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Entanglement spectrum of the reduced density matrix contains information beyond the von Neu-
mann entropy and provides unique insights into exotic orders or critical behavior of quantum sys-
tems. Here we show that strongly-disordered systems in the many-body localized phase have uni-
versal power-law entanglement spectra, arising from the presence of extensively many local integrals
of motion. The power-law entanglement spectrum distinguishes many-body localized systems from
ergodic systems, as well as from ground states of gapped integrable models or systems in the vicinity
of scale-invariant critical points. We confirm our results using large-scale exact diagonalization. In
addition, we develop a matrix-product state algorithm which allows us to access the eigenstates of
large systems close to the localization transition, and discuss general implications of our results for
variational studies of highly excited eigenstates in many-body localized systems.

PACS numbers: 75.10.Pq, 05.30.Rt, 64.70.Tg, 72.15.Rn

Introduction.— Recently, much progress has been
made towards understanding the mechanisms of ergodic-
ity and its breakdown in an isolated quantum many-body
system. Currently, two generic classes of many-body sys-
tems are known: ergodic (thermal) systems and many-
body localized (MBL) systems [1–4]. An ergodic system
is one that acts as a heat bath for its subsystems, and
therefore thermalizes as a result of unitary evolution [5–
7]. By contrast, in MBL systems transport of energy
is quenched by disorder, via a mechanism akin to the
single-particle Anderson localization [8]. Nevertheless,
MBL systems do reach stationary states [9, 10], which are
highly non-thermal due to the emergence of extensively
many quasi-local integrals of motion (LIOMs) [11–13].

In addition to distinct dynamical properties, ergodic
and MBL systems are sharply distinguished by the micro-
scopic nature of their eigenstates. This difference can be
probed via quantum-information measures, such as en-
tanglement entropy (EE). Given a pure quantum state ψ
of a many-body system S = L∪R, consisting of two sub-
systems L andR, the EE is defined as S = −

∑D
i λi lnλi,

where {λi}, i = 1, ..., D, are the eigenvalues of the re-
duced density matrix ρ̂R = TrL|ψ〉〈ψ|, and D is the di-
mensionality of the Hilbert space ofR. The EE of highly-
excited eigenstates of thermal systems, which obey the
“Eigenstate Thermalization Hypothesis” [5–7], is known
to generically scale as the number of degrees of freedom
in R (“volume law”). On the other hand, in an MBL sys-
tem the EE of nearly all eigenstates obeys the “area law”
[11, 12, 14]. This weaker scaling of EE makes MBL sys-
tems reminiscent of ground states of gapped systems [15].

EE, while providing a quantitative measure of entan-
glement in a many-body state, contains no information
about how it is created or how different degrees of free-
dom are entangled with each other. Therefore, to gain

a better understanding of the structure of MBL and er-
godic states, we study the “entanglement spectrum” (ES)
[16], i.e., the full eigenspectrum of the reduced density
matrix, {λi}. The ES has been extensively studied in
free fermion [17] and critical systems [18]. A particular
advantage of the ES is that it can characterize and clas-
sify exotic quantum orders that cannot be described by
symmetry-breaking [16, 19–21].

In this paper, we obtain a more complete understand-
ing of the eigenstate entanglement properties in the MBL
phase and in the vicinity of the delocalization transition.
We demonstrate that the ES in the MBL phase has a
universal power-law structure, whose exponent is propor-
tional to the many-body localization length [Fig. 1]. This
structure results from the fact that the ES probes the cor-
relations at the boundary between the subsystems L and
R, and due to the existence of an extensive number of
local operators that commute with the Hamiltonian in
the MBL phase [11–13]. Thus, the universal power-law
distinguishes MBL systems from ergodic systems where
the ES obeys the Marchenko-Pastur distribution [22, 23].
Moreover, the power-law spectrum reveals a difference
between MBL systems and ground states of gapped inte-
grable models [24] or free systems in the vicinity of scale-
invariant critical points [18, 25], where the ES typically
decays faster than power law [17, 18, 26, 27].

