal compressive strength and 
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column, respectively 
h=lateral drift ratio 
轄= capacity reduction factor. 
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4 Hawkins and co-workers 
(Hawkins et al. 2000, 
Aquino and Hawkins 
2007) 
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Developed for non-
contact lap splices of 
circular sections 

fci= compressive stress necessary to develop vci 

l c= length of FRP covering the splice 

vci= shear stress on shearing plane 
vcim= maximum shear strength on shearing 
plane 
As1bs= area of one starter bar 
fu= tensile strength of lapped bars 
D”= column diameter at the centreline of the 
starter bars (non-contact splices) 
db1= diameter of starter bar 
db2= diameter of column bar 
w= assumed crack width 
a= maximum aggregate size 
c”= cover to starter bars 

5 Youm et al. (2007) 
 

2

)(

ffe

hl
ff E

ffD
tn

e
−

=
     

ife=0.002 
Same as model 1 but 
considering ife=0.002 

-  

a) Bond strength enhancement models 

6 Kono et al. (1999, 2000) 
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8 Harajli et al. (2004) 
Harajli (2008) 
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Calibrated using results 
from beam splice 
specimens tested by 
Hamad and co-workers 
(2004a, 2004b, 2004c) 

sf = Splice stress 

fα = ratio of the width of the FRP sheets to the 

total splice length ( fα =1 for application of the 

FRP sheets along the full splice length). 

9 Ozden and Akpinar  
(2007) →=

∆
l

c

spl f
f

47.0
τ

lim,if ll ff ≤
 

( )→−












 +
+=

∆
lim,lim, 100

1.01
47.0 ll

c
l

c

spl ff
f

f
f

τ
lim,if ll ff >

 

b

ffeff
l d

Etn
f

3

e
=

    











×
+=

6

2

104
0004.0 fff

cofe

Etnd
bee

      
ico=0.0012

 

( )
b

cl d

k
ff 1

lim, 07.71 −+=  

Calibrated using results 
from beam-end 
specimens with c=db 

f l,lim= confining stress defining the transition 
between splitting and pullout failures (dashed 
line in Figure 8) 
k1= aspect coefficient to consider the bar 
perimeter-area relationship (given in charts) 
ico= concrete tensile strain at bond failure 

10 Tastani and 
Pantazopoulou(b) 
(2008, 2010) 
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approach 
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11 Bournas and 
Triantafillou 
(2011) 
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fck=fcm-8 MPa 
ist=0.00134 

Based on Lettow and 
Eligehausen’s (2006) 
bond equation 

fck= characteristic concrete compressive 
strength 
fcm= mean concrete compressive strength 
cmax= maximum concrete cover 
cmin= minimum concrete cover according to 
Model Code 2010 (2010) 
Kf= confinement coefficient 
ks= calibration factor 
ist= effective strain of the internal stirrups 

12 Garcia et al. (2014, 
2015) 
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Based on a ‘strain 
control’ frictional 
approach and calibrated 
using beam splice results 

fo= confining pressure due to FRP 
cmin(x,y)=min(cx, cy), i.e. smallest of bottom or 
side free cover 
ictm= concrete tensile strain 
Ecm= mean elastic modulus of concrete 
 

13 AIJ guidelines (2002) 
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14 Greek Code of Structural 
Interventions (EPPO 
2012) 
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Based on a frictional 
approach. Model 
includes partial safety 
factors 

Rdけ = partial safety factor =1.5 

s= distance between confinement “collars” 
そs= coefficient expressing the contribution of 
the already existing lap length to 
(recommended value 0=sそ ) 

ね= reduction factor due multiple layers=(no. of 
FRP layers)-1/4  
ifu = ultimate tensile strain of FRP 
sd= acceptable relative slip (0.3 mm for 
performance level A; 0.4 mm for levels B and 
C) 
b1, b2= two cross-sectional dimensions of 
splitting crack 
bfc= width of the friction zone on the crack 
along the spliced bars 

