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ABSTRACT

The HDO/H2O ratio measured in interstellar gas is often used to draw conclusions on the formation and evolution of water in star-
forming regions and, by comparison with cometary data, on the origin of water on Earth. In cold cores and in the outer regions of
protoplanetary disks, an important source of gas-phase water comes from photodesorption of water ice. This research note presents
fitting formulae for implementation in astrochemical models using previously computed photodesorption efficiencies for all water ice
isotopologues obtained with classical molecular dynamics simulations. The results are used to investigate to what extent the gas-phase
HDO/H2O ratio reflects that present in the ice or whether fractionation can occur during the photodesorption process. Probabilities
for the top four monolayers are presented for photodesorption of X (X = H, D) atoms, OX radicals, and X2O and HDO molecules
following photodissociation of H2O, D2O, and HDO in H2O amorphous ice at ice temperatures from 10−100 K. Significant isotope
effects are found for all possible products: (1) H atom photodesorption probabilities from H2O ice are larger than those for D atom
photodesorption from D2O ice by a factor of 1.1; the ratio of H and D photodesorbed upon HDO photodissociation is a factor of 2. This
process will enrich the ice in deuterium atoms over time; (2) the OD/OH photodesorption ratio upon D2O and H2O photodissociation
is on average a factor of 2, but the OD/OH photodesorption ratio upon HDO photodissociation is almost constant at unity for all ice
temperatures; (3) D atoms are more effective in kicking out neighbouring water molecules than H atoms. However, the ratio of the
photodesorbed HDO and H2O molecules is equal to the HDO/H2O ratio in the ice, therefore, there is no isotope fractionation when
HDO and H2O photodesorb from the ice. Nevertheless, the enrichment of the ice in D atoms due to photodesorption can over time
lead to an enhanced HDO/H2O ratio in the ice, and, when photodesorbed, also in the gas. The extent to which the ortho/para ratio of
H2O can be modified by the photodesorption process is discussed briefly as well.
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1. Introduction

The abundance of water in interstellar clouds, its partitioning
between gas and ice, and its evolution from collapsing cores
to protoplanetary disks are topics that are directly relevant for
the formation of planets and their atmospheres. Astronomers can
study the water trail starting either from the very first stages of
dense molecular clouds even before a star is born (Whittet et al.
1988; Boogert et al. 2008; Caselli et al. 2012) or working back-
wards from the oceans on our own planet Earth, trying to link its
composition to that of icy solar system bodies (e.g., Nuth 2008;
Mumma & Charnley 2011, and see summary in van Dishoeck
et al. 2014). In both approaches, the HDO/H2O ratio is thought
to be a good indicator of the relevant processes involving water.
Specifically, the fact that the HDO/H2O abundance of 3.1×10−4

in Earth’s oceans (de Laeter et al. 2003) is a factor of 2 lower
than that found in most comets (Villanueva et al. 2009) has been

� Appendices are available in electronic form at
http://www.aanda.org
�� Compiled simulation data and raw data are only available at the
CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A121

used as an argument that most water on Earth originates from
impact of asteroids rather than comets (Raymond et al. 2004)1.
Recent observations with the Herschel Space Observatory have
found at least two comets for which the HDO/H2O ratio is
nearly the same as that in Earth’s oceans, demonstrating that
there is a population of icy bodies with similar values (Hartogh
et al. 2011; Bockelée-Morvan et al. 2012). However, “hot off the
press” data from the Rosetta mission to comet 67 P/Churyumov-
Gerasimenko now suggest that the HDO/H2O in Jupiter family
objects has a wider range than heretofore assumed triggering fur-
ther debate on the origin of Earth’s water (Altwegg et al. 2014).
Hence, there is increased interest in understanding what pro-
cesses affect the HDO/H2O ratio from core to disk to icy plane-
tary bodies.

Physical-chemical models of the collapse of interstellar
clouds and disk formation suggest that the bulk of water is
formed on grains in the dense pre-collapse stage and enters the
disk as ice that is largely unaltered since its formation (e.g.,
Aikawa & Herbst 1999; Visser et al. 2009). If so, the HDO/H2O
ratio in the disk (and eventually in the planetesimals and planets

1 The measured HDO/H2O ratio is 2 × (D/H) in water; the latter values
are commonly used in the literature.
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that formed from it) should reflect the ice values found in the in-
terstellar cloud from which the star formed. Recent simulations
of deuterium chemistry in protoplanetary disks show that, in the
absence of strong vertical mixing, a high initial HDO/H2O ratio
is required in the ice to reproduce the values seen in solar sys-
tem bodies (Furuya et al. 2013; Albertsson et al. 2014; Cleeves
et al. 2014). In cold clouds prior to star formation and in the cold
outer envelopes of low-mass protostars (T < 20 K), high ratios
of deuterated species up to a few × 10−2 have been found for
many molecules including water (e.g., van Dishoeck et al. 1995;
Ceccarelli et al. 1998; Bacmann et al. 2003; Parise et al. 2004,
2012; and see review by Ceccarelli et al. 2014). Although the
fractionation of HDO is generally not as high as that of other
molecules, values of HDO/H2O up to a few % have been in-
ferred in cold gas (Liu et al. 2011; Coutens et al. 2012), higher
than those found in comets. They are also high compared with
the upper limits on HDO/H2O measured directly in interstellar
ices of <(1−5) × 10−3 (Dartois et al. 2003; Parise et al. 2003).
Moreover, the HDO/H2O ratio in warm gas (>100 K) near pro-
tostars typically has lower values of ∼10−3, within a factor of a
few of those of comets (e.g., Gensheimer et al. 1996; van der Tak
et al. 2006; Jørgensen & van Dishoeck 2010b; Persson et al.
2014; Emprechtinger et al. 2013; Neill et al. 2013; Coutens et al.
2014a,b). These differences raise the question whether the high
HDO/H2O values measured in cold gas reflect the HDO/H2O
value in the ice or whether they have been altered by desorption
processes.

In cold clouds, the bulk of the water is present as ice with
only a small fraction of water in the gas, typically 10−4 of that of
ice (e.g., Boonman & van Dishoeck 2003; Caselli et al. 2012).
The water ice is formed in an early stage of cloud formation once
the density and extinction reach a threshold (Cuppen & Herbst
2007). Temperatures in these regions are too low for thermal
sublimation of ice, so the observed cold gas-phase water must
come from non-thermal desorption processes of water ice with
photodesorption a leading candidate (Hollenbach et al. 2009;
Öberg et al. 2009). Indeed, both in pre-stellar cores (Caselli et al.
2012), in the outer parts of protostellar envelopes (Mottram et al.
2013; Schmalzl et al. 2014), and in the cold outer parts of disks
(Dominik et al. 2005; Hogerheijde et al. 2011), the small ob-
served gas-phase water amount is consistent with being due just
to the photodesorption of water ice. The required UV photons
are provided by the general interstellar radiation field at the out-
side of the cloud or by the star in the case of a protoplanetary
disk, and by the interaction of cosmic rays with H2 deeper inside
the cloud. Other non-thermal processes such as chemical des-
orption are poorly quantified but unlikely to be significant for
thick layers of water ice (Dulieu et al. 2013; Minissale & Dulieu
2014). Chemical models have so far considered mostly deu-
terium fractionation processes in the gas phase or on the grains,
but not during the (photo)desorption process (e.g., Tielens 1983;
Aikawa & Herbst 1999; Roberts et al. 2003; Cazaux et al. 2011;
Du et al. 2012; Aikawa et al. 2012; Taquet et al. 2013 and see
summary in van Dishoeck et al. 2013).