In addition to providing new insights into the prop-
erties of MBL systems, the ES is of crucial impor-
tance for the matrix-product state (MPS) optimization
algorithms such as the “density matrix renormalization
group” (DMRG) [28]. While in principle the MPS nat-
urally encode the eigenstates of MBL phase due to the
area-law entropy, practical realizations of the efficient op-
timization algorithms are an active area of research [29–
33]. In this work we develop an MPS optimization to tar-
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Figure 1. (Color online) ES of the highly-excited eigenstates
of XXZ spin chain with disorder strength W = 5. The spec-
trum has a power law form in the MBL phase and in the
vicinity of the delocalization transition.

get the highly-excited states of a disordered XXZ chain
in 1D, and use the power-law ES as a sensitive bench-
mark of its accuracy in large systems up to L = 30 spins.
Our analytic results for the ES allow us to put bounds
on the bond dimension, and demonstrate the feasibility
of the DMRG calculation of highly excited states in close
proximity to the delocalization transition.
Our work complements the recent work by Yang et

al. [23] and Geraedts et al. [34], who studied the ES dis-
tribution and level statistics in ergodic and MBL phases,
and Monthus [35], who derived the scaling of Renyi en-
tropies in the MBL phase in first-order perturbation in
the coupling between the subsystems.
Model.—We consider a standard model of MBL – a

XXZ spin-1/2 chain of L spins with a random z−field [4]:

H =
1

2

L−1∑

i=1

[
Jx(σ

x
i σ

x
i+1 + σy

i σ
y
i+1) + Jzσ

z
i σ

z
i+1

]
+

L∑

i=1

hiσ
z
i ,

(1)
where hi ∈ [−W ;W ] are independent, uniform random
numbers, and σα are the Pauli matrices. We choose open
boundary conditions and assume a bipartition that sepa-
rates the system into equal L and R parts [Fig 1, inset].

The model (1) has been extensively studied and is
believed to capture all essential properties of the MBL
phase and the localization transition. For example, it is
known that the model supports an MBL phase at strong
disorder, an ergodic phase at weaker disorder, and an in-
tegrable point at zero disorder. For Jx = Jz = 1, the
transition between the two phases was estimated to be
atWc ≈ 3.5 based on a variety of probes, for example the
level statistics [4, 36, 37], fluctuations of EE [38], and the
statistics of the matrix elements of local operators [39].
Power-law entanglement spectrum.— Before discussing

numerical results for the model (1), we infer the general
properties of the ES in the MBL phase from the existence
of LIOMs [11–13, 40]. In the “fully” MBL phase (i.e.,

when there is no mobility edge in the spectrum [36, 39]),
there exists a quasi-local unitary transformation which
diagonalizes the Hamiltonian by rotating the physical
spins σi into the exactly conserved LIOMs τi. The lat-
ter form a complete basis of the Hilbert space, and any
many-body eigenstate is a simultaneous eigenstate of all
τzi , i = 1, . . . L.

Let us expand a given eigenstate |I〉 over the complete
basis formed by tensor product of eigenstates in L and R:

|I〉 =
∑

{µ}L,{τ}R

C{µ}L{τ}R
|{µ}L〉 ⊗ |{τ}R〉. (2)

In the MBL phase, the values of LIOMs in L or
R, {µ}L and {τ}R respectively, label the basis vec-
tors. In this basis, the reduced density matrix of the
state (2) for R subsystem reads 〈{χ}R|ρ̂R|{τ}R〉 =
∑

{µ}L
C∗

{µ}L{χ}R
C{µ}L{τ}R

, where the sum over all con-
figurations of the L subsystem arises from partial trace.
We rewrite this matrix as ρ̂R =

∑

{µ}L
|ψ{µ}L

〉〈ψ{µ}L
|.

