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Abstract

Why build robot models of animals and their nervous systems? One an-

swer is that in building a robot model of a target organism, that mimics

sufficiently some aspects of that animal’s body, brain and behaviour, we

can expect to learn a good deal about the original creature. Synthesis

(engineering) is quite different from analysis (reverse-engineering), often

easier, and teaches fascinating lessons (Braitenberg, 1986). Another an-

swer is that a robot model should allow us to conduct experiments, that

will help us better understand the biological system, and that would be

impossible or at least much more difficult to perform in the original ani-

mal (Rosenblueth andWiener, 1945). In this chapter our target organism

is the rat and our specific focus is on the sophisticated tactile sensory sys-

tem provided by that animal’s facial whiskers (vibrissae). Neurobiology

shows us that the brain nuclei and circuits that process vibrissal touch

signals, and that control the positioning and movement of the whiskers,

form a neural architecture that is a good model of how the mammalian

brain, in general, co-ordinates sensing with action. Thus, by building a

robot whisker system, we can take a significant step towards building the

first robot ‘mammal’. Following a short review of relevant rat biology,

this chapter will describe the design and development of two whiskered

robot platforms—Whiskerbot and SCRATCHbot—that we have con-

structed in order to better understand the rat whisker system, and to

test hypotheses about whisker control and vibrissal sensing in a physical

brain-based device. We provide a description of each platform, including

mechanical, electronic and software components, discussing, in relation

to each component, the design constraints we sought to meet and the

trade-offs made between biomimetic ideals and engineering practicali-

ties. Some results obtained using each platform are described together

with a brief outline of future development plans. Finally, we discuss the

use of biomimetic robots as scientific models and consider, using the ex-

ample of whiskered robots, what contribution robotics can make to the

brain and behavioural sciences.

0.1 Introduction

Rats are endowed with prominent facial whiskers (Figure 0.1) which they

use to explore the environment immediately surrounding their head. This

tactile sense is generally considered to be primary in rat in the way vision
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Figure 0.1 Macro- and microvibrissae. Left inset shows a close-up of
the microvibrissal region centered around the upper lip (see outlined
region on main image), the right inset shows the microvibrissae being
used to investigate a coin lying on the floor. Note the regular grid-like
organisation of the actuated macrovibrissae.

is primary in primates—to the untrained eye the behaviour of blind rats

can appear indistinguishable from that of sighted animals.

One group of whiskers are the long ‘macrovibrissae’ that are arranged

into a regular grid of rows and columns set into the ‘mystacial pads’ on

each side of the snout. These are moved back and forth, when the animal

is actively sensing its environment, in a behaviour known as ‘whisking’.

A second group, shorter and less regularly organised, is distributed over

the front and underside of the snout, and is referred to as the ‘microvib-

rissae’. These whiskers do not have a musculature. This physical and

functional dichotomy is reflected in the different uses to which the ani-

mal seems to put the two groups. The primary role of the macrovibrissae

appears to be locating environmental features, whilst fine investigation

is performed, in large part, by the microvibrissae, in concert with the

other sensory apparatus around the front of the snout (the teeth, lips,

tongue and nose) (Welker, 1964; Brecht et al., 1997).
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The whisker system has become very popular as a model sensory sys-

tem in neuroscience owing to its discrete organisation from the sen-

sory apparatus (the whisker shaft) all the way to the sensory cortex

(Petersen, 2007), its ease of manipulation and, not least, its presence

in the laboratory rat. Our approach to this system begins with neu-

roethology, wherein we study neural systems holistically, including the

observation of natural behaviour as well as comparative and evolution-

ary data, and leading to computational models. We then expose these

models to the complexities of real-world operation, and the demands of

functional robotics, revealing shortcomings that do not manifest in sim-

ulation. This engineering process feeds back, raising questions that are

not raised (or addressed) by current biological data, and guiding us in

the design of future biological experiments. Along the way, we hope to

show that whiskers can be a useful robotic sensory system.

Below, we briefly review the neuroethology of the rat whisker system,

including results from behavioural experiments conducted in our own

laboratory. We then go on to describe two robotic platforms that we

have developed, ‘Whiskerbot’ and ‘SCRATCHbot’. Whiskerbot was our

first attempt to develop a biomimetic model of the rat whisker system

and was, consequently, the more primitive mechanically. Investigations

focussed on embedded models of neural processing as well as our first

efforts to build and control artificial whiskers. SCRATCHbot1 is our

latest platform and still a work-in-progress. Compared to Whiskerbot,

the new robot is more refined mechanically and electrically and has

more degrees of freedom. The sensor transduction and whisker actuation

mechanisms have been redesigned based on insights drawn from our

earlier attempt. SCRATCHbot’s control system uses a mixture of neural-

like and arithmetic computation with a focus on modelling motor control

and sensory processing at a relatively abstract level. Its whisker system

is also much closer to being a practical artificial sensory system, with

possible applications in autonomous robotics.

Our work builds on, and was inspired by, a large number of previ-

ous research efforts in robotic tactile sensing systems, including, but

not limited to, other whiskered robots that have been developed (Rus-

sell and Wijaya, 2005; Fend et al., 2004; Kim and Möller, 2004; Seth

et al., 2004a; Solomon and Hartmann, 2006). We have recently provided

an extensive review of artificial whisker systems (Prescott et al., 2009)

therefore related projects are mentioned below only where they are of

1 The name of the robot is derived from the acronym Spatial Cognition and
Representation through Active TouCH.
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direct relevance to the design decisions that we made in developing our

own robot platforms. Our wider goal, through this review, is to describe

the development of a research programme in neuromorphic robots, in-

cluding the trade-offs made between accurate biomimicry and the need

to engineer functioning systems at reasonable cost. We aim to show that,

despite these constraints, the robotics provides insights to the biology;

we will illustrate this using examples, and discuss the matter at the end

of the chapter.

0.2 Neuroethology of the rat vibrissal system

0.2.1 Morphology, sensory transduction, and whisker

actuation

Rat macrovibrissae are made of keratin, are tapered from base to tip,

are curved (Figure 0.1), and are typically between 20 and 50 mm long

(length varying regularly with location on the face) (Brecht et al., 1997).

Their frequency response and other mechanical characteristics have been

quantified both in vivo and ex vivo (Hartmann et al., 2003; Neimark

et al., 2003), and mechanical response seems to play a key role in signal

transduction (Lottem and Azouz, 2009).

Each macrovibrissa is mounted in a modified hair follicle, a roughly

ellipsoidal capsule around 1mm in diameter and 3mm long (Rice et al.,

1986), which is responsible for transducing mechanical signals into neu-

ral signals. A rich variety of mechanical signals are transduced—around

150-200 sensory nerves serve each follicle, and seven or more anatom-

ically distinct classes of ‘mechanoreceptor’ (the mediators of biological

tactile transduction) are found distributed throughout the follicle (Ebara

et al., 2002). Amongst this range of signals, transverse whisker deflec-

tions have been the most studied and are known to generate strong

signals in a large proportion of sensory cells (Lichtenstein et al., 1990;

Shoykhet et al., 2000) (‘deflection cells’). Cells that transduce something

related to whisker angular position (Szwed et al., 2003) (‘angle cells’) and

longitudinal deflections (Stüttgen et al., 2008) have also been observed.

The principal, and first-described, component of whisker kinematics

is the periodic, forward-backward (anterior-posterior, AP) motion of all

macrovibrissae together (Welker, 1964; Zucker and Welker, 1969), a be-

haviour known as ‘whisking’. A smaller, synchronised, up-down (dorsal-

ventral, DV) component to this motion (Bermejo et al., 2002) has been



0.2 Neuroethology of the rat vibrissal system 7

identified (that is, a typical ‘whisk’ is reminiscent of a ‘rowing’ action),

as has a torsional rotation of the shaft during the whisk cycle (Knutsen

et al., 2008). Furthermore, the whisker columns move at somewhat dif-

ferent speeds with the net effect that the angular separation, or spread,

between the whiskers varies significantly within each whisk cycle (Grant

et al., 2009). Finally, the whiskers do not always move in concert on

the two sides of the face (Sachdev et al., 2003; Mitchinson et al., 2007),

and the mystacial pad moves substantially during whisking (Hill et al.,

2008). Nonetheless, AP motion of all whiskers together describes a large

proportion of overall whisker motion (Grant et al., 2009).

The ‘intrinsic’ muscles are found under the skin of the pad, wrap

around each follicle, and are anchored to the skin and/or to neighbouring

follicles (Dörfl, 1982), These drive ‘protraction’ (forward angular motion)

of whiskers individually, by rotating the follicle around a lower pivot

point beneath the skin (Dörfl, 1982; Wineski, 1985). Whisker ‘retraction’

(rearward angular motion) is partly passive, due to the elastic properties

of the skin, and partly active, driven by the ‘extrinsic’ muscles to the rear

of the pad (Carvell et al., 1991). These muscles pull the pad backward,

causing all the follicles to rotate around an upper pivot point (Berg

and Kleinfeld, 2003). A more recent study reports a contribution to

protraction from another set of extrinsic muscles forward of the pad

(Hill et al., 2008).

