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Abstract: A terahertz quantum cascade laser is injectionlexbevith narrow-band seed pulses
generated from a periodically poled lithium niobetgstal. The spectral emission of the quantum

cascade laser is controlled by the seed spectra.
OCI Scodes: (320.7150) Ultrafast spectroscopy; (140.5965) $emductor lasers, quantum cascade

1. Introduction

Phase locking of terahertz (THz) quantum cascaderda(QCLs) can be achieved through the use oftiaoje
seeding [1]. If the THz seed is generated by adeetond laser, the phase of the laser emissidaddatked to thi
repetition rate of the femtosecond laser. This sabccess to the time-resolved THz-field from @EL via
electro-optic sampling. Seeding of THz QCLs is tylly realized with broad-band THz seeds generfited GaAs
photoconductive emitters. The bandwidth of sucld gmaéses typically spans several THz which is miacger thar
the gain-bandwidth of the THz QCL. Consequently, lahgitudinal modes in the spectral gain regiorm
simultaneously excited. Thus the traditional goafishe injection seeding, namely frequency contmdtl single
mode emission cannot be achieved with broad-bamdsedd pulses.

In this contribution a THz QCL is injection segldwith narrow-band seed pulses which have a fidtiwat half-
maximum (FWHM) on the order of the longitudinal neodpacing [2]. The narrow-band THz seed pulses
generated in a periodically poled lithium nioba®P[N) crystal from femtosecond laser pulses [3]e Harrow-
band seed pulses enhance longitudinal modes teaapwthe seed spectra and suppress modes toatdide.
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Figure 1a) Schematic of a periodically pole lithium niobatgstal (PPLN). The reflection geometry is used toess the backward
generated THz wave in order to minimize the THzdvedth b) The electric field generated from the PPLN crystebsured using free
space electro-optic sampling Spectral amplitude of the THz pulse in gt

2. Generation of narrow-band THz seed pulses

A PPLN crystal consists of a series of poled domaihere the second order nonlinear susceptibititillates sign
This enables quasi-phase matching to occur betéteefemtosecond laser pulse and specific THz wagths tha
depend on the poling period. If absorption can bglected, the bandwidth of the narrow-band THz sioisis
inversely proportional to the number of poling pes [3]. For a given femtosecond laser beam Tidat@n is
generated in both the forward and backward direstioside the PPLN crystal. For a given crystagterand TH:
frequency the backward THz wave requires more pgofieriods than the forward THz wave. Thus in ore
minimize the FWHM of the THz seed pulses reflectimometry is chosen for THz generation. The lemgthach
periodically poled region is 5 mm with a width abmm, and a thickness of 0.5 mm. By moving the RLystal
with respect to the focused femtosecond laser bdifferent periodically poled regions (and hencdedént THz
seed frequencies) can be selected. The electlitdied spectral amplitude of a typically narrow-thgrobe puls
are shown in fig. 1b and fig. 1c. (The electriddiescillations extend for a much greater time tehawn in fig. 1b.
In order to minimize THz absorption in lithium niate which can be significant for frequencies gnetitan 2 THz



[4], the PPLN crystal is mounted in a cryostat andled to 10 K. The narrow-band THz seed pulsesaupled
into the facet of the THz QCL with parabolic misotmmediately after the arrival of the narrow-baed in the
QCL, a nanosecond bias is applied in order to figacseed the THz QCL. The emitted THz fields frtme othel
QCL facet are measured using electro-optic samplititya 1mm ZnTe crystal.
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Figure 2 a) Emission of the injection seeded QCL versus tivite seed frequencies of 2.174 THz (i-blue) andl@.ZHz (ii-red). b) A
zoomed in portion of the electric field in pajtwhich shows the electric field oscillatiore3.Normalized spectral amplitude of the fields
in parta). The normalized spectra of the corresponding petsits are superimposed on the data as dotted Ilask

3. Resultsand Discussion

The emitted fields from the QCL, when injection deg with two narrow-band seed frequencies (2.174 &kd
2.240 THz) are shown in fig. 2a. The first passhef narrow-band seed through the QCL occurs at tiene in fig.
2a. The amplitude of the first pass is too smalbbeé seen in the figure. After the arrival of tterow-band seed i
the QCL cavity, the QCL is driven above threshol & nanosecond bias pulse, this results in sigmnifi
amplification of the narrow-band seed pulse after tound-trip times (~150 ps). At later times (>p6Pthe gain i
saturated by the THz field and no further amplifima occurs. Fig. 2b shows that the phase of teetit field
oscillations can be resolved in time. The specdith® QCL can thus be obtained by taking the Fouransform of
the electric field. As shown in figure 2c, when tQ€L is seeded with two different frequencies tipectral
emission of the QCL is shifted by two longitudimabdes.

The normalized spectra of the PPLN seed putiesh(lines) are superimposed on the correspond@ig<pectre
in fig. 2c. The maximum spectral amplitude of tleed pulses roughly corresponds to the maximum efQEL
emission. Although, the FWHM of the seed pulses ithe order of the longitudinal mode spacing (2.0°Hz), the
wings of the seed spectra extend across severgltddinal modes. This results in satellite peaksuad the
predominant longitudinal mode. In conclusion we dasirate the spectral emission from an injecticeded TH:z
QCL can be controlled by the spectrum of a narrewebTHz seed pulse.
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