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Abstract

In this paper we extend the consumption-investment life cycle model for an

uncertain-lived agent, proposed by Richard (1974), to allow for flexible la-

bor supply. We further study the consumption, labor supply and portfolio

decisions of an agent facing age-dependent mortality risk, as presented by

UK actuarial life tables spanning the time period from 1951-2060 (including

mortality forecasts). We find that historical changes in mortality produces

significant changes in portfolio investment (more risk taking), labour (de-

crease of hours) and consumption level (shift to higher level) contributing

up to 5% to GDP growth during the period from 1980 until 2010.
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1 Introduction

Lifetime consumption and investment models for infinitely lived agents have been

considered by various authors, including Merton (1969 and 1971), Bodie, Merton

and Samuelson (1992) as well as Bodie et al. (2004). The setup in all of these

contributions is very similar, they all study the problem of maximizing expected

discounted utility under consideration of a utility function which includes con-

sumption and in some cases leisure, over the life time of a representative agent.

Bodie, Merton and Samuelson (1992) considered an exogenously given retirement

age and left it as an open question, to determine the optimal retirement age within

an optimal stopping context. This problem has now been considered by Dybvig

and Liu (2010). Zhang (2010) considered retirement age as exogenously given,

but allowed for fully flexible labour supply, in essence including retirement as an

option for the agent. Davis, Kubler and Willen (2006) argued that equity holdings

over the life cycle in the classical Merton (1969 and 1971) models were unrealisti-

cally high and emphasize the aspect of borrowing costs/constraints. They did not

account for flexible labour and utility from leisure however.

In reality of course agents are not infinitely lived. Richard (1974) extended

Merton’s (1971) model to allow for a finitely lived agent with a random time of

death. He introduced a bequest motive and life insurance into the model and con-

sidered the problem of optimal investment into the life insurance product. Using

the Hamilton-Jacobi-Bellman framework he derived analytic expressions for the

optimal portfolio rule, consumption rate and life insurance under constant relative

risk aversion (CRRA). In that case, mortality enters into the optimal portfolio rule,

which is the same fraction as in Merton (1971) but multiplied by the ratio of total
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wealth (including mortality dependent human wealth, i.e. future incomes until

death) to financial wealth. However, Richard (1974) did not consequently study

how changes in mortality affected his optimal portfolio rule. Optimal consump-

tion in Richard (1974) is a time dependent fraction of total wealth, but from the

expression derived, it is not clear how consumption shifts and how consumption

growth is affected as a consequence of the changes in mortality. Richard (1974)

did not allow for flexible labour decisions either.

Milevsky and Young (2007) modified the framework presented by Richard

(1974) to take account of some institutional issues related to the purchase and

payout of annuities. In fact their focus was on the optimal annuitization when the

agent is already retired and does not receive any labour income. Milevsky and

Young (2007) did account for mortality, but by using a Hamilton-Jacobi-Bellman

approach, real mortality data do not enter their model directly, but through a

suitably parametrized Gompertz-Makeham hazard rate function. In addition, the

resulting Hamilton-Jacobi-Bellman equation has been linearized, leading to ap-

proximate solutions only. A semi-analytic solution was presented for the case of

constant force of mortality only. Huang et. al. (2012) study a Yaari (1965) et.

al. framework with stochastic force of mortality but focus on consumption only,

leaving out stochastic investment and labor. In conclusion, neither Richard (1974)

nor Milevsky and Young (2007) or Huang et. al. (2012) did study the effects that

historical changes in mortality rates cause on the agent’s optimal strategy.

Pang and Warshawsky (2010) also studied a portfolio problem, involving risk-

less and risky assets as well as annuities. Agents in their model have exposure to

mortality risk as well as uninsured health care costs. Their model was in discrete

time and no attempt was made to solve the model analytically. Instead the model
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was solved numerically and results are based on simulation. Their main observation

is that health spending risk drives the agent’s portfolio to shift from risky assets

to safer assets. As in Richard (1974) and Milevsky and Young (2007), their study

does not involve an investigation on how changes in actually observed and predicted

mortality rates affects the agent’s optimal strategy.