In this paper, we use previously computed photodesorption
probabilities to investigate the extent to which the photodesorp-
tion process can modify the gas-phase HDO/H2O ratio compared
with that of the ices. Experiments have demonstrated that the
water photodesorption yield is typically 10−3 per incident pho-
ton, but those data did not have the accuracy to establish differ-
ences between H2O and its isotopologues (Westley et al. 1995;
Öberg et al. 2009). Photodesorption can also be quantified by
molecular dynamics simulations. In a series of papers, both the
photodesorption mechanisms and yields have been investigated

for various water isotopologues and for different ice tempera-
tures (Andersson et al. 2006; Andersson & van Dishoeck 2008;
Arasa et al. 2010, 2011; Koning et al. 2013). The incident UV
photon is absorbed by a water molecule in the ice, which disso-
ciates into H + OH, with both fragments having excess energy.
The outcome depends on the ice layer in which the UV photon
is absorbed; only the top layers actively participate in desorp-
tion. Intact water molecules are released to the gas with a yield
of ∼5 × 10−4 per incident photon through two processes: (i) re-
combination of the H + OH fragments followed by escape of the
energetic newly formed water molecule; and (ii) kick-out of a
neighbouring water molecule by the energetic H atom produced
by photodissociation. In contrast with molecules such as CO,
the excited water molecule does not directly desorb since all UV
absorptions immediately lead to dissociation of the molecule.
Koning et al. (2013) have investigated the yields for the vari-
ous processes using all combinations of water and its isotopo-
logues, i.e., HDO and D2O in H2O ice but also H2O in D2O ice.
Isotope-selective effects are found for the various combinations
because of the different masses of the fragments. For example, if
a D atom is created upon photodissociation, it is more effective
in kicking out a neighbouring molecule than an H atom because
of more efficient momentum transfer.

We here summarise the calculated photodesorption efficien-
cies as a function of ice layer and ice temperature for the astro-
nomically relevant cases of H2O, HDO, and D2O in H2O ice, and
we provide convenient fitting formulae with depth into the ice for
use in astrochemical models. Subsequently the isotope-selective
effects are quantified. Specifically, the more effective desorption
of atomic H compared with atomic D will result in enrichment
of D in the ice. Furthermore, the extent to which the photodes-
orption process can affect the ortho/para ratio of H2O in the gas
is briefly discussed. Section 2 briefly summarises the computa-
tional methods that were used in previous papers. Section 3 lists
the results for the isotope selective processes for each ice layer
at ice temperatures from 10−90 K. Section 4 summarises the
conclusions and astrophysical implications.

2. Methods

Our methods have been explained in detail in our previous stud-
ies (Andersson et al. 2006; Andersson & van Dishoeck 2008;
Arasa et al. 2010, 2011; Koning et al. 2013), and are based on
classical Molecular Dynamics (MD) methods (Allen & Tildesley
1987), in which the atoms and molecules in water ice move ac-
cording to Newton’s equations based on analytical potentials of
the interactions. In brief, an amorphous ice consisting of 480 wa-
ter molecules is built for a certain ice temperature, and one water
molecule (X2O (X = H or D) or HDO) is then randomly selected
to be dissociated by UV radiation. Our previous studies show
that only the photoexcited molecules that are initially located in
the top four monolayers lead to photodesorption processes.

The dynamics of the photodissociation fragments are subse-
quently followed in the ice over a timescale of a few picosec-
onds until one of six possible outcomes is reached (see Fig. 1):
(1) X atom desorption while OX stays trapped in the ice; (2) OX
radical desorption while X stays trapped in the ice; (3) both X
and OX desorb; (4) trapping of both X and OX photofragments;
(5) recombination of the X atom and the OX radical to form
X2O which in the end desorbs; or (6) stays trapped in the ice.
When HDO is dissociated the outcome channels are the same,
but the recombination of the photofragments leads to HDO that
either desorbs (5), or stays trapped in the ice (6). Moreover, there
is a parallel outcome to any of the 6 processes by which one
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Fig. 1. Top: a H2O molecule (with H atoms in yellow) surrounded by water molecules absorbs an UV photon and dissociates into H and OH. H
and OH recombine to form H2O that eventually desorbs from the ice surface via the direct mechanism. Bottom: a D2O molecule (with D atoms in
black) surrounded by water molecules absorbs an UV photon and dissociates into D and OD. The heavier D atom transfers its momentum to one
of the surrounding H2O molecules that desorbs from the ice via the “kick-out” mechanism.

of the surrounding H2O molecules from the ice can also des-
orb, initiated by the same UV photon. This mechanism is called
“kick-out” (Andersson et al. 2006; Andersson & van Dishoeck
2008), and it takes place when the energetic X atom produced
by photodissociation kicks a surrounding molecule from the ice
by transfer of its momentum, and eventually the kicked out H2O
molecule desorbs from the ice.

The calculations are repeated ≥6000 times per species and
per monolayer so that the statistics (i.e., probabilities) of the dif-
ferent outcomes are determined as a function of the initial posi-
tion of the molecule in the ice. The water molecules are excited
with UV radiation in the 7.5−9.5 eV (1650−1300 Å) range, cor-
responding to the first electronic absorption band of water ice.
Throughout the paper, ∗ indicates the molecule that is photodis-
sociated in the ice. For the case of HDO∗ there are two pos-
sible outcomes: HOD∗ indicates photodissociation to H + OD
whereas DOH∗ denotes dissociation to D +OH; HDO and HDO∗
denote the generic case.

In our previous studies (Arasa et al. 2010, 2011) we
calculated the total photodesorption yields of OX and X2O per
incident photon, and compared the results with the available ex-
perimental data (Öberg et al. 2009). For our model D2O ice, the
photodesorption yield agrees well with the experimental pho-
todesorption yield at low ice temperatures within the ∼60% ex-
perimental uncertainties (Arasa et al. 2011). At higher ice tem-
peratures, the experimental photodesorption yield is larger than
the calculated value due to long timescale thermal effects that
cannot be considered in our simulations. The experimental
OX/H2O ratio is however on average a factor of 2 to 3 lower
than the calculated value for H2O ice (see Table II in Arasa et al.
2010), and D2O ice, respectively. In a different kind of experi-
ment, Yabushita et al. (2009) measured the final translational and
rotational energies of the kicked out H2O molecules for υ = 0 at
Tice = 90 K; their values match well with our calculated ones at

Tice = 90 K and provide proof for the importance of the kick-
out mechanism (Arasa et al. 2010). These comparisons between
models and data provide confidence in the accuracy of our sim-
ulations. For isotope selective processes, only relative trends are
considered, which should have less uncertainty than the absolute
values.

3. Results and discussion

In this section we summarize the probabilities of all the pho-
todesorption events after H2O∗, HDO∗ and D2O∗ photodissoci-
ation in amorphous H2O ice at relevant temperatures, Tice = 10
and 90 K. The supplementary material contains the probabilities
at Tice = 20, 30, and 60 K for the top four monolayers (ML) of
the ice surface. These results have been reported and extensively
discussed elsewhere (Koning et al. 2013), but they are presented
here in tabulated form for each of the top four monolayers so that
the data can be used in astrochemical models. In addition, we
provide fitting formulae to these tables in Table 1 (see Appendix
B for more details)2.

