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Preface

To understand life, one has to understand not just the flow of

energy, but also the flow of information.

W Bialek, 2012.

Here in the 21st century, where we rely on computers for almost

every aspect of our daily lives, it seems obvious that information is

important. However, it would have been impossible for us to know

just how important it is before Claude Shannon almost single-handedly

created information theory in the 1940s. Since that time, it has become

increasingly apparent that information, and the energy cost of each

bit of information, imposes fundamental, unbreachable limits on the

form and function of all organisms. In this book, we concentrate on

one particular function, information processing in the brain. In our

explorations, we will discover that information theory dictates exactly

how much information can be processed by each neuron, and how the

staggeringly high cost of that information forces the brain to treat

information like biological gold dust. Almost all of the facts presented

in this book reflect the harsh realities implied by the application of

information theory to neuronal computation, and the predictions of

one particular idea, known as the e�cient coding hypothesis.

The methods we use to explore the e�cient coding hypothesis lie in

the realms of mathematical modelling. Mathematical models demand

a precision unattainable with purely verbal accounts of brain function.

With this precision, comes an equally precise quantitative predictive

power. In contrast, the predictions of purely verbal models can be

vague, and this vagueness also makes them virtually indestructible,

because predictive failures can often be explained away. No such luxury

exists for mathematical models. In this respect, mathematical models



are easy to test, and if they are weak models then they are easy

to disprove. So, in the Darwinian world of mathematical modelling,

survivors tend to be few, but those few tend to be supremely fit.

Of course, this is not to suggest that purely verbal models are always

inferior. Such models are a necessary first step in understanding. But

continually refining a verbal model into ever more rarefied forms cannot

be said to represent scientific progress. Eventually, a purely verbal

model should evolve to the point where its predictions can be tested

against measurable physical quantities. Happily, most branches of

neuroscience reached this state of scientific maturity some time ago.

Accordingly, this book is intended as a tutorial account of how one

particular mathematical framework (information theory) is being used

to test the quantitative predictions of a candidate general principle of

brain function: the e�cient coding hypothesis.

Feynman’s Legacy. Every writer of scientific texts aspires to acquire

the deceptively easy style of the great physicist Richard Feynman.

In his famous lecture series (http://feynmanlectures.caltech.edu/), he

defined what it means to write simply, and without jargon, whilst

providing the reader with a rigorous and intuitive understanding of

physics. However, Feynman’s style was borne of deep insights, based

on many years of study. This, in turn, engendered a confidence

which allowed him to un-grasp the mathematical hand-holds, which re-

assure, but also constrain, other scientists. Inspired by such eloquent

writing, the style adopted here in Principles of Neural Information

Theory is an attempt to describe the raw science of neural information

theory, un-fettered by the conventions of standard textbooks, which can

confuse rather than enlighten the novice. Accordingly, key concepts are

introduced informally, before being described mathematically; and each

equation is accompanied by explanatory text.

So, unlike most textbooks, and like the best lectures, this book is

intended to be both informal and rigorous, with prominent sign-posts

as to where the main insights are to be found, and many warnings about

where they are not. Using this approach, it is hoped that the diligent

reader may gain an intuitive understanding of key facts, which are



sometimes well presented, but often well camouflaged, in more formal

accounts of neural computation and information theory.

What Is Not Included. An introductory text cannot cover all

aspects of a subject in detail, and choosing what to leave out is as

important as choosing what to include. In order to compensate for this

necessity, pointers to material not included, or not covered in detail,

can be found in the annotated Further Reading section.

PowerPoint Slides of Figures. Most of the figures used in this book

can be downloaded from

http://jim-stone.sta↵.shef.ac.uk/BookNeuralInfo/NeuralInfoFigs.html

Corrections. Please email corrections to j.v.stone@she�eld.ac.uk.

A list of corrections can be found at

http://jim-stone.sta↵.shef.ac.uk/BookNeuralInfo/Corrections.html

Acknowledgments. Thanks to all those involved in developing the

freely available LATEX2" software, which was used to typeset this

book. Shashank Vatedka deserves a special mention for checking the

mathematics in a final draft of this book. Thanks to Caroline Orr for

meticulous copy-editing and proofreading. For reading draft versions

of this book, I am very grateful to Karl Friston, Nikki Hunkin, Stuart

Wilson and ...

Jim Stone, She�eld, England, 2017.





Chapter 1

All That We See

When we see, we are not interpreting the pattern of light intensity

that falls on our retina; we are interpreting the pattern of spikes

that the million cells of our optic nerve send to the brain.

Rieke, Warland, De Ruyter van Steveninck, and Bialek, 1997.