The vectors |ψ{µ}L
〉 are given by the coefficients in

Eq. (2):

|ψ{µ}L
〉 =

(

C{µ}L{τ1}R
, C{µ}L{τ2}R

. . . , C{µ}L{τDR
}R

)T

,

(3)
where each of DR = 2LR components is labeled by the
different configurations of LIOMs in R.

Deep in the MBL phase, to the order O(1), an eigen-
state |I〉 of the full system is a product state of certain
eigenstates of L and R subsystems. Let us define the LI-
OMs such that these eigenstates are labelled by configu-
rations with all effective spins pointing up, τzi |I〉 = |I〉 for
all i. Then, in the expansion (2), the largest coefficient
is |C{µ}L{τ}R

| = c0, with both {τ}R and {µ}L =↑↑ . . . ↑.
The typical value of a coefficient with some of the LIOMs
flipped is suppressed as

|C{↑...↑↓↓↑}L{↑↑↓
︸ ︷︷ ︸

r

↑...↑}R
| ≈ c0e

−κr, (4)

where r specifies the “radius of the disturbance” (RoD)
of effective spins near the entanglement cut, and κ is the
inverse characteristic (many-body) localization length.
Note that κ may fluctuate depending on disorder pat-
tern, and should not be taken as a direct analogue of the
single-particle localization length as it does not diverge
at the transition [39].

If we order the basis in R according to the RoD, the
exponential suppression (4) implies that (i) all terms in
|ψ{µ}L

〉 are suppressed as e−κrL , where rL is the RoD
in the left subsystem; (ii) components of |ψ{µ}L

〉 are or-
dered according to their magnitude, so that the first term
(corresponding to no spin flips in R) is of order one, the
term with one spin flip is of the order e−κ, etc. Denoting
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a = e−κ, a typical |ψ{µ}L
〉 is:

|ψ{µ}L
〉 = arL(α1; α2a; α3a

2, α4a
2; α5a

3, . . . , α8a
3;

. . . ; α1+DR/2a
LR , . . . , αDR

aLR)T , (5)

where all |αi| are assumed to be of order one, and we
separated the blocks corresponding to the value of RoD
rR = 0, 1, 2, . . . , LR by semicolons.
If different vectors |ψ{µ}L

〉 in Eq. (3) were mutually or-
thogonal, their norm 〈ψ{µ}L

|ψ{µ}L
〉 ∝ e−2κrL would give

the eigenvalues of ρ̂R, and hence the ES. In the Sup-
plemental Material [41] we demonstrate it is possible to
perturbatively orthogonalize the vectors |ψ{µ}L

〉 deep in
the MBL phase where e−κ ≪ 1. This process results in
the eigenvalues labeled by the RoD r:

λ
(r)
k = λ↑...↑ ↓...↓

︸︷︷︸
r

∝ e−4κr, (6)

where k = 2r−1 + 1, . . . , 2r labels 2r−1 different eigen-
values in the block corresponding to RoD r. An extra
factor of 2 in the exponent in Eq. (6) compared to the
norm of corresponding |ψ{µ}L

〉 arises from the fact that
all components in |ψ{µ}L

〉, corresponding to blocks with
RoD less than r, are cancelled in the process of orthogo-
nalization [41]. Intuitively, this means that the processes,
which contribute to eigenvalues with RoD equal to rL in
the L subsystem, flip the same number of spins in the R
subsystem.
One can view the RoD r, or equivalently the typical

number of spin flips, as an effective “quantum number”
underlying the structure of the ES. This is analogous
to, e.g., the subsystem’s momentum perpendicular to the
entanglement cut (which also labels the edge states if a
system has topological order); similar structure for the
XXZ ground state was pointed in Ref. [44].