More recently, Gahramanov and Tang (2013) have presented a paper in which

they considered the retirement problem in a continuous time model with time

varying mortality. However their work differs from ours, in that they focused on

the retirement problem with mortality being given by an explicit analytic function

as in Feigenbaum (2008). Furthermore, they did not allow for investment into

risky assets.

One of the main contributions of this article is the inclusion of time vary-

ing, general mortality risk into a continuous time stochastic life time consumption

model, where a representative agent chooses consumption, labor supply and portfo-

lio investment into a risk-less and a risky asset and in consequence a rigorous study

on how historically observed changes in the mortality patterns affect the agent’s

decisions of portfolio selection, consumption and labor supply. We adopt a CRRA

type of utility function measuring utility from consumption against dis-utility from

supplying labor. We assume no bequest motive, and in consequence the agent’s

optimal life insurance strategy is to contract their respective wealth to be trans-

ferred to a life insurance company at the time of their death in exchange for a fairly

priced annuity as proposed by Yaari (1964 and 1965) and Blanchard (1985).1 To

solve our model, rather than using the Hamilton-Jacobi-Bellman framework, which

1Yaari (1964 and 1965) and Blanchard (1985) did not consider risky investment and Blanchard
(1985) only considered a constant mortality rate.
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seems less flexible in the context of general time varying mortality curves, we use

a combination of Martingale techniques that have evolved from the Mathemati-

cal Finance literature, see for example the exposition in Korn (2001) and Zhang

(2008) or the original work by Pliska (1986), Karatzas (1987) and Cox and Huang

(1988).2 The use of these methods enables us to derive analytic expressions for

the optimal consumption, labour supply and portfolio investment process in the

presence of mortality risk. We are further able to derive a compact form for the

Euler equation of consumption growth. As a first result we find that the effect of

mortality risk on consumption and labour supply is through the Lagrange multi-

plier of the associated static constrained optimization problem only, and as such

it shifts consumption and labor supply, but has no effect on the Euler equation.

This effect was not observed in Richard (1974). Mortality risk also affects optimal

portfolio investment, but in a more subtle way than in Richard (1974) due to the

presence of flexible labour.

Generally, the presence of mortality in a lifetime consumption context leads to

a number of interesting effects and trade-offs, which so far existing models have

not been able to capture and quantify. Longer life expectancy will emphasize

the aspect of pre-cautionary savings for old age. In addition fear of death might

encourage people to consume their goods sooner than later (while still alive). Both

of these mechanisms cause an effect where an increase in mortality increases current

consumption. However, when life expectancy increases, longer (working) lives will

increase human wealth and thus increase current consumption and investment.

2By considering the mortality rates obtained from the Office for National Statistics as de-
terministic piecewise linear functions, it is possible to solve the model via the Hamilton-Jacobi-
Bellman equation. This requires to solve the corresponding PDEs on 110 intervals, each according
to one year between 1951 and 2060 and gluing the solutions together at the respective boundaries.
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This mechanism works in the opposite direction, i.e. an increase in mortality

contributes to a decrease in current consumption. Finally, risk taking behaviour

in investment will also be altered, as long-term investment horizons will increase

in length and thus making risky assets more attractive.

We also derive a closed-form expression for the elasticity of consumption with

respect to the mortality rate. Using realistic parameters we find that this elasticity

is negative, within the range of 0 (i.e zero mortality rate) to −0.53 (equivalent to

a mortality rate of 0.002 which corresponds roughly to the mortality rate of a 39

year old UK male). In the empirical part of the paper we have used actual and

forecasted mortality curves as obtained from statistical life tables supplied by the

UK’s Office for National Statistics covering the years from 1951 until 2060. Sub-

stituting these curves into our model we observe that keeping all other parameters

constant, changes in the mortality curves from 1980 to 2010 lead to a shift in con-

sumption upwards of roughly 5%, contributing to a total of approximately 100%

in real GDP growth in the UK from 1980 to 2010.3 We also observe that optimal

labour supply in effect of the same changes of the mortality curves is reduced by

4%, from about 40.2 hours to 38.7 hours per week from 1980 to 2010. Finally,

portfolio investment into the risky asset is increased by a factor of roughly 6%,

financing the reduction in labour and increase in consumption. Therefore, we con-

clude that historical changes in mortality risk do indeed have significant impact

on consumption spending, labour supply and portfolio investment.