0.2.2 Whisker motion and active sensing behaviour

Rats generally whisk when they are exploring an environment or at-

tempting most forms of tactile discrimination. Studies of neural re-

sponses to ‘passive’ whisker deflection (deflecting the whiskers of an

anaesthetised rat) are therefore beginning to give way to studies of more

natural ‘active’ deflection where moving whiskers encounter stationary

obstacles. These studies show that whisker motion plays a key role in

signal formation. There is no evidence of proprioception in the whisker

musculature but angle cells may provide equivalent information (Szwed

et al., 2003). Either these cells, or the temporal relationship between

whisker motion and whisker deflection, are thought to provide the in-

formation necessary to transform deflections of moving whiskers into an

appropriate head-centered reference frame (Szwed et al., 2003; Ahissar

and Arieli, 2001).

Whisking motor patterns vary substantially with behavioural circum-

stance, but discernable ‘bouts’ of more-or-less periodic whisking at 6-
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10Hz interspersed by periods of inactivity, are typical. Whisk frequency

tends to be relatively constant within a bout (Hill et al., 2008) but

other kinematic parameters can vary substantially driven, apparently,

by both internal and external variables. The strongest observed external

influence is whisker-environment contact, which rarely fails to modu-

late whisking (Grant et al., 2009; Mitchinson et al., 2007). For instance,

a unilateral unexpected whisker-environment contact generally leads to

suppression of protraction ipsilaterally (i.e. on the side the contact was

made) and to increased protraction amplitude contralaterally (see fig-

ure 0.2). We hypothesise that this is the outcome of a control policy we

term ‘Minimal Impingement, Maximal Contact’ (MIMC), which tends

to maximise the count of whisker-environment contacts, whilst keeping

the depth of those contacts within a managed range to maintain signal

quality. A further observation (Grant et al., 2009) that spread between

whisker columns is reduced during environmental contact is consistent

with this policy, with rearward, non-contacting, whiskers brought for-

ward to meet an ipsilateral obstruction. Another, internal, modulatory

influence is head-rotation, whereby the animal appears to preempt up-

coming head rotations by moving its whiskers backward (forward) on

the side to which (away from which) the head will turn (Towal and

Hartmann, 2006). In addition to these asymmetries, a temporary loss

of bilateral synchrony in whisker movements is often observed following

a unilateral contact (Mitchinson et al., 2007), whilst repeated contacts

with the environment can lead to longer periods of desynchronization

(unpublished results from our laboratory).

Psychophysical and behavioural experiments (see (Prescott et al., In

press) for review) show that, using only the data gathered by their

macrovibrissae, rats can locate objects accurately in space (Knutsen

et al., 2006), perform fine textural discriminations (Carvell and Simons,

1990), and judge gap widths (Krupa et al., 2001), and that both macro-

and micro- vibrissae are required for effective prey capture (Anjum et al.,

2006). However, a reasonable hypothesis is that macrovibrissae are pri-

marily used for locating objects, and then microvibrissae are brought

to bear for close investigation (Brecht et al., 1997). For instance, the

microvibrissae seem to be used preferentially in a shape-discrimination

task (Brecht et al., 1997; Fox et al., 2009), and in our own laboratory,

where we do not constrain the animal’s behaviour, we consistently see

the microvibrissae used for close investigation of surfaces and objects.

As a consequence of these findings, and from inspecting many in-

house video recordings of rats exploring environments and objects, we
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Figure 0.2 Whisking asymmetry induced by contact with a surface.
Frames from two example high-speed video sequences recorded in our
laboratory, showing exploring rats with whiskers at the maximum
protraction phase of the whisk cycle, but with the whiskers ipsilat-
eral to an object of interest held back towards the cheek, whilst the
contralateral whisker field pushes forward towards the surface. Elec-
tomyograph recordings from the whisking muscles confirm that the
contralateral whiskers are driven significantly harder than the ipsi-
lateral ones (Mitchinson et al., 2007). We interpret behaviour such
as this as evidence for a ‘Minimal Impingement, Maximal Contact’
(MIMC) active sensing control strategy.

consider the ‘orient’ behaviour, in which a rat positions its head such

that the front of its snout is brought to bear on its apparent focus of

attention (Figure 0.1, inset top-right), to be a key component of active

sensing. Indeed, orienting should perhaps be considered as the primary

active sensing strategy employed by the animal, with repetitive whisker

motion (whisking) adding a second component that provides wider cov-

erage of space, contact-detach cycles without head motion, and more

precise control over the nature of contacts. Observing that the body

must also be moved if the rat is to orient its snout to locations a little

distance away, then we could consider that locomotion of a rat in a novel

environment may be well described as a stream of orients of the snout

to one location after another. That is, the rat shifts its focus of atten-

tion and the head, whiskers, and body follow. Thus, we might consider

orienting to constitute the foundation of exploratory behaviour in gen-

eral, and therefore to be a prerequisite for effective active sensing in any

whiskered entity, animal or robot. Note that, in a familiar environment,

episodes of locomotion with a specific destination in mind, as opposed
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to as a series of orients to immediately-sensed features, are also seen.

In such conditions, where locomotion is not motivated by sensing, we

might expect different whisking behaviour, attuned more to supporting

locomotion (e.g. to ensure a sound footing and avoid collisions) rather

than to maximising the gain of new sensory information. Experiments to

establish whether rat whisking behaviour is noticeably different in these

circumstances are currently in progress in our laboratory.

Orients are generally observed to occur on the timescale of one or two

whisking periods (Prescott et al., 2009). Contact usually occurs dur-

ing whisker protraction, and repositioning of the snout may complete

quickly enough such that the battery of contacts due to the subsequent

protraction sample the neighbourhood of the attended object. Supple-

mentary video 1 shows an example orient that completes in about one

whisking period. In this clip, the orient has begun by 40ms following

contact, and completes around 160ms after contact (with the peak of

the subsequent protraction occurring about 120ms after contact). Some

orients may take two (perhaps, more) whisks to complete—for instance

supplementary video 2 shows an orient completed in the space of two

whisks.

After orienting, the animal will often keep its snout near to an at-

tended object for a few whisks in order to investigate it more closely

using the sensory equipment around the snout. This activity can be com-

plex, and is thus less easy to describe, but we often see an investigative

behaviour we refer to as ‘dabbing’, whereby the microvibrissae are lightly

touched or brushed against the object in synchrony with macrovibrissal

protractions (Hartmann, 2001; Prescott et al., 2005). The result is that

tactile information is obtained at high spatial density towards the center

of the dab, through the microvibrissal array, whilst, within the same nar-

row time window, surrounding surfaces are sampled in a sparser fashion

by the macrovibrissae. Supplementary video 1 shows the animal, im-

mediately following the orient, performing five ‘dabs’ at the attended

feature (the corner of a block) before appearing to move on, whisking

and dabbing across the wider extent of the object. The whole operation,

from contact through orient and dabbing to moving on, is completed

within three quarters of a second.

0.2.3 Neurobiology of the rat vibrissal system

Anatomical loops at multiple levels are present in the rat whisker system

(Kleinfeld et al., 1999) (see Figure 0.3). Within this complex circuit, the
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Figure 0.3 Neuroanatomical loops in the whisker system of the rat
(modified from Kleinfeld et al. (2006)). Loops through non-whisker
musculature (neck, shoulders, etc.) are not shown. Whisker sensory
signals pass up from the vibrissae via the trigeminal nerves to the
trigeminal sensory complex. From here, they pass along multiple loop
paths, including: directly to the facial nucleus and back to the muscles
driving the vibrissae; through superior colliculus; through cerebellar
nuclei; through sensory and motor cortex via the thalamic nuclei.

most studied pathway is that carrying whisker signals upstream from

the follicle, through the trigeminal complex, and ventro-posteromedial

and posteromedial thalamic nuclei (known as ‘VPM’ and ‘POm’, re-

spectively), to the primary (‘barrel’) somatosensory cortex (S1, Waite

and Tracey (1995)). This, and related, cortical pathways are likely to be

involved in extracting behaviourally-relevant features from vibrissal sig-

nals, and have been shown to be required for some whisker-driven tasks
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(Krupa et al., 2001). However, it is important not to over-emphasise the

role of this feedforward pathway to the cortex. As is clear from the dia-

gram, the more general character of the system is that it consists of a set

of nested closed loops which likely have different, though overlapping,

functional roles. Each of these loops connects sensation to actuation at

relatively short latencies, particularly at the lower levels of the neuraxis.