 (a) f l  includes an overstrength factor of 1.4 on the yield strength of steel 
(b) The original model includes the bond strength contributions from concrete cover, steel stirrups and normal pressure on the bars. The sum of these contributors and 
that from the FRP wraps is limited to a maximum of 0.3-0.4fc 
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 Nomenclature: 
 
Af= area of FRP reinforcement 
bf= width of one FRP strip 
c= clear concrete cover 
D= column diameter 
db= bar diameter 
Ef= elastic modulus of FRP 
fc= concrete compressive strength 
f l= lateral confining stress due to FRP 
fy= yield strength of lapped bars 
l b= lap splice length 
nb= number of pairs of lapped bars 
nf= number of FRP layers 
sf= spacing between FRP strips 
t f= thickness of one FRP layer 
〉kspl= bond strength enhancement due to FRP confinement 
ɸ fe= effective FRP strain 
た=1.40= coefficient of friction 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 
 



Table 2 Test results and analytical predictions of bond strength  and bond strength enhancement for beam specimens 

Beam 
fcm 

(MPa)  
Ecm 

(GPa) 

fctm 

(MPa
) 

ictm 

(たi) 
kspl,t 
(MPa) 

〉kspl,t 
(MPa) 

〉kspl,t 

/fcm
1/2 

nf tf 
(mm) 

Ef 
(GPa) 

nftfEf 
(kN/mm) 

nb db 
(mm) 

l b 
(mm) 

wf 
(mm) 

sf 
(mm) 

cmin(x,y) 
(mm) 

fo 
(MPa) 

〉kspl 
/fcm

1/2 
T/P 

Garcia et al. (2015)                                       

SC10D12F1 37.6 32.7 2.81 86 5.59 1.40 0.23 1 0.117 240 28 2 12 120 120 120 17 0.04 0.23 0.97 

SC10D12F2 22.5 28.1 2.63 94 6.23 2.04 0.43 2 0.117 240 56 2 12 120 120 120 13 0.11 0.37 1.15 

SC20D12F1 37.6 32.7 2.81 86 5.97 1.34 0.22 1 0.117 240 28 2 12 120 120 120 20 0.04 0.22 0.98 

SC20D12F2 37.6 32.7 2.81 86 6.62 2.00 0.33 2 0.117 240 56 2 12 120 120 120 20 0.08 0.32 1.03 

SC27D16F1 37.6 32.7 2.81 86 5.34 1.14 0.19 1 0.117 240 28 2 16 160 160 160 27 0.03 0.19 0.96 

SC27D16F2 37.6 32.7 2.81 86 5.75 1.54 0.25 2 0.117 240 56 2 16 160 160 160 27 0.06 0.27 0.92 

Garcia et al. (2014)                                       

LC10D12F1 27.9 29.9 2.45 82 5.20 1.89 0.36 1 0.185 241 45 2 12 300 300 300 10 0.08 0.33 1.08 

LC10D12F2 27.9 29.9 2.45 82 5.47 2.16 0.41 2 0.185 241 89 2 12 300 300 300 11 0.16 0.40 1.02 

LC20D12F1 24.7 28.9 2.20 76 4.86 1.51 0.30 1 0.185 241 45 2 12 300 300 300 17 0.06 0.28 1.09 

LC20D12F2 24.7 28.9 2.20 76 5.18 1.83 0.37 2 0.185 241 89 2 12 300 300 300 19 0.11 0.38 0.97 

LC27D16F1 25.7 29.2 2.48 85 4.80 1.50 0.30 1 0.185 241 45 2 16 400 400 400 22 0.05 0.26 1.15 

LC27D16F2 25.7 29.2 2.48 85 5.16 1.86 0.37 2 0.185 241 89 2 16 400 400 400 23 0.10 0.36 1.03 

Hamad et al. (2004c) 