The remainder of the paper is organized as follows. In section 2, we set up

our model and derive some basic equations, while in section 3, we consequently

3Historical data for real GDP have been obtained via https : //docs.google.com/spreadsheet/
ccc?key = 0AonY Zs4MzlZbcGhOdG0zTG1EWkV PX1k1VWR6LTd1U3c#gid = 1. The shift
in consumption over the whole data period from 1951 until 2060 is about 12 %.
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proceed by using Martingale methods in order to transform the dynamic problem

into a constrained static problem, which allows us to solve the dynamic problem

explicitly. Section 4 contains both theoretical and empirically founded examples,

while the main conclusions are summarized in section 5.

2 The Model

Let us consider a representative uncertain lived agent financing consumption through

labour income and investment into one risky and one riskless asset, who wishes

to maximize her/his expected life-time utility. The agent also has the option at

any time to contract his wealth at time of death to be returned to a life insurance

company in exchange for payment of an annuity, which will be determined be-

low. As in Blanchard (1985) and Yaari (1965) Case C there is no bequest motive.

Mathematically, the agent is trying to solve the following maximization problem:

max
π,C,L,A

E
(∫ τ

0

e−
∫ t
0 ρsdsu(Ct, Lt)dt

)
. (1)

Here τ denotes the time of death, Ct denotes instantaneous consumption, Lt

denotes instantaneous labour supply and πt is the fraction of financial wealth

invested into the risky asset. The control At takes values in [0, 1] and represents

the fraction of wealth at time of death that is contracted to the life insurance

company.4 As in Yaari (1965) Case C, we assume that the agent is required to

have positive wealth at time of death. This is guaranteed if the agent contracts all

of her/his wealth to the life insurance company. This is also optimal as otherwise

the agent would forsake payments from the annuity, whereas the agent would

4The subscript t denotes ’at time t’ throughout, unless otherwise stated.
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not benefit from leftover wealth after death (no bequest motive). In fact, any

admissible strategy (π,C, L,A) will be dominated by the corresponding strategy

(π,C, L, 1), where all wealth at time of death is contracted to the life insurance

company. In consequence, we can solve problem (1) assuming A ≡ 1 and remove

A as a control. This is done in the following. In our setup time 0 stands for an

arbitrarily chosen reference time and can be viewed as the starting age, when the

agent enters the labor market. In our main empirical example we will assume

that this is at age 25, when the agent starts making rational decisions about

consumption, labour and investment. However, we will also consider different

ages. We assume that Ct ≥ 0, Lt ≥ 0 and πt are chosen by the agent depending

on information contained in the sigma algebra Ft which will be introduced below.

The investment assets available to the agent will also be introduced below. The

time preference rate ρs of the agent is assumed to be a deterministic and positive

function, while the time of death will be considered as random, with

P (τ ∈ [t, t+ dt)|τ ≥ t) = νtdt, (2)

where νt is the time dependent instantaneous mortality rate. Intuitively, the mor-

tality rate νt describes the likelihood of the agent aged t dying in the interval

[t, t+dt) given she/he is still alive at time t. This rate can be easily obtained from

actuarial life tables and in general differs regionally, historically and by gender.

We assume that νt is a deterministic function of time.5 Under this assumption,

5The variable νt is also referred to as force of mortality. Models with stochastic force of
mortality have been considered in the actuarial literature. In this literature it is typically assumed

that P(τ > t|τ > s,Fs) = E
[
e−

∫ t
s
νsds

∣∣∣Fs

]
where νs is a stochastic process. Often νs is assumed

to follow a diffusion or jump process. Lee and Carter (1992), Cairns et. al. (2006), Wills and
Sherris (2010) as well as Huang et. al. (2012) are important contributions to this literature.
Most of our results could in principle be generalized to cases, where this conditional expectation
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the agent’s likelihood of surviving until age t is given by

P(τ > t) = e−
∫ t
0 νsds. (3)

We assume that the random time τ is independent of any of the economic state

variables6, and hence we obtain7

E
(∫ τ

0

e−
∫ t
0 ρsdsu(Ct, Lt)dt

)
= E

(∫ ∞

0

e−
∫ t
0 (ρs+νs)dsu(Ct, Lt)dt

)
.