For instance, the pathway via the trigeminal complex to the facial

nucleus, which contains the motoneurons that drive the intrinsic and

extrinsic whisking musculature, provides a fast and direct, brainstem-

only pathway through which contact information could affect the on-

going movement of the whiskers (Nguyen and Kleinfeld, 2005; Mitchin-

son et al., 2007). A midbrain loop through the superior colliculus (SC)

(Drager and Hubel, 1976) is likely to underlie whisker-initiated orient-

ing and avoidance responses (Sahibzada et al., 1986). The latency for

whisker deflection signals to reach the SC may be as short as 5 mil-

liseconds (Cohen et al., 2008) thus providing the capacity for very rapid

orients as might be required, for instance, when the source of the stimu-

lus is a moving prey animal. From the S1 cortex signals pass to the motor

cortex (MCx) which has a substantial area devoted to the whisker sys-

tem (Haiss and Schwarz, 2005). Although it is known that MCx sends a

large projection to the brain areas involved in whisking pattern genera-

tion (Kleinfeld et al., 1999), its precise role in modulating or initiating

whisking is poorly understood. Areas such as the trigeminal complex,

SC, and S1 also project to two brain sub-systems that perform more

general purpose roles within the brain architecture, the cerebellum and

basal ganglia (BG). The cerebellum is thought to function as an adaptive

filter (Dean et al., 2010) that could, for instance, use current state to

predict future sensory signals. In contrast, the role of BG seems to be to

provide action selection (Redgrave et al., 1999), that is, to decide which

of the many possible behaviours available to the animal are engaged at

any one time.

In the accounts of our whiskered robots that follow we will describe

implementations that constitute embodied tests of functional hypothe-

ses concerning several of the neural circuits and brain sub-systems men-

tioned here.
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0.3 Whiskerbot

Our first foray into whiskered robotics was Whiskerbot (2003-2007)

(Pearson et al., 2007b), which ran simultaneously with an effort to model

neural components of the rat whisker sensory system. Computational

models were developed of transduction in the whisker follicle (Mitchin-

son et al., 2004, 2008), processing in the trigeminal nucleus (Pearson

et al., 2007a), transformation of whisker signals into a head-centered

reference frame, orienting to whisker contacts (Mitchinson et al., 2006),

and whisking pattern generation and its modulation by contact signals

(Mitchinson et al., 2007). A number of these models used arrays of arti-

ficial ‘leaky-integrate-and-fire’ (LIF) neurons and were designed run on

embedded onboard digital hardware in real-time (Pearson et al., 2006b,

2007a). The robot, including deployment of these models, is discussed

in this section.

0.3.1 Robot

Whiskers and transducers

Since our control models are based on the neural systems of the rat, we

expect them to work with signals of the type used by the rat. Where

those systems are not fully understood, we cannot assume that they will

work with signals with different characteristics. Our approach, therefore,

is to engineer our whiskers to match those of the animal as closely as

possible. Biological whiskers display an enviable combination of stiffness

and damping, and even light contacts on the tip can elicit orienting,

indicating that they effectively propagate mechanical deformation. Our

hope was to design artificial whiskers for our robot with similar physical

characteristics to their natural counterparts so that our robotic sensors

would share these beneficial properties. Inevitably, however, since we

were designing an engineered system composed of non-biological mate-

rials, the desire to accurately mimic the properties of natural whiskers

and of the tissues that support them was balanced against engineering

practicalities, necessitating some compromises, described below.

In the past, potentiometers and springs have been used to measure

torque at the whisker base (Russell, 1992; Ueno and Kaneko, 1994).

More recently, real rat whiskers were bonded to the diaphragms of elec-

tret microphones to measure high frequency deflections as the whiskers

were moved across textured surfaces (Yokoi et al., 2005). In Whiskerbot,

we chose resistive strain gauges bonded directly to the base of the arti-
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ficial whiskers and configured to measure strain in two axes, which we

denote x (AP) and y (DV) (Pearson et al., 2007b). The advantages of

this approach were two-dimensional measurement, high sensitivity, and

large bandwidth (limited only by sampling speed). The disadvantage of

strain gauges is that high strains can reduce bond integrity, leading to

calibration drift. Similar gauges have also been used recently configured,

as in Whiskerbot, to measure two-dimensional strain at the whisker base

(Quist and Hartmann, 2008).

Given this gauge technology, manufacturing constraints (particularly,

attaching the gauges securely) forced us to build our whiskers physically

scaled-up by a factor of four. Moreover, a complex robot of similar size

to a rat would generate significant engineering challenges that we are

not currently equipped to face. To mitigate the effect of this change

on whisker dynamics, we adopted a temporal scaling-down by a factor

of two (that is, our neural models ran at half wall-clock speed when

deployed on the robot). This temporal scaling means that we match

the animal’s behaviour by whisking at a more leisurely pace of around

3-4Hz.

We tested a variety of materials for the whisker shaft. A major finding

was that, to generate a strain at the base of the whisker that was well

clear of the noise floor, we were forced to build from materials much

stiffer than those of real whiskers. This compromise did not prevent

useful modelling—indeed, experiments described later in this chapter

demonstrate effective contact detection and texture discrimination using

these whiskers. What remains to be discovered is whether additional, or

higher quality, sensory information might be recovered from whiskers

that are a closer physical match to biology. An active line of research in

our own and other laboratories is mechanical modelling of whiskers, in

an attempt to gain insight into this question (Birdwell et al., 2007; Fox

et al., 2008).

Whisking

As we have seen, actuating the whiskers, i.e. ‘whisking’, seems to be key

to sensing in the animal. Several groups have shown that moving artificial

whiskers across surfaces can provide useful information about surface

features such as texture or shape (Russell, 1992; Ueno and Kaneko,

1994; Wilson and Chen, 1995; Gopal and Hartmann, 2007). Some mobile

platforms have used non-actuated whiskers for obstacle avoidance and

perception (Jung and Zelinsky, 1996; Seth et al., 2004b), and some have

used actuated whisker arrays where all the whiskers, on both sides, are
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moved together (Fend et al., 2004; Kim and Möller, 2007). Physical

whisking mechanics as complex as that found in the biology (Hill et al.,

2008) would be very challenging to implement. However, we noted above

that AP angular motion is sufficient to reproduce a substantial part of

the whisker motion observed in the animal (Grant et al., 2009). Our

current robot platforms therefore reproduce just this degree of freedom

for whisker motion, although unlike previous whisking robots we do allow

for independent AP movement of individual whiskers (Whiskerbot) or

whisker columns (SCRATCHbot). Shaft encoders provide sensory data

encoding the angle of each whisker carrier (denoted θ), in analogy to

biological angle cells.

The Whiskerbot platform was designed to have nine whiskers on each

side. Shape-memory alloy wire was used to independently actuate each

whisker to minimise weight and power consumption. Passing current

through this material generates heat, causing a linear muscle-like con-

traction, which generated whisker protraction. Springs played the role of

tissue elasticity, providing passive retraction (Dörfl, 1982). This system

was able to whisk at up to 5Hz when fans were used to cool the actuating

wires; however, operating in this region limited the lifetime of the wires

significantly. Most experiments, therefore, were performed in the 1-2Hz

range.

Platform

The basic platform layout is a two-wheel differential drive unit, with the

head fixed in relation to the body, and a ‘snout’ area at the front of the

head (no microvibrissae were included, but the area at the front of the

head between the macrovibrissal fields was designated as the snout to act

as the target area for orienting). The whiskers were mounted in rows on

either side of the head. In common with most robotic platforms, the ac-

tuators were driven by local feedback controllers, in response to set-point

signals (position or velocity). This represents a significant departure from

biological actuation, which is open-loop at short timescales. We contend,

however, that this is an advantageous approach during early develop-

ment, since it decouples actuation mechanics from motor control. Not

only does this avoid the need to develop mechanics that are functionally

similar to those of the biology, as well as non-trivial plant-tailored open-

loop controllers, it also frees us to update our model of the mechanical

plant (in the light of new results) without having to change the mechan-

ics themselves. Thus, we can simulate any biological plant in software,

and charge the servos with following its outputs. The disadvantage of
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Figure 0.4 Photographs of whisking actuation technology used for a)
Whiskerbot, shape memory wire (protraction) and springs (passive
retraction), and b) SCRATCHbot, motor and gearbox driving each
column

this approach is that interactions between the plant mechanics and the

mechanics of the environment are only indirectly modelled. Since these

interactions could be a contributor to whisker transduction, we may seek

to move away from artificial closed-loop control as our physical models

of whiskers and whisking mature.