1.1. Introduction

All that we see begins with an image focussed on the retina at the back

of the eye (Figure 1.1). Initially, this image is recorded by 126 million

photoreceptors within the retina. The outputs of these photoreceptors

are then encoded, via a series of intermediate connections, into a

sequence of digital pulses or spikes, that travel through the one million

nerve fibres of the optic nerve which connect the eye to the brain.

The fact that we see so well implies that the brain must be

extraordinarily good at encoding the retinal image into spikes, and

equally good at decoding those spikes into all that we see (Figure 1.2).

But the brain is not only good at translating the world into spikes,

and spikes into perception, it is also good at transmitting information

from the eye to the brain whilst expending as little energy as possible.

Precisely how good, is the subject of this book.

1



1 All That We See

1.2. E�cient Coding

Neurons communicate information, and that is pretty much all that

they do. But neurons are expensive to make, maintain, and run55. For

example, half of the total energy used by a child at rest is required just

to keep the brain ticking over. Of this, about 13% is used to transmit

spikes along neurons, and the rest is for maintenance. The cost of

using neurons is so high that only 2-4% of them can be active at any

one time57.

Given that neurons and spikes are so expensive, we should be un-

surprised to find that when the visual data from the eye is encoded

as a series of spikes, each neuron and each spike conveys as much

information as possible. These considerations have given rise to the

e�cient coding hypothesis5;10;12;28;75;97;98, an idea developed over many

years by Horace Barlow (1959)9.

The e�cient coding hypothesis is conventionally interpreted to mean

that neurons re-package sensory data in order to transmit as much

information as possible. Even though it is not usually made explicit, if

data are encoded e�ciently as described above then this often implies

that the amount of energy paid for information is as small as possible.

In order to avoid any confusion, we adopt a more specific interpretation

of the e�cient coding hypothesis here: namely, that neurons re-package

sensory data in order to transmit as much information as possible per

Joule of energy expended47;49;63;67;68;85;96.

There are a number of di↵erent methods which collectively fall

under the umbrella term ‘e�cient coding’. However, to a first

approximation, the results of applying these various methods tend

Re#na	

Lens	

Op#c	
Nerve	

Figure 1.1. Cross section of eye.
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1.3. General Principles

to be quite similar75, even though the methods themselves appear

quite di↵erent. These methods include sparse coding35, principal

component analysis, independent component analysis11;86, information

maximisation (infomax)58, predictive coding72;84 and redundancy

reduction3. We will encounter most of these broadly similar methods

throughout this book, but we place special emphasis on predictive

coding because it is based on a single principle, and it has a wide

range of applicability.

1.3. General Principles

The test of a theory is not just whether or not it accounts for a body of

data, but also how complex the theory is in relation to the complexity

of the data being explained. Clearly, if a theory is, in some sense, more

convoluted than the phenomenon it explains then it is not much of a

theory. As an extreme example, if each of the 86 billion neurons in

the brain required its own unique theory then the resultant collective

theory of brain function would be almost as complex as the brain itself.

This is why we favour theories that explain a vast range of phenomena

with the minimum of words or equations. A prime example of such a

parsimonious theory is Newton’s theory of gravitation, which explains

(amongst other things) how a ball falls to Earth, how atmospheric

pressure varies with height above the Earth, and how the Earth orbits

200 400 600 800 1000
Time (ms)

200 400 600 800 1000
Time (ms)

a	

b	 Luminance	

Reconstructed	
luminance	

En
co
di
ng
	 Decoding	

Response	(spikes)	

			Time	(ms)	

Figure 1.2. Encoding and decoding. Rapidly changing luminance (bold
curve in b) is encoded as a neuronal spike train (a), which can be decoded to
reconstruct an estimate of the luminance (thin curve in b).
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1 All That We See

the Sun. In essence, we favour theories which rely on a general principle

to explain a range of physical phenomena.

With this in mind, there are a finite number of general principles

which may explain the design of the brain. Briefly, and within the

context of physical theories, some prime candidates for a general

principle are: 1) the supply of energy is the single most important

factor in the design of the brain, 2) information throughput is the single

most important factor in the design of the brain, and, 3) information

per Joule of energy expended is the single most important factor in the

design of the brain (i.e. the e�cient coding hypothesis). However, even

though complex systems are a↵ected by many factors, usually only one

of them dominates its behaviour13 (see Section 6.1).

Whichever theory is correct, if we want to understand how the brain

works then we need more than a theory which is expressed in mere

words. For example, if the theory of gravitation were stated only in

words then we could say that each planet has an approximately circular

orbit, but we would have to use many words to prove precisely why

each orbit must be elliptical, and to state exactly how elliptical each

orbit is. In contrast, a few equations would express these facts exactly,

and without ambiguity. Thus, whereas words are required to provide

theoretical context, mathematics imposes a degree of precision which is

extremely di�cult, if not impossible, to achieve with words alone. To

quote one of the first great scientists,

The universe is written in this grand book, which stands continually

open to our gaze, but it cannot be understood unless one first learns

to comprehend the language in which it is written. It is written in

the language of mathematics, without which it is humanly impossible

to understand a single word of it.