NC1S1 28.4 30.1 2.24 74 4.24 0.43 0.08 1 0.13 230 30 3 20 305 76 305 20 0.005 0.08 1.03 

NC1S2 29.8 30.5 2.34 77 4.31 0.50 0.09 1 0.13 230 30 3 20 305 76 152 20 0.010 0.11 0.81 

NC1S3 31.1 30.9 2.43 79 4.81 1.00 0.18 1 0.13 230 30 3 20 305 381 381 20 0.020 0.16 1.11 

NC2S1 35.8 32.3 2.75 85 4.40 0.59 0.10 2 0.13 230 60 3 20 305 76 305 20 0.011 0.12 0.83 

NC2S2 28.4 30.1 2.24 74 4.54 0.72 0.14 2 0.13 230 60 3 20 305 76 152 20 0.019 0.16 0.87 

NC2S3 29.2 30.3 2.30 76 5.12 1.31 0.24 2 0.13 230 60 3 20 305 381 381 20 0.038 0.22 1.08 

Harajli (2006)                                         

B20FP1 35.6 32.2 2.74 85 8.35 3.28 0.55 1 0.13 230 30 2 20 100 100 100 30 0.03 0.18 3.00 

B20FP2 35.6 32.2 2.74 85 7.46 2.39 0.40 2 0.13 230 60 2 20 100 100 100 30 0.05 0.26 1.54 

B25FP1 28.8 30.2 2.27 75 5.10 1.23 0.23 1 0.13 230 30 2 25 125 125 125 25 0.02 0.17 1.33 

B25FP2 28.8 30.2 2.27 75 6.06 2.20 0.41 2 0.13 230 60 2 25 125 125 125 25 0.04 0.24 1.68 
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B2W-CF1 41.9 33.8 3.14 93 8.29 1.55 0.24 1 0.13 230 30 2 20 100 100 100 30 0.03 0.19 1.25 

B2W-CF2 40.6 33.5 3.06 91 7.65 1.02 0.16 2 0.13 230 60 2 20 100 100 100 30 0.05 0.27 0.60 

B3W-CF1 37.4 32.7 2.86 87 5.44 1.10 0.18 1 0.13 230 30 2 25 125 125 125 25 0.03 0.19 0.97 

B3W-CF2 41.5 33.7 3.12 92 5.86 1.29 0.2 2 0.13 230 60 2 25 125 125 125 25 0.06 0.27 0.74 

Hamad et al. (2004a,2004b) 

BC1S1 63.2 38.3 4.35 114 6.84 0.40 0.05 1 0.13 230 30 3 20 305 76 305 20 0.007 0.097 0.52 

BC1S2 57.7 37.2 4.06 109 7.41 0.97 0.13 1 0.13 230 30 3 20 305 76 152 20 0.014 0.134 0.96 

BC1S3 55.2 36.7 3.92 107 8.19 1.75 0.24 1 0.13 230 30 3 20 305 381 381 20 0.027 0.188 1.26 

BG1S1 58.9 37.5 4.12 110 6.95 0.51 0.07 1 0.36 72.41 26 3 20 305 76 305 20 0.006 0.089 0.75 

BG1S2 51.1 35.9 3.69 103 7.99 1.55 0.22 1 0.36 72.41 26 3 20 305 76 152 20 0.011 0.121 1.79 

BG1S3 52.3 36.1 3.76 104 8.13 1.69 0.23 1 0.36 72.41 26 3 20 305 381 381 20 0.023 0.173 1.35 

BG2S1 51.5 36.0 3.71 103 7.15 0.71 0.10 2 0.36 72.41 52 3 20 305 76 305 20 0.011 0.121 0.82 

BG2S2 49.7 35.6 3.61 101 8.29 1.85 0.26 2 0.36 72.41 52 3 20 305 76 152 20 0.022 0.170 1.54 

BG2S3 50.7 35.8 3.67 102 8.57 2.13 0.30 2 0.36 72.41 52 3 20 305 381 381 20 0.044 0.242 1.24 

Mean                                       1.13 

StdDev                                       0.43 
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Table 3 Test results and analytical predictions of bond strength  and bond strength enhancement for pullout specimens 

Specimen 
fcm 

(MPa) 
Ecm 

(GPa) 
fctm 

(MPa) 
ictm 

(たi) 
kspl,t 
(MPa) 