The hierarchical structure of the reduced density ma-
trix implies a power-law structure of the ES as a function
of k. Indeed, expressing r as r ≈ ln k/ ln 2, and using
Eq. (6), we find the typical value of λk

λk ∝
1

kγ
, γ ≃

4κ

ln 2
. (7)

to decay as a power law with exponent set by κ [45].
In addition, we can also understand the finite-size ef-

fects in the ES. The power-law holds until the very last
block, for which r = LR. The average value of λk
for k & 2LR−1 will deviate from the simple power-law
form (7). Instead, log λk will be given by the order
statistics of the Gaussian distribution arising from log-
normal statistics of the coefficients (4) [39, 46] in the
MBL phase, which describes accurately the tail of the
ES as we demonstrate in [41].

Numerical results.—To study the ES numerically in
the XXZ chain (1), we use: (i) full exact diagonalization
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Figure 2. (Color online) Power-law exponent γ, extracted
from the fit of the ES, 〈lnλk〉, increases with disorder W .
Theoretical prediction refers to γ extracted from the scaling
of the matrix elements in Ref. [39].

(ED) for L = 10, 12, 14 spins, (ii) “shift and invert” algo-
rithm (SI) [47] for L = 16, 18, 20, and (iii) a new imple-
mentation of the MPS variational optimization for larger
L (below we present data for L = 30). Our MPS algo-
rithm combines the advantage of SI spectral transforma-
tion, which ensures low energy variance and hence the pu-
rity of eigenstates, with a fast conjugate-gradient linear
solver. The MPS optimization converges efficiently when
the bond dimension χmax is such that ln(χmax) ≫ S,
where S is the maximum entropy for all partitions of the
chain. Using ITensor libraries [48]with conserved U(1)
symmetry and an iterative local scheme, we can reach
χmax ≈ 500, thus capturing a big part of the ES without
finite-bond effects [41].

Fig. 1 illustrates the log-averaged ES, defined as
{〈lnλk〉}, where λk are ordered from largest to smallest
magnitude, and brackets denote averaging over disorder,
as a function of the eigenvalue number k, for various sys-
tem sizes L. Consistent with our expectations (7), in
the MBL phase (W = 5) the ES exhibits clear power-
law behavior. In all cases, we target the eigenstates close
to energy E = 0, which is roughly in the middle of the
many-body band. The data is averaged over a few thou-
sand disorder realizations for L ≤ 16, and over a few
hundred realizations for for L = 18, 20. For L = 30, we
used χmax = 200 and 1000 disorder realizations.

Note that, while we find excellent agreement between
ED and MPS results for the few largest Schmidt eigen-
values, the lowest Schmidt values obtained by MPS lie
slightly below the ED data for L = 20. This is an arte-
fact of our fixed bond dimension χmax = 200, which
bounds the slope of the ES through its effect on the small-
est Schmidt values. For the given χmax, we expect the
MPS slope to be close to the exact slope of the system
L ∼ 2 log2 χmax, or L ∼ 14 in our case (as Fig. 1 con-
firms). Note that this is a subtle effect which only affects
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Figure 3. (Color online) Distribution of λ1 across the MBL transition for different L. Solid lines indicate full distribution,
dashed lines show distribution of λ1 between different disorder realizations. Disorder strength is W = 0.5 (left), W = 2
(middle), W = 6.5 (right).

the tail of the ES, while the quantities such as energy or
entropy are converged to machine precision [41].

Next, we study the behavior of the exponent γ ex-
tracted from the power-law fit of λk for small k. The ex-
ponent γ always decreases with system size L, as can be
seen in Fig. 2. In the MBL phase we expect the exponent
to saturate to a finite value, which is set by κ governing
the coefficients in Eq. (2). To the leading order in pertur-
bation, the relevant coefficients are a product of matrix
elements in L and R over the energy denominator ∆,
C{µ}L{τ}R

≈ 〈{µ}L|S
α
L/2|{↑}L〉〈{τ}R|Sα

L/2+1|{↑}R〉/∆.
The typical value of C corresponds to when both ma-
trix elements flip a similar number of spins. The value
of κ can be approximated as κ ≈ 2κ′ + ln 2, where κ′

governs the decay of the many-body analogue of the
Thouless conductance G, introduced in Ref. [39]. Fig. 2
shows that this theoretical expectation describes accu-
rately the power-law coefficient γ at sufficiently large L.
Note that in the ergodic phase (W = 0.5), the power γ is
not well defined as the ES obeys a qualitatively different
Marchenko-Pastur distribution [23].