A total of 6000 trajectories per monolayer have been sim-
ulated for photoexcitation of H2O and D2O. For photoexcita-
tion of HDO, ≥6000 trajectories were run per monolayer. The
photodesorption probabilities are calculated for each event as
pi = Ni/Ntotal, i = photodesorption event, Ni = number of tra-
jectories that lead to the photodesorption event i, Ntotal = total
number of trajectories per monolayer j, the average is taken over
the top four monolayers (e.g., 〈pi〉 = ∑4

j=1 p j
i /4). All the proba-

bilities are given per absorbed (rather than incident) UV photon.
The averaged photodesorption probabilities calculated per inci-
dent UV photon are on average a factor of ∼0.03 smaller than

2 All tables can be downloaded from http://www.strw.
leidenuniv.nl/~ewine/photo
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Table 1. Fitting functions and best-fit values of the parameters a, b, c,
and ML, ML being the number of the monolayer.

Species a b c
Xdes + OYtrapped

P(ML) = (aML) exp (−bML)
H2O 2.02 0.858 · · ·
D2O 2.06 0.906 · · ·
HOD 2.04 0.867 · · ·
DOH 2.17 0.942 · · ·

Xtrapped + OYdes

P(ML) = (aML) exp (−b(ML − c)2)
H2O 4.28 0.0485 –10.9
D2O 0.0141 0.377 0.264
HOD 0.00359 0.635 0.990
DOH 0.0114 0.450 0.751

Xdes + OYdes

P(ML) = (aML) exp (−b(ML − c)2)
H2O 0.0710 0.210 –1.77
D2O 0.0638 0.554 0.269
HOD 0.0463 0.383 –0.383
DOH 0.0659 0.484 0.0538

Xtrapped + OYtrapped

P(ML) = a(1 − exp (−bMLc))
H2O 0.516 0.149 1.48
D2O 0.458 0.163 1.57
HOD 0.595 0.125 1.60
DOH 0.574 0.111 1.89

XYOdirect

P(ML) = (aML) exp (−b(ML − c)2)
H2O 0.390 0.0819 –6.04
D2O 0.00523 0.470 0.967
HOD 0.00428 0.604 1.12
DOH 0.00494 0.570 1.11

H2Okicked

P(ML) = (aML) exp (−b(ML − c)2)
H2O 0.00320 0.210 0.882
D2O 0.00865 0.452 1.83
HOD 0.00465 0.193 0.419
DOH 0.00949 0.180 0.519

Notes. The species XOY denotes photoexcitation of XOY leading to
dissociation into X + OY. The units of the parameters, a, b, and c,
depend on the fitting function which itself describes a probability and
thus has no physical units. For outcome (1), Xdes + OYtrapped, a and b
have units of ML−1, where ML is monolayer number. For outcome (4),
Xtrapped + OYtrapped, a has no units and b has units of ML−c. For all other
outcomes, a has units of ML−1, b has units of ML−2, and c has units
of ML.

those given per absorbed UV photon for processes (1), (2), (3)
and (5) (see numbering of outcomes in Sect. 2 of this paper and
the description in Arasa et al. 2010, 2011).

Above 100 K, thermal desorption takes over as the main des-
orption mechanism in interstellar space, so our results are not
relevant for the interpretation of data on warm water.

3.1. X (X = H, D) atom photodesorption probabilities

The X atom photodesorption event is the dominant process
when the X2O photodissociated molecule is located in the top
four monolayers of the ice surface (see Table 2 and Andersson
et al. 2006; Andersson & van Dishoeck 2008). The X atom
photodesorption probabilities are >90% in the top monolayer
(ML1) and decrease with depth to ∼30% in ML4 because in the
top MLs the X atoms can easily find their way to escape from

the surface, whereas deeper in the ice there are other molecules
that prevent their desorption.

In general, H atom photodesorption probabilities are some-
what larger following H2O dissociation than those for D atom
photodesorption after D2O photodissociation in H2O ice, espe-
cially if initially the molecules are located in the third and fourth
monolayers. The same trend is observed after HOD∗/DOH∗ pho-
todissociation in H2O ice: H atom photodesorption probabilities
are larger than those for the D atom. This is because of isotope
mass effects: the H atom is lighter than the D atom and therefore
transfers less energy to nearby water molecules, so that it can
travel more easily from the bottom to the top of the surface and
eventually desorb to the gas phase (Arasa et al. 2011; Koning
et al. 2013).

The average H/D photodesorption ratios following H2O∗ and
D2O∗ photodissociation and the average H/D ratios following
HDO∗ photodissociation over the top four MLs are summarized
in Table 3 versus ice temperature. The photodesorption ratio
Hdes
Ddes

after HDO photodissociation have been calculated (as was

done for the photodesorption ODdes
OHdes

in Table IV in Koning et al.
2013) taking into account the probabilities in each ML, i, where
PDdes (i, Tice) is the D photodesorption probability after DOH∗
photodissociation into D and OH, and PHdes (i, Tice) is the H pho-
todesorption probability after HOD∗ photodissociation into H
and OD), and the branching ratios ( H+OD

D+OH ) in the ice in each ML,
i, and temperature (β(i, Tice)). The effect is typically a factor of
1.1 when comparing H2O and D2O, and when comparing HOD
in H2O and DOH in H2O.

For HDO∗ photodissociation, there is another effect at work,
namely that the probability of dissociation into H + OD is
larger than that into D + OH, a process that is well known
in the gas phase. For gas-phase photodissociation, the OD/OH
branching ratio is about 3.1 (van Harrevelt & van Hemert
2012, priv. comm. regarding unpublished data in Table I in
van Harrevelt & van Hemert 2001). In the ice, this effect is less,
but still at the factor of two level. The HDO∗ photodissociation
branching ratios ( H+OD

D+OH ) in the ice in each ML, i, and temperature
(β(i, Tice)) were calculated and listed in Table IV in Koning et al.
(2013). The average branching ratio taken over all ice tempera-
tures is about 2.2 in favor of H + OD. Thus the branching ratio
upon HDO photodissociation in the ice reinforces the H/D des-
orption ratio leading to a ratio more than a factor of two larger
than the ratio of H and D present in the ice (calculated from
Tables 2 and A.1). Therefore, all photons that arrive in the ice
and are absorbed in the top layers of the ice surface lead to an
enrichment in D atoms relative to H atoms in the ice mantles of
dust particles.

3.2. OX (X = H, D) radical photodesorption probabilities

The second most important photodesorption event is OX pho-
todesorption with probabilities of typically a few % in the
top layers. In Table 4 the OX radical photodesorption prob-
abilities for the top four monolayers together with the aver-
age values taken over the top four MLs are summarised at
Tice = 10 K and 90 K. It is seen that the photodesorption prob-
abilities drop sharply from ML2 to ML3. This feature has been
explained in detail previously (Andersson et al. 2006; Andersson
& van Dishoeck 2008; Koning et al. 2013). Although OX is quite
mobile in the top ice layer (ML1), it loses much of its energy in
lower layers to other H2O molecules in the ice, preventing des-
orption of OX.
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Table 2. X atom photodesorption probabilities at Tice = 10 K (top) and 90 K (bottom) resulting from photoexcitation of a X2O (X = H, D) or XOY
(HOD or DOH) molecule present in a specific monolayer of H2O ice.