〉kspl,t 
(MPa) 

〉kspl,t 

/fcm
1/2 

nf 
t f 
(mm) 

Ef 
(GPa) 

nftfEf 
(kN/mm) 

nb 
db 
(mm) 

l b 
(mm) 

cmin(x,y) 
(mm) 

fo 
(MPa) 

〉kspl 
/fcm

1/2 T/P 

Ozden and Akpinar (2007) 

EC20D12FC2A 21.3 27.6 1.68 61 11.64 2.18 0.47 2 0.117 240 56 1 12 84 12 0.14 0.40 1.18 

EC20D12FC2B 21.6 27.7 1.71 62 11.28 1.02 0.22 2 0.117 240 56 1 12 84 12 0.14 0.40 0.55 

EC20D12FC4A 21.3 27.6 1.68 61 13.46 4.00 0.87 4 0.117 240 112 1 12 84 12 0.29 0.40 2.17 

EC20D12FC4B 21.6 27.7 1.71 62 14.55 4.29 0.92 4 0.117 240 112 1 12 84 12 0.29 0.40 2.31 

EC20D16FC2A 21.4 27.6 1.69 61 11.75 4.14 0.89 2 0.117 240 56 1 16 112 16 0.11 0.38 2.37 

EC20D16FC2B 21.6 27.7 1.71 62 9.99 2.09 0.45 2 0.117 240 56 1 16 112 16 0.11 0.38 1.19 

EC20D16FC2r 19.3 26.8 1.51 56 9.78 2.43 0.55 2 0.117 240 56 1 16 112 16 0.10 0.36 1.53 

EC20D16FC4A 21.4 27.6 1.69 61 10.23 2.62 0.57 4 0.117 240 112 1 16 112 16 0.21 0.40 1.42 

EC20D16FC4B 21.6 27.7 1.71 62 10.97 3.07 0.66 4 0.117 240 112 1 16 112 16 0.22 0.40 1.65 

EC20D16FC4r 19.3 26.8 1.51 56 10.23 2.89 0.66 4 0.117 240 112 1 16 112 16 0.20 0.40 1.64 

EC20D26FC2A 24.6 28.8 1.95 68 9.36 2.57 0.52 2 0.117 240 56 1 26 91 26 0.07 0.31 1.67 

EC20D26FC2B 21.2 27.6 1.68 61 8.49 1.67 0.36 2 0.117 240 56 1 26 91 26 0.07 0.29 1.23 

EC20D26FC4A 24.6 28.8 1.95 68 10.85 4.06 0.82 4 0.117 240 112 1 26 91 26 0.15 0.40 2.05 

EC20D26FC4B 21.2 27.6 1.68 61 9.27 2.45 0.53 4 0.117 240 112 1 26 91 26 0.13 0.40 1.33 

EC20D26FC4r 19.3 26.8 1.51 56 8.8 2.19 0.50 4 0.117 240 112 1 26 91 26 0.12 0.40 1.25 

EC40D12FC2A 42.1 33.9 3.15 93 13.83 2.53 0.39 2 0.117 240 56 1 12 42 12 0.22 0.40 0.97 

EC40D12FC2Ar 44.8 34.5 3.32 96 14.99 2.76 0.41 2 0.117 240 56 1 12 42 12 0.23 0.40 1.03 

EC40D12FC2B 45.5 34.7 3.36 97 13.54 1.26 0.19 2 0.117 240 56 1 12 42 12 0.23 0.40 0.47 

EC40D12FC2Br 41 33.6 3.09 92 15.14 3.93 0.61 2 0.117 240 56 1 12 42 12 0.21 0.40 1.53 

EC40D12FC4A 42.1 33.9 3.15 93 14.41 3.10 0.48 4 0.117 240 112 1 12 42 12 0.44 0.40 1.20 

EC40D12FC4Ar 44.8 34.5 3.32 96 15.43 3.20 0.48 4 0.117 240 112 1 12 42 12 0.45 0.40 1.20 

EC40D12FC4B 45.5 34.7 3.36 97 17.17 4.87 0.72 4 0.117 240 112 1 12 42 12 0.45 0.40 1.81 

EC40D12FC4Br 41 33.6 3.09 92 15.72 4.51 0.70 4 0.117 240 112 1 12 42 12 0.43 0.40 1.76 
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EC40D16FC2A 40.6 33.5 3.06 91 14.33 5.24 0.82 2 0.117 240 56 1 16 56 16 0.16 0.40 2.06 