Computing

The ever-present constraint of any mobile robotics platform is power,

which limits the amount of processing that can be deployed. This con-

straint is hardened by the fact that closed-loop controllers need to receive

update signals on a regular period to avoid erratic behaviour. Thus, soft-

ware components must operate in strict real-time, constraining model

complexity (size, resolution, scope etc.). To mitigate this on Whisker-

bot, we offloaded some of the large (but simple) neural models onto

re-programmable hardware devices (Field Programmable Gate Arrays,

FPGAs). Using parallel computing and function-specific hardware, in
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this way, we were able to run detailed spiking neural network models

yet maintain strict adherence to the real-time constraint (Pearson et al.,

2007a, 2006a). Coordination of this processing architecture, incorporat-

ing both hardware and software components, was left to BRAHMS a

framework for integrated heterogeneous computing that we have devel-

oped in-house (Mitchinson et al., 2010). The main control resource of the

platform was a re-configurable computing platform called a ‘Bennuey’

PC-104+ motherboard (Nallatech, 2007). This consists of a PC-104 Sin-

gle Board Computer (SBC) and a number of expansion slots for FPGA

modules. One FPGA was used as a bridge between hardware commu-

nications systems and the PCI bus of the PC. Other FPGAs were con-

figured for hardware acceleration of spiking neural models in a ‘neural

coprocessor’ and a ‘follicle coprocessor’ (Pearson et al., 2005, 2006b) (see

Section 0.3.2).

0.3.2 Control Architecture

An overview of the robot control architecture is illustrated in Figure 0.5,

which we map loosely onto parts of the biological architecture of Figure

0.3; the figure shows the SCRATCHbot configuration. At the bottom

left is the interface to the robot platform; this consists of the neural and

follicle coprocessors (Whiskerbot) as well as the sensors (x, y, θ) and ac-

tuators (whiskers, wheels, neck). The remainder of the architecture can

be described as an inner loop (small circular arrow) mediating whisking

pattern modulation, and a middle loop (large circular arrow) mediating

behaviour. Higher loops (curved arrow to left) modelling cortical and

hippocampal systems, for such competences as object discrimination and

spatial mapping, are the subject of current work in our laboratory (Fox

et al., 2009) (see also Discussion); the current architecture exhibits only

immediate responses, and has no long-term memory. The Whiskerbot

configuration is similar, but uses the spiking output of the follicle copro-

cessor to drive the coordinate transform (and does not perform reafferent

noise removal) and implements the Whisker Pattern Generator (WPG)

as a spiking neuron model in the neural coprocessor, with modulation

from the follicle coprocessor output.

Whisker pattern generation

The Whisker Pattern Generator (WPG) is a model of the central pattern

generator present (Gao et al., 2001) (though not yet located (Cramer

et al., 2007)) in the rat brain and whose activity underlies the rhythmic
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Figure 0.5 Overview diagram of control architecture of SCRATCH-
bot/Whiskerbot, SCRATCHbot configuration shown (see text for de-
tails). Straight arrowed lines represent numeric data streams at 400Hz
or 4kHz. xy and theta are raw sensor data. Reafferent noise is re-
moved from xy to generate contact, the clean per-whisker contact
strength signal, which modulates the WPG. contact is transformed
into head-centric space using the instantaneous values of theta, and
is passed to the actions. Competition between actions for the mo-
tors is mediated by the Basal Ganglia. Finally, the selected action
sends snout velocity to the motor translation layer, which generates
platform-specific control signals for the actuators.

whisker motions observed in the behaving animal. Although bilaterally

asynchronous whisker movements are sometimes observed in animals,

particularly following, or during, interactions with surfaces, movements

of the two whisker fields generally appear to be tightly coupled such

that perturbations are usually corrected within a small number of whisk

cycles (often one). Likewise, within each whisker field some asynchronous



0.3 Whiskerbot 19

movements have been observed, but this has yet to be quantified or

explained. Rather than address the issue of multiple coupled WPGs at

the outset of our study, for Whiskerbot we chose to use a single WPG

to generate the base whisking signal, and derive movement patterns for

each whisker from this signal.

Typical whisking, as described above, can be broadly described as

modulated periodic oscillations. Therefore, our model is based around

modulation of periodic oscillators. The simplest possible model is a sin-

gle oscillator generating the angular position of each individual whisker

through a gain. In this model, the whiskers are constrained to move

synchronously (all whiskers in phase), symmetrically (whisking on the

two sides having the same profile), and periodically (each whisking cy-

cle is identical). Each of these constraints is relaxed in a long-enough

series of rat whisking, as described above; in the robot, we can relax

these constraints to test the impact of different modulation strategies.

Although not enough is known about the rat WPG to constrain a de-

tailed model we nevertheless chose to implement our model WPG in a

neurally-inspired manner. For this purpose a base oscillator was formed

from two, alternately active, spiking neuron populations, one population

acting as the integrator and the other as the reset signal. An additional

pair of populations, one on each side, relayed the oscillator activity to

the actuator control board (and could be modulated, see below), where

each of the signals is used to drive all whiskers on that side of the face.

The WPG model was implemented in the neural coprocessor.

Sensory transduction through a model of the whisker follicle

and trigeminal ganglion

In order to use the Whiskerbot platform to investigate embedded neu-

ral processing we needed to recode the x, y whisker deflections recorded

using the strain gauges into spike trains in simulated sensory nerves.

For this purpose we used a model of transduction that we developed

in order to accurately reproduce observations made under both passive

and active deflection conditions (Mitchinson et al., 2004). This model

was in two parts. First, we developed a model of the mechanical contri-

butions to transduction consisting of six anatomical masses, related by

springs and dampers that represented the response of tissues and flu-

ids in the ‘whisker-follicle assembly’. The parameters of this part of the

model were largely drawn from anatomical studies, making direct con-

nection with the anatomy, and the model confirms that the mechanics

are substantially involved in signal formation. The second part of the
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model was a conventional noisy LIF cell model that was used to simu-

late the sensory cells within the trigeminal ganglion (these cells do not

merely transmit the response of the mechanoreceptors, but play a key

role in signal formation). The parameters of this second model, along

with remaining parameters of the mechanical part, were chosen to bal-

ance plausibility (e.g. smoothness) with reproduction of the results of

biological experiments (Lichtenstein et al., 1990; Shoykhet et al., 2000;

Szwed et al., 2003). Two distinct classes of deflection cell were mod-

elled, ‘slowly adapting’ (SA) and ‘rapidly adapting’ (RA), reflecting a

dichotomy widely described in the literature. These classes are defined

by their responses to prolonged deflections: SA cells fire throughout these

deflections, whilst RA cells fire only during their onset and offset. Both

classes of cell are directionally sensitive, so information on the direc-

tion of whisker deflection is encoded. This model was computed on the

Whiskerbot ‘follicle coprocessor’, in FPGA (see Figure 0.5).

Our control architecture also included a population of model whisker

angle cells (Mitchinson et al., 2006) similar to those described in the

animal by (Szwed et al., 2003). For this purpose, angular position, as

measured by each shaft encoder, was used to drive a bank of cells as-

sociated with each whisker. Each cell responded strongly only when the

measured angle was near to its preferred angle, with some overlap be-

tween cells. Thus, the identity and response of the active cells implies

the whisker angle, consistent with biological data.

Coincidence detection

Whisker deflection signals, in the animal and in the robot control ar-

chitecture, are generated whenever the whiskers are obstructed during

protraction. The contact signals from each whisker are provided in a

‘whisker-centred’ frame-of-reference. In order to integrate information

from multiple whiskers (and with information from other sensory modal-

ities) signals therefore need to be transformed into a single reference

frame (this is the ‘coordinate transform’ of Figure 0.5). In the rat, it has

been hypothesised that this is performed by neural mechanisms that de-

tect coincidences between firing in deflection cells and angle cells (Szwed

et al., 2003). In the Whiskerbot control architecture a sheet of LIF cells

representing the head frame was driven by deflection cells and angle

cells together, with innervation patterns calculated based on the known

geometry. Thus, coincident firing generated activity in the correct loca-

tion on the sheet (Mitchinson et al., 2006), and indicated contact at the

encoded location. Since the architecture does not yet include a model
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to determine the distance along the whisker at which contact occurred

(although extensions to allow this are possible e.g. (Birdwell et al., 2007;

Evans et al., 2008)), it is instead assumed that contact occurred close to

the tip of the whisker. in practice, this assumption has proved adequate

for the robotic experiments performed using the Whiskerbot platform,

allowing us to defer the problem of computing radial distance to contact

for later.

Action selection

A fundamental problem faced by all but the simplest organisms is de-

ciding which action, of those possible, to take at one moment. Failure

to efficiently select a unique action to perform can lead to confused use

of the actuators (or muscles), and flawed behaviour (Prescott et al.,

2006, 2007). Appropriate action selection should take into account not

just exteroceptive sensory signals, such as those derived from whisker-

environment contacts, but also proprioceptive signals (odometry, for ex-

ample) and internal indicators of homeostatic and motivational state.