We can then write (1) as

max
π,C,L

E
(∫ ∞

0

e−
∫ t
0 ρ̂sdsu(Ct, Lt)dt

)
, (4)

with

ρ̂t = ρt + νt (5)

being the mortality adjusted discount rate.

Let us now specify the investment assets in our model. We assume that the

economy features one risk-less asset modeled as

dBt = Btrtdt, (6)

becomes an ordinary expectation, e.g. when e−
∫ t
s
νsds is independent of Fs for all t > s.

6This is a common simplifying assumption, however there is research linking mortality to
economic variables such as stock market growth and volatility, see for example Yap. et. al (2016)
and Dacorogna and Meitner (2015).

7Note that we have E(1{t<τ}) = P(τ > t) and therefore E
(∫ τ

0
e−

∫ t
0
ρsdsu(Ct, Lt)dt

)
=

E
(∫∞

0
e−

∫ t
0
ρsdsu(Ct, Lt) · 1{t<τ}dt

)
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and one risky asset

dSt = St(µtdt+ σtdWt). (7)

Here Wt denotes a standard Brownian motion and we denote with Ft the filtration

it generates. The parameters rt, µt and σt are allowed to vary deterministically

in time. As in Blanchard (1985) we assume the existence of fairly priced life

insurance, which replaces a bequest motive: ”In the absence of a bequest motive,

and if negative bequests are prohibited, agents will contract to have their wealth

(positive or negative) returned to the life insurance company contingent on their

death.” In other words, the agent uses life insurance to hedge against the possibility

of dying (unexpectedly) with positive or negative wealth, which would otherwise

incur costs through forsaken consumption or penalties. The modeling framework

in this article assumes that the representative agent8 represents ”a large number of

identical agents”, and as such life insurance contracts can be offered risk-less (on

average) by life insurance companies. We assume that the market for life insurance

contracts is competitive9, and hence free entry and exit will result in a expected

zero profit condition, which in turn implies that the fair pricing of the insurance

contract obliges/entitles the holder to a payment of

Xtνtdt (8)

per infinitesimal time interval dt, where Xt denotes the wealth of the agent at time

8The existence of a representative agent (as in a general equilibrium framework) is discussed
in Karatzas (1997) Chapter 3. Under fairly general conditions for a pure exchange economy with
finite horizon existence of a representative agent is demonstrated.

9Kwok et. al. (2016) study a duopolistic framework of two insurers. They study the optimal
portfolio allocation of the insurer, which includes a claims process. They find that the market
structure has an important impact on the demand of longevity bonds.
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t. Note that (8) represents a payment to be made by the agent to the insurance

company, in case the agent has any debt, i.e. Xt < 010 and otherwise presents an

income, i.e. payment from the insurance company to the agent, in exchange for

the agent giving up his wealth to the insurance company at the time of her/his

death.

As we have seen at the beginning of this section it is optimal for the agent

to contract all wealth at time of death into life insurance. As such one part of

the optimal allocation problem has already been solved and the problem has

been reduced. However from an asset-management perspective, it can be useful

to consider life-insurance from a different angle, that of an actuarial note. In

fact Yaari (1965) also introduces the notion of an actuarial note, which pays a

continuous interest rate until the time of death of a nominated person. Unlike

a perpetual bond, which pays interest forever, the actuarial note stops paying

interest and expires worthless at the time of death. In a perfectly competitive

market where mortality risk can be fully diversified on the insurer side (in the

absence of systematic shocks this is approximately the case due to the law of large

numbers), the actuarial note would be required to pay an interest of rt + νt.
11

Our economy then consists of three investment assets, a perpetual bond (classical

money market account), a risky asset and an actuarial note. Note that there is no

contradiction in having two bond-like contracts paying different rates. While the

actuarial note pays an advanced interest which is higher than that of the perpetual

bond, it only pays this rate for a finite period. The perpetual bond pays a lower

10Payment structures such as this can be found in many financial contracts. Payment protec-
tion insurance is one specific example.