EC40D16FC2B 42.9 34.1 3.20 94 12.28 1.39 0.21 2 0.117 240 56 1 16 56 16 0.17 0.40 0.53 

EC40D16FC4A 40.6 33.5 3.06 91 15.55 6.46 1.01 4 0.117 240 112 1 16 56 16 0.32 0.40 2.53 

EC40D16FC4B 42.9 34.1 3.20 94 13.02 2.13 0.33 4 0.117 240 112 1 16 56 16 0.33 0.40 0.81 

EC40D26FC2A 43.5 34.2 3.24 95 11.59 3.99 0.60 2 0.117 240 56 1 26 91 26 0.10 0.37 1.64 

EC40D26FC2B 45.2 34.6 3.34 97 11.22 2.48 0.37 2 0.117 240 56 1 26 91 26 0.10 0.37 0.99 

EC40D26FC4A 43.5 34.2 3.24 95 11.38 3.78 0.57 4 0.117 240 112 1 26 91 26 0.20 0.40 1.43 

EC40D26FC4B 45.2 34.6 3.34 97 11.44 2.70 0.40 4 0.117 240 112 1 26 91 26 0.21 0.40 1.00 

EC20D12FG3A 21.3 27.6 1.68 61 13.1 3.64 0.79 3 0.157 73 34 1 12 84 12 0.09 0.34 2.32 

EC20D12FG3B 21.6 27.7 1.71 62 13.17 2.91 0.63 3 0.157 73 34 1 12 84 12 0.09 0.34 1.83 

EC20D12FG5A 21.3 27.6 1.68 61 12.08 2.62 0.57 5 0.157 73 57 1 12 84 12 0.15 0.40 1.42 

EC20D12FG5B 21.6 27.7 1.71 62 11.86 1.6 0.34 5 0.157 73 57 1 12 84 12 0.15 0.40 0.86 

EC20D16FG3A 21.4 27.6 1.69 61 9.5 1.89 0.41 3 0.157 73 34 1 16 112 16 0.07 0.29 1.39 

EC20D16FG3B 21.6 27.7 1.71 62 8.96 1.06 0.23 3 0.157 73 34 1 16 112 16 0.07 0.30 0.77 

EC20D16FG5A 21.4 27.6 1.69 61 11.91 4.3 0.93 5 0.157 73 57 1 16 112 16 0.11 0.38 2.44 

EC20D16FG5B 21.6 27.7 1.71 62 9.46 1.56 0.34 5 0.157 73 57 1 16 112 16 0.11 0.38 0.88 

EC20D16FG5R 19.3 26.8 1.51 56 10.56 2.95 0.67 5 0.157 73 57 1 16 112 16 0.10 0.37 1.84 

EC20D26FG3A 24.6 28.8 1.95 68 8.96 2.17 0.44 3 0.157 73 34 1 26 91 26 0.04 0.24 1.80 