ML Hdes/H2O∗ Ddes/D2O∗ Hdes/HOD∗ Ddes/DOH∗

Tice = 10 K

1 0.920 ± 3.9 × 10−3 0.900 ± 4.0 × 10−3 0.911 ± 2.8 × 10−3 0.912 ± 3.5 × 10−3

2 0.700 ± 5.8 × 10−3 0.681 ± 6.0 × 10−3 0.751 ± 4.3 × 10−3 0.710 ± 5.6 × 10−3

3 0.510 ± 6.0 × 10−3 0.488 ± 6.3 × 10−3 0.521 ± 4.9 × 10−3 0.472 ± 6.0 × 10−3

4 0.340 ± 5.2 × 10−3 0.231 ± 5.4 × 10−3 0.259 ± 4.3 × 10−3 0.190 ± 4.7 × 10−3

〈MLs〉 0.617 ± 3.2 × 10−3 0.575 ± 3.2 × 10−3 0.610 ± 4.1 × 10−3 0.572 ± 5.0 × 10−3

Tice = 90 K

1 0.922 ± 3.9 × 10−3 0.891 ± 4.0 × 10−3 0.910 ± 3.4 × 10−3 0.910 ± 3.5 × 10−3

2 0.763 ± 5.3 × 10−3 0.682 ± 6.0 × 10−3 0.660 ± 6.0 × 10−3 0.630 ± 6.0 × 10−3

3 0.425 ± 5.6 × 10−3 0.407 ± 6.3 × 10−3 0.460 ± 6.3 × 10−3 0.380 ± 6.0 × 10−3

4 0.320 ± 3.4 × 10−3 0.231 ± 5.4 × 10−3 0.320 ± 6.0 × 10−3 0.250 ± 5.3 × 10−3

〈MLs〉 0.608 ± 3.2 × 10−3 0.553 ± 3.2 × 10−3 0.589 ± 5.5 × 10−3 0.543 ± 5.0 × 10−3

Notes. ML1 is the top monolayer and 〈MLs〉 denotes the average over the top four monolayers.

Table 3. Average photodesorption ratio Hdes
Ddes

following H2O∗, D2O∗ and
HDO∗ photodissociation.

Tice
Hdes
Ddes

(K) H2O∗ and D2O∗ HDO∗

10 1.07 ± 0.01 2.36 ± 0.01 1.01 ± 0.01
20 1.06 ± 0.01 2.43 ± 0.02 1.19 ± 0.01
30 1.06 ± 0.01 2.45 ± 0.02 1.08 ± 0.01
60 1.06 ± 0.01 2.55 ± 0.02 1.11 ± 0.01
90 1.10 ± 0.01 2.47 ± 0.02 1.08 ± 0.01

Notes. For HDO∗, the last column shows the result without considering
the effect of branching in the photodissociation.

The OH photodesorption probabilities after DOH∗ pho-
todissociation and OD photodesorption probabilities after D2O∗
photodissociation are larger than those for OD after HOD∗
photodissociation and OH after H2O∗ in H2O ice. This result
is expected because the OD radicals have higher kinetic energies
than the OH radicals upon the initial D2O and H2O photodis-
sociation, respectively. In contrast, the OH radicals have higher
kinetic energy than the OD radicals upon HDO∗ photodissocia-
tion. These findings follow from applying energy and momen-
tum conservation (pOX + pX = 0, and EOX + EX = ΔE, with
ΔE being the initial available energy; ΔE = Eexc − Ediss(X2O),
see Arasa et al. 2011) . For X2O photodissociation at the same
excitation energy Eexc it is seen that if EOX = ΔE/(1+mOX/mX),
the initial energy of OD should be a factor 1.8 larger than that for
OH. In the case of X(1)OX(2) photodissociation into OX(2) +X(1),
and applying the same conservation rules we can expect that the
energy of the OX(2) radical formed upon DOX(2) photodissocia-
tion is about a factor of two larger than the OX(2) radical formed
upon HOX(2) photodissociation (see Table III in Koning et al.
2013).

The average OD/OH photodesorption ratios following HDO∗
photodissociation over the top four MLs are summarised in
Fig. 2. The photodesorption ratio ODdes/OHdes after HOD∗ and
DOH∗ photodissociation have been calculated taking account
the probabilities in each ML, i, where PODdes (i, Tice) is the OD
photodesorption probability after HOD∗ photodissociation into
H and OD, and POHdes (i, Tice) is the OH photodesorption prob-
ability after DOH∗ photodissociation into D and OH, and the
photodissociation branching ratios H+OD/D+OH in the ice in
each ML, i, and temperature (β(i, Tice), see Table IV in Koning
et al. (2013). These values are seen to be close to unity and to

0 10 20 30 40 50 60 70 80 90
T

ice
 /K

0

0.5

1

1.5

2

2.5

ra
tio

OD
des

(D
2
O)/OH

des
(H

2
O)

OD
des

(HOD)/OH
des

(DOH)

Fig. 2. ODdes(D2O)/OHdes(H2O) ratios and ODdes(HOD)/OHdes(DOH)
ratios averaged over the top four monolayers following HDO dissoci-
ation in H2O ice versus ice temperature Tice (based on Koning et al.
2013).

be mostly constant with ice temperature. The reason that the
ODdes/OHdes ratios are close to unity for HDO∗is that a cancel-
lation of the two effects occurs. On the one hand, the OH des-
orption is more efficient than that of OD, as explained above.
However, this is offset by the OD/OH branching ratio of about
2.2 in the HDO∗ photodissociation, as discussed in Sect. 3.1.
As a result, the average photodesorption ratio ODdes/OHdes upon
HDO∗ photodissociation is about 1.0 with a standard deviation
of 0.2 in the ice (Koning et al. 2013). Note that this result is very
different from pure gas-phase chemistry, where OD is produced
a factor of three more rapidly than OH by photodissociation of
gaseous HDO.

Figure 2 also contains the average photodesorption ratios
between OD desorption following D2O photodissociation in
H2O ice and OH desorption following H2O photodissociation
in H2O ice for all ice temperatures considered. On average, the
ODdes(D2O)/OHdes(H2O) ratio is about 1.9.

3.3. X2O (X = H, D) and HDO molecule photodesorption
probabilities

X2O photodesorption is the third most important photodes-
orption event after H2O∗ and D2O∗ photodissociation with
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Table 4. OX radical photodesorption probabilities at Tice = 10 K (top) and 90 K (bottom) resulting from photoexcitation of a X2O (X = H, D) or
XOY (HOD or DOH) molecule present in a specific monolayer of H2O ice.