Sample-to-sample fluctuations.—So far we discussed
behavior of the log-averaged ES. Now we consider the
distribution of the ES for different disorder realizations
in order to understand whether the ES statistics is dom-
inated by sample-to-sample fluctuations, or rather the
fluctuations between different eigenstates in a single dis-
order realization.

The distribution of the largest ES eigenvalue, λ1, and
its dependence on L is illustrated in Fig. 3. In the er-
godic phase (W = 0.5), the center of the distribution
of λ1 shifts to smaller values [22], and becomes increas-
ingly narrower with increasing L, reflecting the fact that
all eigenstates become typical. On the other hand, deep
in the MBL phase, the distribution of λ1 depends very
weakly on L, as expected (Fig. 3, W = 6.5). More-
over, the peak in λ1 is very close to one, indicating that
eigenstates in the MBL phase are well-approximated by
product states.

Finally, near the transition (Fig. 3, W = 2), the distri-
bution of λ1 becomes very broad, reflecting the fact that

certain disorder realizations are insulating, while others
are metallic. Using ED data, we also average the leading
eigenvalue over a window of eigenstates from a given dis-
order realization, and bin the resulting 〈log λ1〉e.s.. Dis-
tribution of 〈log λ1〉e.s., shown by dashed lines in Fig. 3
(middle), has the same width as the full distribution
of λ1. This implies that the broad distribution of λ1 near
the MBL transition originates from sample-to-sample
fluctuations, provided that one fixes the position of the
entanglement cut. Note, that recently large entangle-
ment fluctuations w.r.t. the position of the cut within
the same disorder realization were reported [49].

Discussion.— We demonstrated a power-law decaying
ES in MBL states, which is in sharp contrast with both
thermal systems, whose ES is “flat” [23], and ground
states of gapped free or integrable models, whose ES de-
cays faster than power law [17, 18, 26, 27]. We used
this distinct feature of MBL systems to perform highly
sensitive benchmarks of our MPS algorithm. Using our
algorithm, we obtained eigenstates of large systems at

0 1 2 3 4 5 6 7
W

100

101

102

N

L=10

L=12

L=14

L=16

L=18

L=20

L=30

Figure 4. (Color online) Number of singular values required
to reproduce the entanglement entropy with fixed precision
(99%) decreases with disorder strength W and saturates at
strong disorder. The bars represent statistical fluctuations,
which are most pronounced near the transition.
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disorder W = 4, which is closer to the MBL transition
than previously reported [29–33].

The power-law ES implies that finite-size effects from
the truncation of the ES – a standard procedure in the
MPS-like algorithms – typically decay algebraically with
L. In Fig. 4 we show the estimate for the MPS bond di-
mension required to reproduce the exact EE within 1%.
While at weak disorder the estimate grows exponentially
with L, in the MBL phase it saturates to a constant in a
power-law fashion (not shown). Note that even at disor-
der W ≥ 3 we have a value of N . 100, hence explaining
the success of our MPS algorithm, and suggesting it is
feasible to push such algorithms even closer to the MBL
transition.

Finally, the organization of the ES according to the
number of spin flips by the boundary perturbation may
have a number of consequences beyond the power-law
structure of ES. In particular, it would be interesting to
explore its significance for the ES level statistics studied
in Ref. [34], and use it to extract κ and other information
about LIOMs from individual eigenstates.
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