EC20D26FG3B 21.2 27.6 1.68 61 8.8 1.98 0.43 3 0.157 73 34 1 26 91 26 0.04 0.23 1.87 

EC20D26FG5A 24.6 28.8 1.95 68 9.55 2.76 0.56 5 0.157 73 57 1 26 91 26 0.07 0.31 1.77 

EC20D26FG5R 19.3 26.8 1.51 56 9.08 2.29 0.52 5 0.157 73 57 1 26 91 26 0.06 0.29 1.82 

EC40D12FG3AR 44.8 34.5 3.32 96 15.14 2.91 0.43 3 0.157 73 34 1 12 42 12 0.14 0.40 1.09 

EC40D12FG3BR 41 33.6 3.09 92 13.68 2.47 0.39 3 0.157 73 34 1 12 42 12 0.13 0.40 0.96 

EC40D12FG5A 42.1 33.9 3.15 93 15.43 3.2 0.49 5 0.157 73 57 1 12 42 12 0.22 0.40 1.23 

EC40D12FG5AR 44.8 34.5 3.32 96 13.24 1.01 0.15 5 0.157 73 57 1 12 42 12 0.23 0.40 0.38 

EC40D12FG5B 45.5 34.7 3.36 97 15.28 4.07 0.60 5 0.157 73 57 1 12 42 12 0.23 0.40 1.51 

EC40D12FG5BR 41 33.6 3.09 92 14.99 3.78 0.59 5 0.157 73 57 1 12 42 12 0.22 0.40 1.48 

EC40D16FG3A 40.6 33.5 3.06 91 11.71 2.62 0.41 3 0.157 73 34 1 16 56 16 0.10 0.36 1.14 

EC40D16FG3B 42.9 34.1 3.20 94 11.87 0.98 0.15 3 0.157 73 34 1 16 56 16 0.10 0.37 0.41 
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EC40D16FG5A 40.6 33.5 3.06 91 12.77 3.68 0.58 5 0.157 73 57 1 16 56 16 0.16 0.40 1.44 

EC40D16FG5B 42.9 34.1 3.20 94 14.24 3.35 0.51 5 0.157 73 57 1 16 56 16 0.17 0.40 1.28 

EC40D26FG3A 43.5 34.2 3.24 95 10.73 3.13 0.47 3 0.157 73 34 1 26 91 26 0.06 0.29 1.65 

EC40D26FG3B 45.2 34.6 3.34 97 10.57 1.83 0.27 3 0.157 73 34 1 26 91 26 0.06 0.29 0.94 

EC40D26FG5A 43.5 34.2 3.24 95 11.44 3.84 0.58 5 0.157 73 57 1 26 91 26 0.10 0.37 1.57 

EC40D26FG5B 45.2 34.6 3.34 97 11.38 2.64 0.39 5 0.157 73 57 1 26 91 26 0.11 0.38 1.05 

Kono et al. (1999, 2000) 