One proposal is that these different signals are integrated in a collection

of brain nuclei called the Basal Ganglia (BG) whose intrinsic circuitry

appear to be optimised to perform efficient and robust selection be-

tween competing behavioural alternatives (Redgrave et al., 1999). This

theoretical proposal has been developed into a number of computational

neuroscience models that have been evaluated both in simulation and

on a robot platform (Gurney et al., 2004; Prescott et al., 2006). We

use a version of this BG model to perform action selection within our

robot control architecture. Briefly, each action that the robot can express

‘bids’ for use of the motors by indicating its current ‘salience’—salience

is higher when the action is strongly indicated by the current sensory

input. The model BG chooses a winner, and allows that action to have

use of the platform, avoiding mix-ups. Actions that Whiskerbot exhib-

ited include: dead reckon (use odometry to reach a pre-programmed lo-

cation, analogous to path integration in rodents (Etienne et al., 1996));

various forms of explore (random walk, whisking from side to side to

detect obstacles); and orient (orient snout towards focus of attention).

Since we are interested in viewing the majority of motor output (at least

during exploratory behaviour) as directly consequent to a desired posi-

tioning and orientation of the snout, all of these actions are designed

to generate a desired snout velocity vector. Motor Integration across

actions, then, means simply summing the (snout) velocity vector from

all active actions, relying on the BG to suppress motor output from
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non-selected actions. Note that we were not concerned with learning,

here—the BG model has fixed weights and mediates between bids by

actions, the salience of each of which is a pre-programmed function of

current sensory inputs.

0.3.3 Whiskerbot Experiments

The Whiskerbot platform was used to validate the embedded compu-

tational neuroscience models (i.e. to demonstrate that they could ade-

quately perform their intended role), to evaluate active control strategies

for vibrissal sensing, and to develop and test classification methods for

texture discrimination using whisker signals.

An example of the type of experiment performed, was our investigation

of the likely consequences of a Minimal Impingement (MI) control strat-

egy on the whisker deflection signals processed in the brain. As noted

previously, our own behavioural observations in animals had indicated

that whiskers rapidly cease to protract following contact with an object

during exploration. We hypothesized that this result implied a control

strategy that sought to minimize the extent to which whiskers were al-

lowed to bend against surfaces. To implement MI in our robot control

architecture the total activity across all whisker deflection cells on one

side of the face was fed back to suppress activity in the ipsilateral WPG

relay. This has the desired effect that protraction ceased rapidly after

contact, as seen in the animal (Mitchinson et al., 2007). Figure 0.6 shows

how MI affects WPG output, the signals consequently generated in the

strain gauges, and the response of the simulated deflection cells, during

whisking against a stationary obstacle (examples of whisker movement

and deflection with MI off and on are shown in supplementary videos 3

and 4, respectively). With MI enabled, the signals are cleaner and more

closely match those observed in the animal (Mitchinson et al., 2006;

Pearson et al., 2007b). This result is in line with our predictions for the

effect of this control strategy on signal quality in the animal (Mitchin-

son et al., 2007), and suggests that the whisker signals being relayed to

the sensory cortex (and elsewhere) in awake, exploring animals will be

quite different from those generated in the same animals in the absence

of feedback control (as for instance, in whisker deflection experiments

performed under aneasthesia).

We also tested Whiskerbot’s ability to orient to obstacles following

contact. In these experiments the robot was allowed to proceed across

a smooth floor and interact with one or more point obstacles (narrow
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Figure 0.6 Signals recorded during two whisks where the rostral
whiskers contact a stationary obstacle; left/right column of panels
is without/with MI control. Top panels show rostral whisker column
angles (solid line); dotted line is the same in both panels, and shows
the output of the pattern generator (i.e. the requested column angle)
for the unmodulated case. In the unmodulated case (top left), the
whisker presses hard against the obstacle, and the column is physi-
cally prevented from moving further forward. In the modulated case
(top right), the whisker briefly touches the obstacle, and the column
is retracted by the MI policy. Other panels show strain gauge output
(middle) and simulated rapidly adapting (RA) deflection cells (bot-
tom, with each dot representing a spike). All panels reproduced from
figures in (Mitchinson et al., 2006).

cylinders). Initially, the robot control architecture selects the default

explore behaviour and the robot proceeds in a random walk, whisk-

ing as it goes. On detecting one of the obstacles, the robot switches to

orient, and turns its snout to the obstacle before pausing—that is, it

expresses an ‘orient’. With no ability to ‘dab’ on this platform, orient

concludes with the robot backing off and heading in another direction.

An example, using a version of the platform equipped with only two

whiskers, is shown in supplementary video 5.

On occasion an orient was performed when no obstacle had been

contacted. Under highspeed video observation, we see complex whisker

dynamics excited by the motion of the whisker carrier—that is, the
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whiskers ‘whip’ around when they are moved. This generates a rela-

tively high power noise signal in the x data stream, leading to spurious

spiking in contact cells. These ‘ghost orients’ were traced to this noise

source (Pearson et al., 2007b) and are considered further in the section

below describing SCRATCHbot.

In addition to providing an embodied test-bed for neural models an

important goal for Whiskerbot was to investigate tactile feature extrac-

tion from artificial whiskers signals. To that end, we have shown that sim-

ple Gaussian classifiers, together with either hand-picked or biomimetic

features derived from whisker contact signals, can be used as the ba-

sis for effective robotic texture classification (Fox et al., 2009). These

results serve to further demonstrate the potential of vibrissal tactile

sensing for applications in autonomous robotics such as navigation and

spatial-mapping in darkness.

0.4 SCRATCHbot

SCRATCHBOT constituted a fundamental redesign of many of the

physical and mechanical aspects of our whiskered robot, and a more

high-level approach to the development of the embedded brain-based

control system. The following sub-sections summarise and explain the

main changes and extensions.

0.4.1 Changes to the Robot Design

Signal transduction

One limitation of Whiskerbot was that the strain gauges use to mea-

sure whisker deflection were apt to come loose such that repairing a

snapped whisker, or re-attaching strain gauges, was a laborious process.

Therefore, an important practical improvement for SCRATCHbot was

to move to a more robust (though less sensitive) method of transduction

(Figure 0.7). In the new whisker assembly the whisker shaft is supported

in a rigid hollow sleeve by a thick layer of relatively soft polyurethane

around the base; thus, it returns elastically to its rest position when it is

released. A small, axially-magnetised, disc magnet is bonded to the very

base of the whisker, and a miniature tri-axis Hall-effect sensor (HS) is

positioned underneath. The HS generates two voltages linearly related

to the displacement of the magnet in the two axes. This design took its

inspiration from the work of Kim et al. (Kim and Möller, 2007). Each
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Figure 0.7 Exploded view of the Hall effect based macro-vibrissae
sensor assembly and an example output voltage plot taken from the
sensor during 3 ramp-hold-release displacement profiles of varying
magnitude. The voltage and displacement data has been normalised
to the the maximum output voltage (5V), calibrated for a 40mm
deflection of the whisker applied at a point 60% along the length
from the base. Note that the magnitude of the third displacement
profile exceeds the calibrated range resulting in the output voltage
saturating.

whisker assembly is calibrated after construction by programming the

rest position and deflection limits in each axis into the HS. This effec-

tively sets the sensitivity of the whisker to deflections, since the voltages

generated by the HS are linearly scaled to the programmed deflection

range. Figure 0.7 shows some typical voltage trace outputs from a cal-

ibrated whisker during a range of controlled displacements in one axis
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(deflection outside the programmed range results in saturation). Impor-

tantly, these sensory modules remain undamaged under large deflections.

Where such deflections cause a whisker to break, a new whisker is sim-

ply inserted into the old module, and the HS recalibrated, to return to

normal operation.

A secondary consequence of this change was the freedom to explore

alternative, less stiff, materials for the whisker shaft. Nonetheless, it has

still proved difficult to match the simultaneous high sensitivity and high

damping displayed by rat whiskers. Partly, this is an issue of materials:

biological whiskers are highly composited, and achieve good energy ab-

sorption simultaneously with good signal transmission; reproducing such

a material will require substantial further development. Partly, it is an

issue of scale: the smaller the whisker, the less prone to prolonged oscil-

lation; a substantially smaller (factor four) whisker/whisking assembly

is currently under development in our laboratory—this will be a close

match to the size of a rat’s larger whiskers, and we expect to achieve a

better sensitivity/damping trade-off as a result.

Microvibrissae

An important enhancement over Whiskerbot is the addition of an ar-

ray of microvibrissae, mounted at the center of the snout between the

two actuated macrovibrissal arrays. The central array consists of nine

short (80mm) plastic whiskers, mounted at their base into a common

polyurethane sheet, and again instrumented with magnets and Hall-

effect sensors to measure deflections in 2-dimensions. These microvibris-

sae are able to initiate orienting in the same manner as the macrovibris-

sae if an obstacle is encountered snout-first. In addition, they are able

to sample the object at a relatively high spatial resolution once the

robot has oriented. The classifier systems originally developed for dis-

criminating texture using Whiskerbot macrovibrissae are currently being

adapted and extended for use with both the macro- and micro- vibrissal

arrays (Evans et al., 2009), and to distinguish other object properties

such orientation, distance, and velocity relative to the snout.