ML OHdes/H2O∗ ODdes/D2O∗ ODdes/HOD∗ OHdes/DOH∗

Tice = 10 K

1 0.022 ± 1.9 × 10−3 0.065 ± 3.2 × 10−3 0.044 ± 2.0 × 10−3 0.071 ± 3.2 × 10−3

2 0.021 ± 1.8 × 10−3 0.035 ± 2.8 × 10−3 0.014 ± 1.2 × 10−3 0.033 ± 2.2 × 10−3

3 (3.0 ± 0.7) × 10−3 (4.0 ± 0.9) × 10−3 (9.6 ± 3.0) × 10−4 (5.1 ±0.9) × 10−3

4 0.00 0.00 (1.9 ± 1.3) × 10−4 0.00
〈MLs〉 0.012 ± 6.9 × 10−4 0.026 ± 1.0 × 10−3 0.015 ± 1.2 × 10−3 0.027 ± 2.0 × 10−3

Tice = 90 K

1 0.036 ± 1.8 × 10−3 0.065 ± 3.2 × 10−3 0.016 ± 1.6 × 10−3 0.039 ± 2.4 × 10−3

2 0.025 ± 1.9 × 10−3 0.050 ± 2.8 × 10−3 0.023 ± 1.9 × 10−3 0.045 ± 2.6 × 10−3

3 (2.0 ± 0.7) × 10−3 (5.0 ± 0.9) × 10−3 (3.8 ± 0.8) × 10−3 (7.4 ± 0.1) × 10−3

4 0.00 (3.3 ± 2.4) × 10−4 (1.6 ± 1.6) × 10−4 (3.0 ± 2.2) × 10−4

〈MLs〉 0.015 ± 7.9 × 10−4 0.030 ± 4.0 × 10−4 0.011 ± 1.3 × 10−3 0.023 ± 2.0 × 10−3

Notes. ML1 is the top monolayer and 〈MLs〉 denotes the average over the top four monolayers.

Table 5. Total X2O (X = H, D) or XOY (HOD or DOH) photodesorption probabilities at Tice = 10 K (top) and 90 K (bottom) per monolayer due
to the direct and the kick-out mechanism for X2O and XOY photodissociation in H2O ice.

H2O∗ D2O∗ HOD∗ DOH∗
ML H2Odirect H2Okicked D2Odirect H2Okicked HODdirect H2Okicked DOHdirect H2Okicked

Tice = 10 K

1 5.7 ± 1.1 0.5 ± 0.2 6.8 ± 1.1 12.8 ± 1.5 5.6 ± 0.7 2.2 ± 0.5 5.3 ± 0.9 2.9 ± 0.7
2 7.4 ± 1.2 3.9 ± 1.3 9.2 ± 1.2 17.8 ± 1.7 5.1 ± 0.7 2.7 ± 0.5 7.0 ± 1.0 10.7 ± 1.3
3 1.7 ± 0.8 4.8 ± 1.1 1.0 ± 0.4 16.5 ± 1.6 2.9 ± 0.5 0.8 ± 0.3 1.6 ± 0.5 1.2 ± 0.4
4 0.00 0.6 ± 0.3 0.3 ± 0.2 4.3 ± 0.9 0.1 ± 0.1 1.2 ± 0.3 0.00 0.9 ± 0.4

〈MLs〉 3.7 ± 0.4 2.5 ± 0.2 4.3 ± 0.4 6.6 ± 0.5 3.4 ± 0.6 1.7 ± 0.4 3.5 ± 0.7 3.9 ± 0.8
Tice = 90 K

1 5.3 ± 1.1 1.4 ± 0.8 6.8 ± 0.1 12.8 ± 1.5 2.6 ± 0.6 5.4 ± 0.9 6.8 ± 0.1 15.6 ± 1.5
2 9.6 ± 1.3 3.9 ± 0.9 9.2 ± 1.2 17.8 ± 1.7 6.7 ± 1.1 12.2 ± 1.4 6.6 ± 1.0 21.8 ± 1.8
3 2.6 ± 0.8 5.2 ± 0.9 1.0 ± 0.4 16.5 ± 1.6 1.0 ± 0.4 7.2 ± 1.1 0.8 ± 0.3 21.0 ± 1.8
4 0.00 2.3 ± 0.7 0.3 ± 0.2 4.3 ± 0.9 0.3 ± 0.2 2.9 ± 0.7 1.2 ± 0.4 0.8 ± 0.3

〈MLs〉 4.4 ± 0.4 3.2 ± 0.4 4.3 ± 0.1 12.0 ± 1.0 2.7 ± 0.7 6.9 ± 1.0 3.9 ± 0.8 15.0 ± 1.5

Notes. All values should be multiplied by 10−3. The notation H2O∗ and HOD∗ denote photoexcitation of H2O and HDO in H2O ice in which the
H atom resulting from photodissociation kicks out a neigbouring H2O molecule. The notation D2O∗ and DOH∗ indicate the analogous process in
which the resulting D atom kicks out a neighbouring H2O molecule.

probabilities of ∼0.5% in the top layers. As discussed above,
two processes can occur: direct desorption of the recombined
H2O or D2O molecule or through the kick of the energetic X
atom to a surrounding H2O molecule from the ice. When HOD∗
dissociates it can also lead to the recombination of the H and
OD fragments that eventually desorb as HDO, or the H atom can
kick out the surrounding H2O molecules from the ice. Similarly,
when DOH∗ dissociates the photofragments can also recombine
and desorb, or the D atom can kick out a H2O molecule. In
Table 5 the probabilities of both mechanisms for the top four
MLs and its average for the four different scenarios are reported
at Tice = 10 K and 90 K. Again, isotope effects are rather no-
ticeable if X2O desorbs from the ice surface through the kick-
out mechanism (Koning et al. 2013) after the X atom transfers
its momentum to the surrounding H2O molecules. Since the D
atom is heavier than the H atom it can transfer its momentum
more easily to a surrounding H2O molecule, leading to higher
kick-out photodesorption probabilities, and in consequence to
higher total X2O and HOD photodesorption probabilities (Arasa
et al. 2011; Koning et al. 2013). As demonstrated in Appendix C,

this process does however not lead to fractionation of HDO/H2O
in the gas in H2O-dominated ices, i.e., the gas-phase HDO/H2O
ratio produced by photodesorption reflects that originally in the
ice.

3.4. Ortho/para ratio of photodesorbed H2O

Observations of water in space also provide constraints on the
ortho/para ratio of water in the gas. In diffuse interstellar clouds
and high temperature shocks, these measurements are consis-
tent with a ratio of 3, as expected from gas phase forma-
tion of water (e.g., Flagey et al. 2013; Herczeg et al. 2012;
Emprechtinger et al. 2013). In contrast, the ortho/para ratio of
water in protoplanetary disks and in photon-dominated regions,
such as the Orion Bar, is found to be much lower, with values <1
(Hogerheijde et al. 2011; Choi et al. 2014). In these regions, the
water results from photodesorption of water ice, not from ther-
mal sublimation as is the case for comets (Mumma & Charnley
2011). The question therefore arises to what extent the process of
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photodesorption preserves the ortho/para ratio that was present
in the ice.

In the direct photodesorption mechanism, the H-OH bond is
broken and then reformed, so the ortho/para ratio is basically re-
set to the statistical value of 3. For the kick-out mechanism, how-
ever, the original ortho/para ratio in the ice should be preserved.
The relative importance of the direct and kick-out mechanisms
depends on the ice monolayer and to a lesser extent on the ice
temperature. Table 5 summarises the average values over the
first four monolayers of the two options. It is seen that the di-
rect mechanism is typically a factor 1.3 more efficient than the
kick-out mechanism for H2O. Thus, if the ortho/para ratio in the
ice were low, say ≤0.5, the gas-phase ortho/para ratio of the pho-
todesorbed H2O would be significantly higher, at least 2, due to
the photodesorption process.