11Suitably structured actuarial notes are the basis for mortality linked securities and longevity
bonds, a multi billion pounds market. We refer to Wong et. al (2015) and Dong and Wong
(2015).
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interest, but for an infinite period. For an individual investor the non-existence of

a bequest motive then implies that she/he always prefers the actuarial note over

the perpetual bond, and the optimal allocation in the perpetual bond is zero In

fact, denoting with πt the fraction of wealth invested into the risky asset and with

wt the wage rate, the dynamics of the wealth process is described by

dXt = Xt {(rt + νt)dt+ πt [(µt − rt)dt+ σtdWt]} − Ctdt+ wtLtdt, (9)

with X0 = x ≥ 0. Equation (9) shows that in difference to the classical wealth

equation, the drift rate rt is replaced by the yield of the actuarial note rt + νt.
12

As the analysis above has shown, the problem (1) of the finitely lived agent

subject to constraint (9), is equivalent to the problem (4) of an infinitely lived

agent subject to constraint (9), where the discount rate as well as the drift of the

wealth process have been adjusted to accommodate the mortality risk. In order

for the stochastic optimal control problem to be well defined and to simplify our

arguments, we assume that the deterministic functions rt and νt as well as there

(possibly piecewise) derivatives are bounded, the wage process wt is bounded on

every interval [0, T ]] and the controls πt, Ct and Lt are progressively measurable

12The two approaches, using either life insurance or actuarial notes are equivalent. In fact
if no life insurance were available but an actuarial note paying a yield of rt + νt the investor
could use a portfolio of perpetual bonds and actuarial notes to create an interest income of Xtνt
as in equation (8) and hence construct the payoff structure that Blanchard (1985) uses. In
this interpretation the extra term Xtνt is to be understood as an additional income from the
insurance contract rather than the interest of a financial asset. This income would persist even
if the agent would invest all of her/his wealth into the risky asset.
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L2-processes on every interval [0, T ].13 We further define

r̂t = rt + νt (10)

µ̂t = µt + νt (11)

and note that the market price of financial risk

θt =
µt − rt
σt

=
µ̂t − r̂t
σt

(12)

is unaffected by mortality risk νt.

3 Martingale Approach

In order to apply Martingale methods to solve the problem discussed in the previous

section, we define a stochastic discount factor Ĥt adjusting for the mortality risk

via

dĤt = −Ĥt (r̂tdt+ θtdWt)

Ĥ0 = 1. (13)

For the moment, this discount factor is purely for convenience. Note that the

stochastic discount factor features the mortality adjusted rate r̂t and the classical

13These assumptions are stronger then is actually needed. Following Korn (2001) Chapter 2.2

it would be sufficient to assume that for all T > 0 the integrals
∫ T

0
π2
t dt,

∫ T

0
Ctdt and

∫ T

0
Ltdt

are finite P-almost sure, as this guarantees that the stochastic differential equations (9) has a
unique solution, which can be obtained via the method of the variation of constants. However,
the optimal solution derived in the following will meet our stronger assumptions and the stronger
assumptions simplify our argument.
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market price of risk θt in it. We can write Ĥt as

Ĥt = e−
∫ t
0 νsdsHt, (14)

where Ht is the classical stochastic discount factor and is defined by 14

Ht = e−
∫ t
0(rs+

1
2
θ2s)ds−

∫ t
0 θsdWs . (15)

Hence the stochastic discount factor Ĥt splits up into two components with e−
∫ t
0 νsds

adjusting for mortality risk and Ht adjusting for financial risk.

Applying the Itô product rule, it is easy to verify that

d(ĤtXt) = ĤtXt (πtσt − θt) dWt − ĤtCtdt+ ĤtwtLtdt. (16)

Integrating (16) from t to ∞ and imposing the following transversality condition15

lim
u→∞

E(ĤuXu) = 0 (17)

14See for example Korn (2001). Note that the optimization problem (9) is independent of any
discount factor and carried out under the measure P. However, within the economy defined in
section 2, Ht represents the unique discount factor related to the unique martingale measure
Q for this economy. The discount factor Ĥt represents the discount factor corresponding to an
economy, where the perpetual bond is replaced by the actuarial note. These discount factors are
the only ones in the respective economies that do not permit arbitrage and are hence are tied to
an equilibrium condition.