Whisker array geometry and actuation

A further issue that emerged with Whiskerbot was that the shape-

memory alloy actuators chosen for whisker actuation, although lightweight

and low power, were fiddly to work with and tended to deteriorate

rapidly with use. Therefore, we moved to more conventional whisker

actuation by DC motor for SCRATCHbot. To reduce the number of
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Figure 0.8 Photograph of the SCRATCHbot platform with detailed
view of the front right motor drive unit (top left panel) and the three
degree of freedom neck assembly (lower left panel).

motors required, three whisker carriers were mounted on either side of a

light-weight plastic ‘head’, with each carrier carrying three whiskers in a

column. The geometry of the head was such that all the whiskers would

point directly ahead of the robot when fully protracted. Each column

can rotate (AP) through 1200, which is similar to the maximum angular

range available to the rat. A second actuated axis of rotation (DV) was

implemented on the SCRATCHbot platform, though this was limited to

a single actuator for each side (three columns) and constrained to ±150

of rotation about the vertical.

Head and body design and actuation

We argued earlier that active sensing in rats is as much a matter of posi-

tioning the head and body as of positioning the whiskers. The Whisker-

bot platform, with its head fixed relative to its body and nonholonomic

constraints on the body, was very restricted in this respect (Prescott

et al., 2009). With a view to opening up our investigations of the role

of head and body positioning in sensing, SCRATCHbot was endowed

with several additional degrees of freedom (DOF)—see Figure 0.8. The

head is fixed to the top stage of a three DOF ‘neck’ assembly (Elumo-

tion, 2009) with its base fixed to the body. This neck allows the head

to be moved through axes referred to as elevation, pitch and yaw, as

well as providing a certain amount of ‘reach’. In addition, the platform’s
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three wheels can be turned through 1800, approximating a holonomic

platform.

Computing

Finally, whilst demonstrating embedded onboard processing for neural

models was a key goal in the development of Whiskerbot, this was less

of a core objective in the design of SCRATCHbot. Onboard FPGA co-

processors have been retained to allow for the possibility of computationally-

intensive onboard processing, however we have also added a wireless

signal link allowing the inclusion into the control architecture of asyn-

chronous heavy-duty off-board processing. Three levels of computation

are thus available on the new platform: short-latency, relatively inflex-

ible (onboard FPGA); medium-latency, limited computational power,

synchronous (in the PC-104); high latency, high computational power,

asynchronous (off-board PC). This gives a range of computing options

that are well suited to implement aspects of the lower, middle and upper

loops of the neural architecture.

0.4.2 Changes and Additions to the Control

Architecture

On SCRATCHbot, we have so far chosen not to model the encoding

of x, y (whisker deflection signals) and θ (whisking angle) in simulated

spiking neurons. Rather, these signals are propagated as continuously-

valued numeric variables to other parts of the control architecture. Con-

sequently, the brain-based models investigated in SCRATCHbot should

be thought of as more abstract approximations to the computations per-

formed by the rat vibrissal system than some of the spike-based models

previously investigated in Whiskerbot. Modelling at this higher level,

we believe, can allow us to make more rapid progress in identifying the

computations that are performed by whisker-related circuitry in the rat

brain. We remain very interested, however, in understanding how these

more algorithmic models might be implemented in neural tissue. Indeed,

for problems such as whisking pattern generation, we are currently con-

ducting investigations at multiple levels of abstraction. We are using

more detailed neurally-based models to explore, in simulation, the role

of particular cell populations (such as the whisking motoneurons in the

facial nucleus) whilst, at the same time, employing more abstract al-

gorithmic WPG models to generate whisker movement patterns on the
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robot platform that are more directly comparable with rat whisking be-

haviour.

Naturally, we have an extensive list of additions that we hope to make

to the SCRATCHbot control architecture. The following sub-sections

summarise some changes that have already been implemented, and also

provide a brief outline of where we expect this work to go in the near

future.

Using MIMC to control whisker spread

Predictable variation in whisker spread (the angular separation between

the whiskers) was noted previously as a characteristic of animals that

are exploring surfaces (Grant et al., 2009). To investigate the possi-

ble causes of this variability we extended the modulation options of

SCRATCHbot’s WPG by implementing a separate relay for each column

(rather than having just one for each side of the head, as in Whiskerbot).

Whisker-environment contact excites all of these relays, whilst suppress-

ing only those relays driving the whiskers that contacted the environ-

ment. The result is that, in addition to the per-side MIMC elicited in

Whiskerbot, more rearward whiskers move more rapidly than they would

otherwise, and are thus brought forward to meet a contacted obstacle.

The net result is a reduction in inter-column spread following contact, as

seen in the animal. Another way of putting this, is that, by implement-

ing MIMC at the per-column level, ‘control’ of whisker spread appears

as an automatic consequence of this general active sensing strategy -

the whiskers are brought forward to meet the environment wherever

possible, whilst being restrained from bending too far against it.

Head and body movement

A key task for the motor system is to generate control signals for the

wheels and neck that achieve the desired snout movement; this takes

place in the Motor Translation Layer (MTL) of our control architecture.

Conventional robotic approaches to controlling multi-DOF systems (e.g.

potential-field or sampling-based) can be expensive to solve, may suf-

fer from local minima, may not be robust, and are not generally bio-

plausible. We use, instead, an algorithm we call ‘Snake’, which takes

a bio-inspired approach, causing free (uncontrolled) nodes of the me-

chanics to follow adjacent, controlled, nodes according only to mechan-

ical constraints (that is, there is no explicit motion planning). Thus,

actuators are ‘recruited’ to contribute to the movement in a distal-

first pattern, as has been seen in the animal during fictive orienting
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(Sahibzada et al., 1986), and more massy central nodes tend to be moved

less than lightweight peripheral nodes. This algorithm results in motion

that appears quite natural to the human observer. Furthermore, nodes

are moved no more than necessary to achieve the target velocity of con-

trolled nodes, and the computations for each node are local to that node

and cheap, all of which are bio-plausible characteristics. The algorithm

can be inferior to explicit motion planning under some conditions; for

instance, the trajectory of the overall plant may pass through illegal

configurations, or uncontrolled nodes may intersect obstacles. We hy-

pothesise that, in biology, failures of this class are easier to deal with

(reactively) than is computationally-heavy proactive global motion plan-

ning. In SCRATCHbot, usually only the snout node is controlled (snout

location being the hypothesised goal), and the joints and base of the

neck follow as if the robot was being led by a ring through its nose.

Predicting and cancelling sensory signals due to

self-movement

Other than the increased complexity of the motor translation layer (due

to the increased degrees of freedom in the head and neck), and the

abstraction away from the spiking neuron level, SCRATCHbot initially

employed similar algorithms for generating orienting responses to those

used in Whiskerbot. The robot therefore displayed ‘ghost orients’, just

as Whiskerbot did, for the same reason that movements of the robot

body, head, or whiskers, can induce large transients in the transduced

whisker signals.

To mitigate this problem, we took inspiration from a hypothesis of

motor-reafferent noise removal in cerebellum (Anderson et al., 2009;

Dean et al., 2010), and used a bank of linear adaptive filters, one for each

whisker, to attempt to predict this noise signal based on the whisker an-

gle signal measured from the shaft encoder attached to each column. Af-

ter learning the parameters of the filters independently for each whisker

from example data, this noise removal proved to be very effective. The

nature of the motor-reafferent noise generated at the transducers de-

pends both on the whisker material and length, so it would appear that

both the animal and the robot would benefit from mechanisms, such as

efficient damping, that can act to minimise this noise at source.

Work in progress

We are currently working on a range of extensions to the robot control

architecture. These include systems for tactile spatial-mapping (mod-
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elled on the rat hippocampus), for feature detection (modelled on S1

cortex), and for improved decision-making by BG. Longer-term we also

plan to explore the role whisker motor cortex (MCx) in initiating and

modulating whisking bouts, and of further cortical areas involved in so-

matosensory processing such as the S2 cortex. The cerebellum is known

to be involved in a number of distinct loops with the vibrissal system

that may each implement a similar computation (adaptive filtering) but

in a context that fulfills a quite different role with respect to the be-

haviour of the animal. For instance, one hypothesis that we wish to

explore is that the cerebellum may be involved in predictive tracking of

a moving target that would allow a whiskered predator to track rapidly

moving prey using only their vibrissae. Another is that cerebellum may

be involved in the tuning of open-loop motor control operations, such as

the orient action implemented on the robot.