Low ortho/para ratios in the ice could occur if the ratio had
equilibrated to the grain temperature of typically 10−30 K, a pro-
cess that in itself is still poorly understood (e.g., Dulieu 2011).
The main message here is that due to the partial reset during the
photodesorption process, the observed gaseous ortho/para ratio
only partially reflects the original ice ratio.

4. Conclusions

This paper has investigated the deuterium fractionation that can
occur when OD, HDO or D2O molecules are liberated from
a H2O-rich ice following a photodesorption event at a micro-
scopic level. The results presented in Sect. 3 lead to the follow-
ing conclusions:

1. No isotope fractionation occurs in the photodesorption of
HDO and H2O from a mixed ice, even though kick-out by
D is more efficient. The ratio of photodesorbed HDO and
H2O is equal to the ratio of HDO and H2O in the ice.

2. No isotope fractionation occurs in the photodesorption of
OD and OH upon HDO photodissociation in H2O ice. The
ratio of photodesorbed OD and OH is equal to the HDO/H2O
ratio in the ice within 20%.

3. The ratio of photodesorbed H and D will be more than twice
the ratio of H and D present in the ice in HDO and H2O, be-
cause photo-excitation of HDO leads preferentially to des-
orption of H. Therefore, given enough time and enough pho-
tons photoprocessing of the outer layers of icy mantles could
lead to enrichment in D relative to H.

A possible mechanism for an increased ratio of HDO/H2O in the
gas phase compared with that initially in the ice may therefore
be prolonged photoprocessing of the outer layers of icy mantles
of dust particles. Photo-excitation of HDO leads preferentially to
desorption of H. As a consequence, the ratio of photodesorbed
H and D will be greater than twice the ratio of H and D present
in the ice. If photoprocessing occurs over a long enough time,
the outer layers will develop a larger fraction of D, and, through
grain surface reactions of D with OH, therefore also of HDO.
So ultimately, the ratio of photodesorbed HDO and H2O can be-
come enhanced due to this indirect process. Full gas-grain mod-
els that take the multi-layer structure of the ice into account are
needed to investigate whether this is a plausible mechanism for
isotope fractionation of HDO, since pure gas-phase processes
can also lead to fractionation (e.g., Aikawa et al. 2012). If it is,
then the relative abundance of HDO may also reflect the total
fluence of UV radiation (product of UV flux and time) that the
outer layers of icy mantles have been exposed to in the environ-
ment where they are observed.

Finally, we note that the ortho/para ratio of water in the gas
does not directly reflect that in the ice but is partially reset by the
photodesorption process.
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Appendix A: Auxiliary tables

Tables A.1−A.3 contain the probabilities for X atom desorption,
OX desorption, and X2O and HDO desorption (X = H, D), re-
spectively, at Tice = 20, 30, and 60 K.

Appendix B: Fitting formulae for photodesorption
probabilities

Tables 2, 4, 5, A.1−A.3 list the total probabilities for X des-
orption, OX desorption, and X2O and HDO desorption (X = H,
D) following a dissociation event, as a function of both mono-
layer and ice temperature. These tables also give the average
probabilities, over the top four monolayers, for each species. For
use in astrochemical models, it is useful to know the probability
(per monolayer) of every potential outcome, rather than the total
probability for the desorption of each species. This is because, in
full gas-grain models, one is also interested in the composition
of the ice mantle, as well as the gas.

As discussed in the main body of this paper, there are six
potential outcomes following a dissociation event which can lead
to a change in composition of both the ice and gas. For example,
for HDO which is dissociated into H + OD,

HDO + hν −→ Hdes + ODtrapped (B.1)

−→ Htrapped + ODdes (B.2)

−→ Hdes + ODdes (B.3)

−→ Htrapped + ODtrapped (B.4)

−→ HDOdirect (B.5)

−→ H2Okicked. (B.6)

Equation (B.6) is the process known as “kick out” whereby a
neighbouring H2O is ejected from the ice via momentum trans-
fer from an excited photofragment. The probabilities of each of
these events as a function of monolayer and ice temperature have
been compiled from the raw data of the molecular dynamics sim-
ulations and are available at the CDS. There is a seventh possi-
bility in which the photofragments recombine to reform HDO
which remains trapped in the ice. This process does not change
the gas or ice composition and thus we have not listed the proba-
bilities for this outcome here; however, these data are necessary
if one is interested in extrapolating the probabilities to deeper
monolayers, ML > 4.

To determine the desorption probabilities at temperatures
and in monolayers outside of those tabulated, one can simply in-
terpolate/extrapolate using, for example, cubic spline interpola-
tion. However, when extrapolating to determine probabilities for
deeper monolayers, ML > 4, one should take care to ensure that,
deep into the ice mantle, the probabilities for outcomes (B.1),
(B.2), (B.3), (B.5), and (B.6) tend to 0, and the probability for
outcome (B.4) tends to 1 − Precom, where Precom is the probabil-
ity that the photofragments recombine to reform the molecule
(which remains trapped in the ice). Deeper into the ice, des-
orption events become increasingly less probable and the most
probable outcome becomes trapping of the photofragments (or
the reformed molecule, following recombination). In addition,
at very low coverage, ML < 1, the rates for all outcomes should
tend to 0 as ML→ 0.

In Table 1 we present our fitting functions and correspond-
ing best-fit parameters for the temperature-averaged probabili-
ties per monolayer for each outcome. The probabities are well
fitted using a Gaussian-like function with the exception of the
outcomes leading to trapping of the OY radical for which an

exponential-like function was found to be more appropriate for
describing the asymptotic behaviour of the probabilities towards
deeper monolayers (
4). In Fig. B.1 we present the probability
per monolayer at each temperature and the temperature-averaged
probabilities per monolayer along with the fitted functions
for the example of DOH∗. The probabilities were fitted using
the non-linear least-squares (NLLS) Marquardt-Levenberg algo-
rithm (Marquardt 1963). The probabilities are a much stronger
function of monolayer than temperature; hence, our decision to
fit functions with respect to monolayer only.

For implementation in chemical models which adopt the rate
equation method for describing the ice chemistry and gas-grain
balance, the probabilities per monolayer should be multiplied
by the rate of arrival of UV photons in the wavelength range
1650−1300 Å onto the grain surface times the absorption cross
section of a UV photon by a grain-surface site (or molecule, in
this case, HDO). The total desorption rate is then determined
by integrating the desorption rate per monolayer over the total
number of monolayers on the grain. The probabilities can be
directly employed in stochastic chemical models in which the
discrete nature of chemical reactions are taken into account (see,
e.g. Cuppen & Herbst 2007).

Appendix C: Photodesorption and fractionation

This section investigates whether photodesorption ultimately
also leads to fractionation of HDO/H2O in the gas. We can es-
timate the total photodesorption probability ratio between HDO
and H2O by taking into account the direct and kicked out mech-
anism in both cases. The probability of HDO photodesorption
through the direct mechanism is given by

Pdirdes
HDO = rHDOPdirect(HDO∗). (C.1)

In Eq. (C.1), Pdirect( HDO∗) is the probability that upon photo-
excitation of HDO (the generic case) the HDO recombines and
desorbs directly. It can be approximately calculated using

Pdirect(HDO∗) =
2
3

Pdirect(HOD∗) +
1
3

Pdirect(DOH∗) (C.2)

and rHDO is the original HDO/H2O ratio in the ice (of the order of
0.01 or less as indicated by observations). In Eq. (C.2), the prob-
abilities on the right hand side are the probabilities for the direct
mechanism for photodesorbing HDO averaged over the top four
monolayers and presented in Tables 5 and A.3.