Galileo Galilei, 1623.

In the spirit of Galileo’s recommendation, a rigorous theory of

information processing in the brain should begin with a quantitative

definition of information.

4



1.4. Information Theory

1.4. Information Theory

Information theory was developed almost exclusively by Claude

Shannon during the 1940s. His classic paper published in 1948,

and the subsequent book by Shannon and Weaver (1949)81, heralded

a transformation in our understanding of information. Before the

publication of Shannon’s work, information had been regarded as a kind

of poorly defined miasmic fluid. But afterwards, it became apparent

that information is a well-defined and, above all, measurable quantity.

Shannon considered information to be as fundamental as physical

quantities like energy and mass (see the quotation which opens Chapter

2). Even though we cannot sense information in the same way that we

can sense the e↵ects of energy (e.g. as heat) or mass (e.g. as weight),

information is just as important for life, for us, and for our brains.

Shannon’s theory of information provides a mathematical definition

of information, and describes precisely how much information can be

communicated between di↵erent elements of a system. This may not

sound like much, but Shannon’s theory underpins our understanding of

how signals and noise are related, and why there are definite limits to

the rate at which information can be communicated within any system,

whether man-made or biological.

1.5. Neurons, Signals and Noise

When a question is typed into a computer search engine, the results

provide useful information, but this is buried in a sea of mostly useless

data. In this internet age, it is easy for us to appreciate the di↵erence

between information and mere data, and we have learned to treat

the information as useful signal and the rest as useless noise. This

experience is now so commonplace that phrases like signal to noise ratio

are becoming part of everyday language. Even though most people are

unaware of the precise meaning of this phrase, they know intuitively

that data comprise a combination of signal and noise.

The ability to separate signal from noise, to extract information from

data, is crucial for modern telecommunications. For example, it allows

a television picture to be compressed or encoded to its bare information

5



1 All That We See

bones and transmitted to a satellite, and then to a TV, before being

decoded to reveal the original picture on the TV screen.

More importantly, this type of scenario is ubiquitous in the natural

world. The ability of eyes and ears to extract useful signals from

noisy sensory data, and to package those signals e�ciently, is the

key to survival88. Indeed, the e�cient coding hypothesis suggests

that the evolution of sense organs, and of the brains that process

data from those organs, is primarily driven by the need to minimise

the energy expended for each bit of information acquired from the

environment. Moreover, because information theory tells us how to

measure information precisely, it provides an objective benchmark

against which the performance of neurons can be compared.

The maximum rate at which information can be transmitted through

a neuron can be increased in a number of di↵erent ways. However,

whichever way we (or evolution) chooses to do this, doubling the

maximum information rate costs more than a doubling in neuronal

hardware, and more than twice the amount of power (energy per

second)85. This is a universal phenomenon, which implies a diminishing

information return on every additional micrometre of neuron diameter,

and on every additional Joule of energy invested in transmitting spikes

along a neuron. This, in turn, imposes fundamental and unbreachable

limits on information processing in neuronal systems.

The extraordinarily high cost of information means that the brain

cannot depend on physiological mechanisms which require extravagant

amounts of information. Whereas an astronomer can quadruple the

amount of light in an image by quadrupling the area of his telescope’s

objective lens, any nocturnal animal which attempted the same trick

would pay in myriad ways, and would therefore almost certainly reduce

its Darwinian fitness. Far better, far more e�cient, to extract as much

information as possible from a relatively dim retinal image, and to re-

package it to its informational essence before sending it to the brain.

Information theory does not place any conditions on what type of

mechanism implements this re-packaging; in other words, on exactly

how it is to be achieved. However, unless there are unlimited amounts

of power available, relatively little information will reach the brain

6



1.6. An Overview of Chapters

without some form of re-packaging. In other words, information

theory does not specify how any task, such as vision, is implemented,

but it does set fundamental limits on what is achievable by any

implementation, biological or otherwise.

Because these limits are unbreachable, and because they e↵ectively

extort such a high price, there seems to be little alternative but to evolve

brains which are exquisitely sensitive to the many trade-o↵s between

time, neuronal hardware, energy and information. As we shall see,

whenever such a trade-o↵ is encountered, the brain seems to maximise

the amount of information gained for each Joule of energy expended.

1.6. An Overview of Chapters

This section contains technical terms which are explained fully in the

appropriate chapter, and in the Glossary.