C3-CFRP 29.4 30.4 2.31 76 6.43 1.35 0.25 2 0.167 230 77 2 19 300 40 0.05 0.26 0.97 

C4-CFRP 29.4 30.4 2.31 76 7.11 1.09 0.20 2 0.167 230 77 2 19 300 57 0.04 0.23 0.89 

C7-CFRP 29.4 30.4 2.31 76 3.9 1.36 0.25 2 0.167 230 77 4 19 300 40 0.02 0.18 1.39 

C8-CFRP 29.4 30.4 2.31 76 4.31 1.31 0.24 2 0.167 230 77 4 19 300 57 0.02 0.16 1.52 

C9-CFRP 29.4 30.4 2.31 76 3.39 0.85 0.16 3 0.167 230 115 4 19 300 40 0.04 0.22 0.71 

C10-CFRP 29.4 30.4 2.31 76 3.78 0.78 0.14 3 0.167 230 115 4 19 300 57 0.03 0.20 0.74 

C13-CFRP 24.5 28.8 1.94 68 6.71 1.04 0.21 2 0.167 230 77 2 19 300 72 0.03 0.19 1.08 

C14-CFRP 24.5 28.8 1.94 68 5.33 1.02 0.21 2 0.167 230 77 2 25 300 57 0.03 0.20 1.01 

C17-CFRP 24.5 28.8 1.94 68 5.28 2.17 0.44 2 0.167 230 77 2 25 300 40 0.04 0.23 1.91 

C18-CFRP 24.5 28.8 1.94 68 4.9 0.88 0.18 2 0.167 230 77 2 25 300 40 0.04 0.23 0.77 

C19-AFRP 24.5 28.8 1.94 68 5.38 0.30 0.06 2 0.286 118 67 2 19 300 40 0.04 0.23 0.27 

C27-CFRP 27 29.6 2.14 72 5.22 0.44 0.08 1 0.167 230 38 2 19 300 40 0.02 0.18 0.48 

C28-CFRP 27 29.6 2.14 72 3.03 0.45 0.09 1 0.167 230 38 4 19 300 40 0.01 0.12 0.70 

C29-CFRP 27 29.6 2.14 72 5.32 0.81 0.16 1 0.167 230 38 2 19 300 40 0.02 0.18 0.88 

C30-CFRP 27 29.6 2.14 72 3.24 0.57 0.11 1 0.167 230 38 4 19 300 40 0.01 0.12 0.88 

C31-CFRP 27 29.6 2.14 72 5.42 0.64 0.12 2 0.167 230 77 2 19 300 40 0.05 0.25 0.49 

C32-CFRP 27 29.6 2.14 72 3.22 0.64 0.12 2 0.167 230 77 4 19 300 40 0.02 0.18 0.70 

C33-CFRP 27 29.6 2.14 72 5.42 0.64 0.12 3 0.167 230 115 2 19 300 40 0.07 0.31 0.40 

C34-CFRP 27 29.6 2.14 72 3.75 1.17 0.23 3 0.167 230 115 4 19 300 40 0.04 0.22 1.04 

C35-CFRP 27 29.6 2.14 72 6.2 1.42 0.27 4 0.167 230 154 2 19 300 40 0.09 0.35 0.78 

C37-AFRP 27 29.6 2.14 72 5.52 0.74 0.14 1 0.286 118 34 2 19 300 40 0.02 0.17 0.86 

C38-AFRP 27 29.6 2.14 72 2.89 0.31 0.06 1 0.286 118 34 4 19 300 40 0.01 0.12 0.51 
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C39-AFRP 27 29.6 2.14 72 5.05 0.27 0.05 2 0.286 118 67 2 19 300 40 0.04 0.23 0.22 

C40-AFRP 27 29.6 2.14 72 3 0.42 0.08 4 0.286 118 135 4 19 300 40 0.04 0.23 0.35 

Tastani and Pantazopoulou (2010) 

h0.5-SpB-1 28.1 30.0 2.22 74 7.4 0.70 0.13 1 0.17 230 39 1 12 60 24 0.08 0.33 0.41 

h0.5-SpB-2 28.1 30.0 2.22 74 6.1 0.75 0.14 1 0.17 230 39 1 12 60 24 0.08 0.33 0.43 

h0.5-SpB-3 28.1 30.0 2.22 74 11.4 6.05 1.14 1 0.17 230 39 1 12 60 24 0.08 0.33 3.50 

h1.1-SpB-1 28.1 30.0 2.22 74 15 8.30 1.57 1 0.17 230 39 1 12 60 24 0.08 0.33 4.80 

h1.1-SpB-2 28.1 30.0 2.22 74 14 7.00 1.32 1 0.17 230 39 1 12 60 24 0.08 0.33 4.05 

h0.5-LpB-2 28.1 30.0 2.22 74 10.7 3.90 0.74 1 0.17 230 39 1 12 144 44.4 0.05 0.26 2.83 

h1.1-LpB-1 28.1 30.0 2.22 74 9.6 3.10 0.58 1 0.17 230 39 1 12 144 44.4 0.05 0.26 2.25 

h1.1-LpB-2 28.1 30.0 2.22 74 12.3 3.70 0.70 1 0.17 230 39 1 12 144 44.4 0.05 0.26 2.68 

h0.5-LpB-1 28.1 30.0 2.22 74 5.3 -1.20a - 1 0.17 230 39 1 12 144 44.4 - - - 

h0.5-LpB-3 28.1 30.0 2.22 74 6 -0.50a - 1 0.17 230 39 1 12 144 44.4 - - - 

Mean                                   1.36 

StdDev                                   0.80 
a Negative values and thus considered as outliers 
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