The probability of H2O photodesorption through the direct
mechanism is given by

Pdirdes
H2O = (1 − rHDO)Pdirect(H2O∗). (C.3)

In Eq. (C.3), Pdirect(H2O∗) is the probability that upon photo-
excitation H2O recombines and desorbs directly. It can be ob-
tained directly from Tables 5 and A.3.

As can be seen from Table 2 and after using Eq. (C.2),
Pdirect(HDO∗) and Pdirect(H2O∗) are roughly the same. As a result

Pdirdes
HDO /P

dirdes
H2O = rHDO/(1 − rHDO) = rHDO/rH2O (C.4)

meaning that there is no isotope fractionation due to the direct
mechanism.

Now consider the kick-out mechanism. The indirect proba-
bilities can be written as follows:

PKOdes
HDO = rHDO × rHDO × PKO(HDO; HDO∗)

+ (1 − rHDO) × rHDO × PKO(HDO; H2O∗) (C.5)
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Table A.1. X atom photodesorption probabilities at Tice = 20 K, 30 K, and 60 K resulting from photoexcitation of a X2O (X = H, D) or XOY
(HOD or DOH) molecule present in a specific monolayer of H2O ice.

ML Hdes/H2O∗ Ddes/D2O∗ Hdes/HOD∗ Ddes/DOH∗

Tice = 20 K

1 0.865 ± 4.0 × 10−3 0.898 ± 3.9 × 10−3 0.913 ± 3.6 × 10−3 0.907 ± 3.7 × 10−3

2 0.741 ± 5.9 × 10−3 0.665 ± 6.1 × 10−3 0.661 ± 6.0 × 10−3 0.626 ± 6.0 × 10−3

3 0.422 ± 6.1 × 10−3 0.401 ± 6.3 × 10−3 0.472 ± 6.3 × 10−3 0.419 ± 6.0 × 10−3

4 0.261 ± 4.9 × 10−3 0.190 ± 5.1 × 10−3 0.194 ± 5.0 × 10−3 0.137 ± 4.2 × 10−3

〈MLs〉 0.572 ± 3.2 × 10−3 0.538 ± 3.2 × 10−3 0.559 ± 5.3 × 10−3 0.527 ± 5.0 × 10−3

Tice = 30 K

1 0.878 ± 4.3 × 10−3 0.871 ± 4.3 × 10−3 0.863 ± 4.3 × 10−3 0.864 ± 4.3 × 10−3

2 0.740 ± 5.9 × 10−3 0.670 ± 6.1 × 10−3 0.711 ± 5.7 × 10−3 0.655 ± 5.8 × 10−3

3 0.435 ± 6.3 × 10−3 0.452 ± 6.4 × 10−3 0.507 ± 6.3 × 10−3 0.453 ± 6.0 × 10−3

4 0.319 ± 5.2 × 10−3 0.240 ± 5.6 × 10−3 0.310 ± 5.8 × 10−3 0.236 ± 5.1 × 10−3

〈MLs〉 0.593 ± 3.2 × 10−3 0.558 ± 3.2 × 10−3 0.598 ± 5.6 × 10−3 0.552 ± 5.0 × 10−3

Tice = 60 K

1 0.872 ± 4.3 × 10−3 0.872 ± 4.3 × 10−3 0.904 ± 3.7 × 10−3 0.883 ± 4.0 × 10−3

2 0.711 ± 6.0 × 10−3 0.706 ± 5.9 × 10−3 0.696 ± 5.8 × 10−3 0.667 ± 5.8 × 10−3

3 0.404 ± 6.3 × 10−3 0.350 ± 6.2 × 10−3 0.376 ± 6.1 × 10−3 0.298 ± 5.6 × 10−3

4 0.302 ± 5.9 × 10−3 0.230 ± 5.4 × 10−3 0.306 ± 5.7 × 10−3 0.204 ± 4.8 × 10−3

〈MLs〉 0.572 ± 3.2 × 10−3 0.539 ± 3.2 × 10−3 0.570 ± 5.4 × 10−3 0.513 ± 5.0 × 10−3

Notes. ML1 is the top monolayer and 〈MLs〉 denotes the average over the top four monolayers.

Table A.2. OX radical photodesorption probabilities at Tice = 20 K, 30 K, and 60 K resulting from photoexcitation of a X2O (X = H, D) or XOY
(HOD or DOH) molecule present in a specific monolayer of H2O ice.

ML OHdes/H2O∗ ODdes/D2O∗ ODdes/HOD∗ OHdes/DOH∗

Tice = 20 K

1 0.026 ± 2.7 × 10−3 0.043 ± 2.6 × 10−3 0.028 ± 2.1 × 10−3 0.055 ± 2.9 × 10−3

2 0.021 ± 2.7 × 10−3 0.038 ± 2.5 × 10−3 0.022 ± 1.8 × 10−3 0.049 ± 2.7 × 10−3

3 (1.0 ± 0.3) × 10−3 (1.7 ± 0.5) × 10−3 (4.7 ± 2.7) × 10−4 (1.7 ± 0.5) × 10−3

4 0.00 0.00 0.00 0.00
〈MLs〉 0.012 ± 7.0 × 10−4 0.021± 9.1 × 10−4 0.012 ± 1.4 × 10−3 0.026 ± 2.0 × 10−3

Tice = 30 K

1 0.047 ± 2.9 × 10−3 0.069 ± 3.3 × 10−3 0.029 ± 2.1 × 10−3 0.054 ± 2.8 × 10−3

2 0.011 ± 1.8 × 10−3 0.019 ± 1.8 × 10−3 (5.5 ± 0.9) × 10−3 0.015 ± 1.5 × 10−3

3 (1.7 ± 0.5) × 10−4 0.012 ± 1.4 × 10−3 (3.8 ± 0.8) × 10−3 (6.8 ± 0.9) × 10−3

4 0.00 (1.7 ± 1.7) × 10−4 (2.0 ± 2.0) × 10−4 0.00
〈MLs〉 0.014 ± 7.5 × 10−4 0.025 ± 1.0 × 10−3 (9.5 ± 1.2) × 10−3 0.019 ± 2.0 × 10−3

Tice = 60 K

1 0.029 ± 2.2 × 10−3 0.053 ± 2.9 × 10−3 0.013 ± 1.4 × 10−3 0.050 ± 2.7 × 10−3

2 0.012 ± 1.4 × 10−3 0.026 ± 2.0 × 10−3 (7.0 ± 1.0) × 10−3 0.020 ± 1.7 × 10−3

3 (2.3 ± 0.6) × 10−3 (6.0 ± 0.1) × 10−3 (3.5 ± 0.8) × 10−3 0.012 ± 1.3 × 10−3

4 0.00 0.00 0.00 0.00
〈MLs〉 0.011± 6.7 × 10−4 0.021 ± 9.3 × 10−4 (5.9 ± 1.0) × 10−3 0.020 ± 2.0 × 10−3

Notes. ML1 is the top monolayer and 〈MLs〉 denotes the average over the top four monolayers.

and

PKOdes
H2O = (1 − rHDO) × (1 − rHDO) × PKO(H2O; H2O∗)

+ rHDO × (1 − rHDO) × PKO(H2O; HDO∗). (C.6)

In Eqs. (C.5) and (C.6), PKOdes
HXO is the probability of desorp-

tion of HXO through the kick-out mechanism, where X is ei-
ther H or D. Furthermore, PKO(HX1O; HX2O∗) is the proba-
bility that HX1O is kicked out after photo-excitation of HX2O,
where X1 can either be H or D, and X2 can also be H or D.