0.4.3 Scratchbot Experiments

Observing general SCRATCHbot behaviour (locate and orient), we typ-

ically use 30-60 second runs in a featureless flat arena, with one or more

obstacles, or an experimenter’s hand. On startup, a behaviour called

unpark bids strongly to the BG, and is given control of the robot, whilst

other actions (and whisking) are suppressed. The neck axes are driven

such that the head is moved from its ‘park’ position to an unstable point

we call the ‘unpark’ position. On arrival, unpark stops bidding, the de-

fault explore behaviour is given control, and whisking begins. At the

preset end time, software control ceases, and the low-level controllers

automatically return the neck to the park position.

Figure 0.9, and supplementary video 6, illustrate what happens when

contact is made by one or more of the macrovibrissae. The deflection

of the whisker due to the whisker coming into contact with the exper-

imenter’s hand (Figure 0.9 Frame 1) causes the salience of orient to

increase. If the salience of orient is held for long enough (a few tens of

milliseconds), the BG switches, selecting the new action by inhibiting the

output of explore and disinhibiting the output of orient. The orient

action pattern consists of two phases: first, the snout is oriented to the

point of contact; second, poise is maintained for a period of time suit-

able for fine-scale exploratory behaviour with the microvibrissae (cur-

rently being implemented). Note that the salience of the second phase

of orient is lower than that of the first; thus, the robot can be more

easily interrupted whilst exploring the object than whilst completing
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the orient itself. When orient completes, it stops bidding for the plant,

explore is again selected, and the robot straightens up as it resumes its

exploration. The removal of motor reafferent noise is very effective, and

SCRATCHbot does not express ghost orients.

Currently, as described (and shown in supplementary video 5 for

WhiskerBot, supplementary video 6 for SCRATCHbot), locomotion dur-

ing robot exploration results from switching between explore and orient.

As described in Section 0.2.2, we hypothesise that rat locomotion in sim-

ilar circumstances might be viewed as a series of orients, with the focus of

attention being constantly shifted, often ahead of the animal. In future,

we will test this hypothesised approach to locomotion using SCRATCH-

bot, removing explore and generalising orient, such that the robot

can ‘attend to’ (thus, orient to) a more general target, which may not

be something immediately detected as interesting, but rather a location

about which it intends to gather sensory information.

We have also tested the effect of the addition of control of whisker

spread on the nature of signals collected by the whiskers. In Whisker-

bot, we showed that MI implemented on each side of the face effectively

cleaned up contacts between a single whisker and the environment. In

SCRATCHbot, we were able to demonstrate that per-column MIMC was

effective in (a) cleaning up contacts on multiple whiskers and (b) gen-

erating more whisker-environment contacts than would otherwise have

occured. An example of this new version of MIMC is illustrated in Fig-

ure 0.10 and supplementary video 7. For this experiment we fixed the

robot head in a position facing a stationary ‘wall’ (similar to that typ-

ically recorded using the experimental set-up described by Grant et al.

(Grant et al., 2009)). In each trial, the first whisk against the wall is un-

modulated (left upper panel), and shows that the more rostral column

whiskers are heavily deflected, whilst the most caudal column whiskers

do not touch the wall at all. On the second whisk, the MIMC modula-

tion has taken effect (right upper panel), the rostral whiskers are less

protracted and thus are deflected less heavily, and the caudal whiskers

are brought forward and generate contacts with the wall (i.e. whisker

‘spread’ is reduced). The effect of this modulation on the contact signals

collected can be seen in the lower panel of the figure—across the three

columns, there is a tendency towards normalisation of contact depth.
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0.5 Discussion

0.5.1 Why build robot models of animals and their

nervous systems?

When neuroscientists think of model systems they usually think, not of

robots, but of using one animal as a model of another (e.g. the rat as

a model of a human); of an animal in an altered condition (e.g. under

anaesthesia, or awake but immobilized) as a model of the awake, behav-

ing one; or of an isolated part, such as a brain slice or a muscle, as a

model of that component within the intact, functioning system. How-

ever, consider the task that our research group is attempting which is to

understand the whisker system of the rat. Some of the biological models

that are available to us, the properties that they share with our tar-

get system, and their amenability to experimental investigation of their

internal processes are summarized in Table 0.1.

Table 0.1 Comparison of material model of the awake, free moving rat.

The right-hand column of table 0.1 qualitatively illustrates the dif-

ficulty of studying the internal processes of the mammalian nervous

system in each of the available models. This is hardest to do in the

awake, freely-moving animal (the behaving rat as a model of itself) and

becomes progressively easier as we move to the restrained preparation,

then anaesthetized, then to an isolated brain slice. Despite recent ad-

vances in embedded, wireless chronic recording systems, that are making

more naturalistic experiments possible, access to the neural processes of

unrestrained behaving animals will always be very limited. The problem,

however, as illustrated in the other columns of the table, is that as we

move from the target animal to the more amenable biological models,

we progressively lose many of the interesting properties that we wish to
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understand—how the free-moving animal controls its head and body so

as to optimize sensing; how sensorimotor loops are closed through the

environment; and how the component parts operate within an integrated

and intact system. The more restricted animal preparations can still be

useful, of course, but insight concerning these properties will need to be

inferred where they cannot be obtained directly. As a consequence we

may then ask how the compromises made to create a particular model

(e.g. treatment with anaesthesia) have impacted on the results and on

the inferences drawn.

Now, examine the bottom line of table 0.1. All of the interesting prop-

erties just listed are, or could be, exhibited in a robot model of the be-

having animal in a system that is highly amenable to investigation of

its internal processes, indeed, far more so than any of the available an-

imal models. The snag, and of course it’s a big one, is that the robot’s

physical and computational substrates—its body and its brain—may

not approximate the target animal in an adequate way. Thus the results

obtained from experiments with the robot may not be valid when trans-

lated back to the animal. But note that this is not too different from the

situation with the animal models—in both cases, animal and robot, we

have had to compromise and allow some aspects of the model to differ

significantly from our target. What we have with robotics, at least, is

the possibility that we can continue to refine the model, so that if we are

worried that some aspect is substantially wrong we can fix it and re-run

the experiment to see if the result changes. As the biomimicry improves,

we can expect richer and more convincing insights into the properties of

the biological system we are trying to understand.

But how good does the biomimicry need to be to make the model

useful? According to the pioneer of cybernetics Norbert Wiener ‘the

best material model of a cat is another, or preferably the same, cat’

((Rosenblueth and Wiener, 1945) p. 320). But this is ‘best’ in the sense

of most accurate, not most useful. That is, if you want to be really fussy

about the fidelity of the model compared to the target, then you will

end up coming back to the original system (the same cat, or, in our

case, the awake, free moving rat) as the only model that is good enough.

In practice, and this is exactly the point that Wiener was making, all

systems that are useful as models will only approximate their target.

Indeed, Rosenblueth and Wiener (Rosenblueth and Wiener, 1945) sug-

gested that, for a useful model, sufficient and necessary conditions are,

not that it should be accurate in every detail (some degree of abstrac-

tion is decidedly a good thing), but that it should translate the problem
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into a domain we understand better, and it should allow us to conduct

experiments with relative ease. We contend that—for exploring the re-

lationships between brain, body, and behaviour—robotics, which trans-

lates problems in biology into problems in computing and engineering,

meets these requirements well.

0.5.2 Insights from whiskered robots into the biology of

the rat vibrissal system

We would like to conclude by reviewing some of the contributions that

we believe robotics can make to neuroethology, illustrating each with an

example from our research on whiskered robots.

Discovering important questions

We have discovered, as the consequence of our collaboration, that the

engineer’s mind-set is really very different from that of the experimental-

ist, and that both can gain from the interchange of ideas and experience.

When an engineer is asked to design a robot that mimics some aspect of

animal behaviour, his or her first questions are likely to include ‘What

is your specification for this robot?’ and ‘What would you like it to do?’.

The biologist is then likely to reply that they can specify some aspects

of the design, and of the desired behaviour, but not all, since much of

the biology is still unknown at this stage. Further, of those things they

can specify, much of what they can tell you is approximate or qualita-

tive and some of it is disputed. At this point the engineer may wonder

if the problem is adequately posed! If both sides are still keen to pursue

the collaboration the experimentalist might then ask what is it that the

engineer needs to know in order to create a sufficient specification and

the ensuing list of questions can then be integrated into the ongoing pro-

gramme of empirical work. Often the questions that the engineer will ask

are very different from those that have hitherto been addressed by any

experiment. This is because the task of synthesis differs radically from

that of analysis (Braitenberg, 1986). Synthesis often imposes an order

on design decisions which makes the answers to some questions more

important, or at least more urgent, than others. For instance, when we

began to design our first whisking robot one of the first questions from

the engineers was ‘What happens to the whiskers once they touch a

surface - do they keep moving and bend against the object, or do they

stop?’. A simple enough question, but when we looked at the experi-

mental literature that existed at that time there was no clear answer.
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Thus began a programme of experimental work that showed that, dur-

ing exploratory whisking, protraction ceases rapidly following contact,

leading to our hypothesis of the ‘minimal impingement’ whisker control

strategy (Mitchinson et al., 2007).