In order to fully appreciate the evidence referred to above, some

familiarity with the basic elements of information theory is required;

these elements are presented in Chapter 2. We then consider (in

Chapter 3) how to apply information theory to the problem of

measuring the amount of information in the output of a spiking neuron,

and how much of this information (i.e. mutual information) is related

to changes in the neuron’s input. We also consider how often a neuron

should produce a spike in order to maximise its information content,

and we find that this coincides with an important property, linear

decodability. In Chapter 4, we discover that one of the consequences

of information theory (specifically, Shannon’s noisy coding theorem)

is that the cost of information rises inexorably and disproportionately

with information rate. This steep rise suggests that neurons should

set particular physical parameters like axon diameter, the distribution

of axon diameters, and synaptic conductance to minimise the cost of

information; evidence is presented which supports this suggestion.

In Chapter 5, we consider how the correlations between the inputs to

neurons sensitive to di↵erent colours always reduce information rates,

and how this can be ameliorated by pre-processing in the retina to

decorrelate outputs. This pre-processing involves principal component

analysis, which can be used to maximise neuronal information

7



1 All That We See

throughput. The lessons learned so far are then applied (in Chapter 6)

to the problem of encoding time-varying, correlated visual inputs. We

explore how a standard neuron model can be used for e�cient coding of

the temporal structure of retinal images, and how a predictive coding

model yields similar results to the standard model. In Chapter 7, we

explore how the spatial structure of the retinal image can be encoded,

and how information theory predicts di↵erent encoding strategies under

high and low luminance conditions. Evidence is presented that these

strategies are consistent with those used in the retina, and which are

also implemented by predictive coding.

Once colour, spatial or temporal structure has been encoded by

a neuron, the result must pass through the neuron’s non-linear

input/output (transfer) function. Accordingly, in Chapter 8, we

consider what form this transfer function should adopt in theory, in

order to maximise information throughput. Crucially, we find that this

theoretically optimal transfer function matches those found in visual

neurons. Finally, the problem of how to decode neuronal outputs

is addressed in Chapter 9, where the importance of prior knowledge

or experience is explored in the context of Bayes’ theorem. In each

chapter, we will explore particular neuronal mechanisms, how they

work, and (most importantly) why they work in the way they do.

8



Chapter 2

Information Theory

A basic idea in information theory is that information can be treated

very much like a physical quantity, such as mass or energy.

C Shannon, 1985.

2.1. Introduction

Every physical quantity, like a sound or a light, consists of data which

has the potential to provide information about some aspect of the

world. For an owl, the sound of a mouse rustling a leaf may indicate a

meal is below; for the mouse, a flickering shadow overhead may indicate

it is about to become a meal.

Precisely how much information is gained by a receiver from data

depends on three things. First, and self-evidently, the amount of

information in the data. Second, the relative amounts of relevant

information or signal, and irrelevant information or noise, in the data.

Third, the ability of the receiver to separate the signal from the noise.

Once the data reach the sensory apparatus of an animal, it is up to

that animal to ensure that the information in the data is preserved so

that it reaches the animal’s brain. The limits on an animal’s ability to

capture data from the environment, to package them e�ciently, and to

extract the information they contain, is dictated by a few fundamental

theorems, which represent the foundations on which information theory

is built (a theorem is a mathematical statement which has been proved

to be true). The theorems of information theory are so important that

they deserve to be regarded as the laws information.

9



2 Information Theory

Just as a bird cannot fly without obeying the laws of physics, so, a

brain cannot function without obeying the laws of information. And,

just as the shape of a bird’s wing is ultimately determined by the laws

of physics, so the structure of a neuron is ultimately determined by the

laws information. In order to understand how these laws are related

to neural computation, it is necessary to have a sound grasp of the

essential facts of Shannon’s theory of information.

Being both a mathematician and an engineer, Shannon stripped the

problem of communication to its bare essentials, depicted in Figure 2.1.

He then provided the fundamental theorems of information theory,

which can be summarised as follows. For any communication channel:

1) there is a definite upper limit, the channel capacity, to the amount

of information that can be communicated through that channel, 2) this

limit shrinks as the amount of noise in the channel increases, 3) this

limit can very nearly be reached by judicious packaging, or encoding,

of data before it is sent through the channel. For our purposes, an

important corollary of these theorems is that the cost of information

rises very rapidly as the information rate increases.

Note that this chapter can be skipped on a first reading of the book,

and returned to as necessary.

2.2. Finding a Route, Bit by Bit

Information is usually measured in bits, and one bit of information

allows you to choose between two equally probable alternatives. In

order to understand why this is so, imagine you are standing at the

Encoding

Message

s

Channel

Noise

Decoding

⌘

x y

Message

s

Figure 2.1. The communication channel. A message (data) is encoded before
being used as input to a communication channel, which adds noise. The
channel output is decoded by a receiver to recover the message.
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