As for the direct mechanism, we can approximately calculate
PKO(HX1O;HX2O∗) from

PKO(HX1O; HDO∗) =
2
3

PKO(HX1O; HOD∗)

+
1
3

PKO(HX1O; DOH∗). (C.7)

The two quantities on the right hand side of Eq. (C.7) have been
tabulated for X1 equal to H in Tables 5 and A.3.
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Table A.3. Total X2O (X = H, D) or XOY (HOD or DOH) photodesorption probabilities at Tice = 20 K, 30 K, and 60 K per monolayer due to the
direct and the kick-out mechanism for X2O and XOY photodissociation in H2O ice.

H2O∗ D2O∗ HOD∗ DOH∗
ML H2Odirect H2Okicked D2Odirect H2Okicked HODdirect H2Okicked DOHdirect H2Okicked

Tice = 20 K
1 7.8 ± 1.3 0.7 ± 0.4 3.3 ± 0.7 3.3 ± 0.7 4.5 ± 0.9 1.6 ± 0.5 3.7 ± 0.8 4.2 ± 0.8
2 5.5 ± 1.2 2.8 ± 0.9 7.1 ± 1.1 12.5 ± 1.4 7.1 ± 1.1 3.7 ± 0.8 5.9 ± 0.9 4.2 ± 0.8
3 0.3 ± 0.2 5.9 ± 1.1 1.7 ± 0.5 13.0 ± 1.5 1.0 ± 0.4 0.8 ± 0.4 0.3 ± 0.2 7.0 ± 1.0
4 0.2 ± 0.2 0.2 ± 0.2 0.00 14.0 ± 1.5 0.2 ± 0.2 3.9 ± 0.8 0.00 16.0 ± 1.5

〈MLs〉 3.4 ± 0.4 2.4 ± 0.3 3.0 ± 0.4 11.0 ± 0.7 3.2 ± 0.7 2.5 ± 0.6 2.5 ± 0.6 7.9 ± 1.1
Tice = 30 K

1 2.6 ± 0.9 4.2 ± 0.9 4.5 ± 0.9 0.5 ± 0.3 4.6 ± 0.9 1.0 ± 0.4 5.6 ± 0.9 0.2 ± 0.2
2 2.9 ± 1.1 5.7 ± 0.9 4.8 ± 0.9 17.0 ± 0.2 3.6 ± 0.8 2.9 ± 0.7 7.5 ± 0.1 14.4 ± 1.5
3 1.7 ± 1.2 10.0 ± 0.2 2.2 ± 0.6 10.6 ± 1.3 1.4 ± 0.5 2.8 ± 0.7 2.8 ± 0.6 5.2 ± 0.9
4 0.9 ± 0.5 3.1 ± 0.8 0.3 ± 0.2 3.8 ± 0.8 0.6 ± 0.3 2.5 ± 0.6 0.00 5.5 ± 0.9

〈MLs〉 2.0 ± 0.3 5.8 ± 0.3 3.0 ± 0.4 8.0 ± 0.6 2.5 ± 0.6 2.3 ± 0.6 4.0 ± 0.8 6.3 ± 1.0
Tice = 60 K

1 8.8 ± 1.0 4.8 ± 0.9 5.3 ± 0.9 11.0 ± 1.3 3.9 ± 0.8 10.0 ± 1.3 3.1 ± 0.7 21.5 ± 1.8
2 2.7 ± 1.2 4.7 ± 0.9 3.2 ± 0.7 20.0 ± 1.8 3.9 ± 0.8 10.8 ± 1.3 4.6 ± 0.8 15.4 ± 1.5
3 1.5 ± 0.9 7.3 ± 1.2 3.0 ± 0.7 23.5 ± 1.9 1.1 ± 0.4 2.4 ± 0.6 4.1 ± 0.8 9.2 ± 1.1
4 0.00 0.8 ± 0.5 0.3 ± 0.2 4.3 ± 0.9 0.00 1.6 ± 0.5 0.00 0.9 ± 0.4

〈MLs〉 3.3 ± 0.4 4.4 ± 0.4 2.9 ± 0.3 14.0 ± 0.8 2.2 ± 0.6 6.2 ± 1.0 2.9 ± 0.7 12.0 ± 1.3

Notes. All values should be multiplied by 10−3. The notation H2O∗ and HOD∗ denote photoexcitation of H2O and HDO in H2O ice in which the
H atom resulting from photodissociation kicks out a neigbouring H2O molecule. The notation D2O∗ and DOH∗ indicate the analogous process in
which the resulting D atom kicks out a neighbouring H2O molecule.

Because we have only calculated probabilities that H2O is
kicked out, we make the following approximations,

PKO(HDO; HOD∗) = PKO(H2O; HOD∗) (C.8)

PKO(HDO; DOH∗) = PKO(H2O; DOH∗) (C.9)

PKO(HDO; HDO∗) = PKO(H2O; HDO∗). (C.10)

The right hand values of Eqs. (C.8) and (C.9) can be directly ob-
tained from Tables 5 and A.3. PKO( HDO; HDO∗) can be com-
puted using the approximation in Eq. (C.10) and using Eq. (C.7)
and Tables 5 and A.3.

Using Eqs. (C.8)–(C.10), Eq. (C.5) can be rewritten as

PKOdes
HDO ≈ rHDO × rHDO × PKO(H2O; HDO∗)

+ (1 − rHDO) × rHDO × PKO(H2O; H2O∗). (C.11)

Most importantly, for 10 and 20 K we have approximately that
(see Tables 5 and A.3)

PKO(H2O; HDO∗) ≈ PKO(H2O; H2O∗). (C.12)

Inserting Eq. (C.12) in Eq. (C.11) yields

PKOdes
HDO ≈ rHDO × PKO(H2O; H2O∗) (C.13)

and inserting Eq. (C.12) in Eq. (C.6) yields

PKOdes
H2O = (1 − rHDO) × PKO(H2O; H2O∗). (C.14)

From Eqs. (C.13) and (C.14), we can derive that

PKOdes
HDO /P

KOdes
H2O = rHDO/rH2O (C.15)

meaning that there should be no isotope fractionation due to
the indirect kick-out mechanism. Taken together, Eqs. (C.4)
and (C.15) ensure that the ratio of desorbed HDO over desorbed
H2O in the ice is given by

Pdes
HDO/P

des
H2O = rHDO/rH2O (C.16)

which means that this ratio is simply equal to the ratio of HDO
and H2O in the ice. Therefore, isotope fractionation does not
occur for HDO and H2O photodesorption.
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Fig. B.1. Temperature-specific probabilities, temperature-averaged probabilities, and fitted functions for each outcome as a function monolayer for
HDO photodissociation into D + OH.
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