Testing the sufficiency of theories

Many good reasons for building models, in simulation or in robots, have

been nicely summarized by Epstein (Epstein, 2008). One of the most

important of these is that a model allows us determine whether our the-

ories are adequate to account for the behaviour we are trying to explain.

If the robot can replicate the behaviour of the animal then there is no

longer any question of whether the theory is sufficient (although we can

still ask whether it does the task as well as the animal or in the same

way). As it turns out, some of the tasks that look easy are harder to repli-

cate than you would expect, and some apparently hard tasks turn out

to be relatively easy. For instance, orienting to a whisker contact sounds

easy, but when we implemented it we found that the robot was easily

distracted by ghost contacts generated by its own movement. Resolving

this problem using an adaptive filter was non-trivial and suggested a

new theory about the role of vibrissal loops through the cerebellum. A

theory of vibrissal orienting without noise cancellation was an insuffi-

cient theory, but this was not apparent until we built the robot model

and tried it out.

Suggesting new hypotheses

The task of devising an effective solution to whisker-guided orienting has

also suggested a new hypothesis concerning the representations of vib-

rissal stimuli in the midbrain superior colliculus (SC). In mammals, the

SC is known to be a seat of spatially-organized sensory information, and

to drive rapid orienting and aversion responses (Dean et al., 1989). It is

also well evidenced that SC is an important locus for cross-sensory in-

tegration of spatial information (Sparks, 1986). Recent histological and

electrophysiological measurements indicate that, in the rat, there are

strong neural projections from the brainstem trigeminal nuclei to the

intermediate layers of SC (Kleinfeld et al., 1999), providing a substrate

for whisker-visual integration. In visual animals, SC uses a retino-centric

coordinate system; in the rat, retino-centric and head-centric are very

closely related, since eye movement is minimal. If spatial information

from the whiskers is also integrated in SC, the coordinate transform

modelled in Whiskerbot (from whisker to head-centered reference frame)
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must take place either in SC itself, or on the way to it (i.e. in the trigem-

inal nuclei). Whisker representations in SC in the anaesthetized animal

are very broad (Drager and Hubel, 1976), particularly in the AP direc-

tion, with individual whiskers having representations almost as large as

the whisker rows to which they belong. From our modeling work we con-

tend that these broad, AP-biased, fields are to be expected. Specifically,

if accurate integration is to be performed between visual and vibrissal

stimuli, then since whiskers move relative to the head as the result of

whisking, their representations must also move around with respect to

the head-centered map in SC, leading to broad overall fields. Record-

ing from multiple cells in an animal whilst the whiskers move, it should

be possible to show that the strongest response to individual whiskers

moves around in SC in a manner consistent with this hypothesis. Whilst

we can only be confident of this prediction in the awake animal, it might

also be observed in a lightly anaesthetised animal, with whisking invoked

electrically.

Investigating the role of embodiment

It is increasingly recognized that behaviour is the consequence of the in-

teraction between the brain, the body, and the environment (Chiel and

Beer, 1997; Chiel et al., 2009) and that robotics may be one of the most

cost-effective ways of studying this interaction. Current simulations of

real-world physics are not up to the task of adequately capturing all of

the dynamical properties (e.g. collision elasticity, surface friction) of the

interaction between two objects such as a whisker shaft and a moving or

irregular surface (Fox et al., 2008), thus the world remains its own best

model for this aspect of our work. As noted above, our recent efforts

to build artificial vibrissae fall short of producing artefacts with all the

desirable mechanical properties of the rat whisker-shaft/follicle. There-

fore, our current approach combines simulation, to better understand

the biomechanics of natural whiskers, with robotic experiments to de-

termine what properties of surfaces can be effectively discerned through

artificial vibrissal sensing. Through this combined approach we hope to

be able to better identify the contribution of the morphology to the task

of tactile sensing for this system.

Investigating ‘What if?’ scenarios

Robots do not have to mimic the biology, and one way to find out why the

biology is-as-it-is might be to build a system that works differently and

compare. For instance, we can directly contrast the sensing properties
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of whiskers that do not taper or do not curve with those that do, in

order to better understand why natural whiskers have evolved to do

both. Likewise, we can investigate ways of controlling the movement

of the whiskers that are either natural or unnatural and observe the

consequences of these different movement strategies for the type, quality

and quantity of tactile information obtained by the robot (animal).

Doing the experiments that cannot be done

One of the most important uses of a physical model is that it can allow

experiments to be performed that could not be done on the animal, or

at least would be very difficult to do in vivo given our current knowledge

and available methods. For example, what impact does minimal impinge-

ment (MI) control of vibrissal movement (Mitchinson et al., 2007) have

on the sensory signals ascending from the whiskers to higher process-

ing centers such as the S1 cortex? This question is important because

much of the research conducted on cortex is performed in anaesthetized

animals, or even in brain slices, using input signals that are intended

to mimic the effects of natural contacts. Unfortunately we cannot per-

form a straightforward experiment in the animal where we turn-off MI

control and see the difference that this makes to signals (in the anaes-

thetized preparation we can replace natural whisker motion with a form

of fictive whisking (Szwed et al., 2003), however, there are differences

here from the awake, behaving animal that could make interpretation of

the findings problematic). In contrast, in the robot model, the required

experiment is trivial to perform (see 0.6), and we can exactly compare

the contacts resulting from movement, with and without MI, and the

spike trains that these contacts generate in the simulated trigeminal

nerve (which, in the animal, is just two synapses away from the sig-

nals arriving at the S1 cortex). These robot experiments can therefore

help neuroscientists to select more plausible signal trains with which to

stimulate animal models during in vivo or in vitro experiments.

Evaluating the usefulness of biological solutions to problems

in robotics

Finally, one of the benefits for engineers of engaging in this kind of inter-

disciplinary collaboration is to determine whether the biological system

has a solution to an existing practical problem that they might usefully

copy. The rat is a successful and versatile mammal that uses its whiskers

in a range of tasks from object detection and recognition, through guid-

ance of locomotion across all kinds of terrain, to prey capture (Prescott
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et al., In press). In mammals more generally, tactile hairs are widely

deployed across the body (e.g. on the legs, paws, or back) for detecting

unexpected contacts and for tactile discrimination of surface proper-

ties. A sensory capacity that has proved so effective for animals could

lead to increased flexibility and performance when deployed on robots.

Indeed an artificial whisker system could prove particularly useful for

robots that must operate in environments where vision systems can pro-

vide only degraded or ambiguous input, such as in smoke- or dust-filled

buildings or for covert operations in darkness. Towards this end, the next

stage in the development of SCRATCHbot will be to devise tactile-based

strategies for environment exploration and local and global navigation.

For instance, we plan to incorporate a spatial memory based on current

understanding of the rat hippocampal formation. By associating odome-

try and head-centered contact information with tactile sensory features,

such as texture and object shape, a spatial map will be constructed as

the robot explores. For the biologists, this will allow investigation into

how tactile sensory information is presented to long-term memory sys-

tems. For the roboticists, this will provide valuable insight into how a

touch-based platform could be effectively deployed for robot guidance in

the absence of vision.
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Figure 0.9 Data from SCRATCHbot during an orient to a whisker
contact. Upper three plots show data from 5th whisker (middle
row/column, thick line) and 7th whisker (top row, rear column, thin
line) on the left. Upper: raw x-component of whisker sensory signal;
Second: re-afferent noise removed, greatly improving the signal-to-
noise ratio; Third: angular position (θ) of middle/rear columns (π
radians indicates straight ahead); Lower: saliency of orient. Frame
timing is indicated in plots by star symbol. Contact on whisker 5
during retraction (Frame 1) is followed by increase in orient salience
and action selection. Additional contacts on whisker 7 (Frame 2) and
5 during the orient are ignored. Snout arrives at the point of initial
whisker contact (Frame 3), completing the orient; saliency is reduced.
The second phase of orient (Frame 4) is a placeholder, during which
the micro-vibrissae will be used for fine inspection of the contacted
feature, in future work.
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Figure 0.10 Investigating the impact of per-column MIMC on whisk-
ing patterns and data collection (see text). Upper panel shows two
frames taken from a highspeed video of a trial of whisking against a
wall. The frames are taken from the moment of peak whisker protrac-
tion in the first whisk (left) and in the second (right); in the second
whisk, modulation has taken effect, and the contacts of each column
with the wall are normalised. Lower panel shows the contact signals
retrieved from the centre whisker in each of the three columns, dur-
ing the first four whisks of the same trial—signals are normalised in
second, and later, whisks.
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