15The corresponding deterministic version of this transversality condition appears in Blanchard
(1985) on page 227, and prevents the case where an agent takes up more and more debt, while
being covered by life insurance. The analogue equation in Yaari (1965) is equation (29) on page
146.
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we obtain

−ĤtXt =

∫ ∞

t

ĤsXs(πsσs − θs)dWs −
∫ ∞

t

ĤsCsds+

∫ ∞

t

ĤswsLsds. (18)

Denoting the conditional expectation with respect to Ft as Et we obtain

Xt = Et

[∫ ∞

t

Ĥs

Ĥt

Csds

]
− Et

[∫ ∞

t

Ĥs

Ĥt

wsLsds

]
. (19)

At time t = 0 we obtain the static budget constraint

E
(∫ ∞

0

ĤsCsds

)
= x+ E

(∫ ∞

0

ĤswsLsds

)
. (20)

The intuition behind equation (20) is that expected stochastically discounted con-

sumption needs to be equal to initial wealth plus expected stochastically discounted

wage income, where the discount factor takes both market risk and mortality risk

into account.

We can now conclude that problem (4) subject to the dynamic constraint (9)

and transversality condition (17) is equivalent to problem (4) with the static budget

constraint (20). In order to solve the latter problem we introduce the Lagrange

function

L(λ,Ct, Lt) = E
(∫ ∞

0

e−
∫ t
0 ρ̂sdsu(Ct, Lt)dt

)
(21)

+λ

{
x+ E

(∫ ∞

0

ĤswsLsds

)
− E

(∫ ∞

0

ĤsCsds

)}
.

In order to proceed to a closed form solution, we need to specify the utility function
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u(Ct, Lt) at this point. We define

u(Ct, Lt) :=
C1−γ

t

1− γ
− bt

L1+η
t

1 + η
, (22)

The intuition behind (22) is to weigh up benefits from consumptions against costs

from labour in a constant relative risk aversion (CRRA) manner. The deterministic

function bt measures the relative cost of labour, which may vary between age

groups. We assume γ > 0, γ ̸= 1, η > 0 and that the range of bt is a compact

subset of (0,∞), consistent with decreasing marginal benefits from consumption

and increasing marginal costs of labour.16

Differentiating the Lagrange function (21), we obtain the following first order

conditions

C−γ
t =

∂u

∂Ct

= λe
∫ t
0 ρ̂sdsĤt (23)

−btL
η
t =

∂u

∂Lt

= −λe
∫ t
0 ρ̂sdsĤtwt. (24)

Using (5) and (14), we obtain from (23) and (24) that

C−γ
t = λe

∫ t
0 ρsdsHt (25)

−btL
η
t = −λe

∫ t
0 ρsdsHtwt. (26)

The mortality component νt hence cancels out in the time dependent component

of consumption and labour supply above. It can therefore be concluded that the

16The case γ = 1 corresponds to the case where utility from consumption is logarithmic and
can in fact be obtained from the following results by considering the limit for γ → 1. The
same holds for the case η = 0, which corresponds to linear costs of labour, which has interesting
implications on the elasticity of consumption, as discussed in section 4.
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mortality risk will have no effect on the expected growth rate of consumption

d
dt
Et

(
dCt

Ct

)
. This is a major difference to Richard (1974). The reason is likely that

Richard (1974) used a non-zero bequest motive and life insurance that pays off at

the time of death, rather than annuities as used in our framework. Nevertheless,

as we will see below, consumption is not unaffected by mortality changes. In fact,

mortality changes will affect the value of the Lagrange multiplier λ and hence shift

consumption to different levels. Furthermore, dynamic changes in the mortality

curves may indeed contribute to consumption growth as explored in the next sec-

tion. The optimal consumption and labour supply can be easily derived from (25)

and (26) as

C∗
t = λ− 1

γ e−
1
γ

∫ t
0 ρsdsH

− 1
γ

t (27)

L∗
t = λ

1
η e

1
η

∫ t
0 ρsds(Htwt)

1
η b

− 1
η

t . (28)

Compulsory retirement at a given age T can also be easily implemented in our

model, by choosing ws = 0 for all s > T . We further expect bt, the dis-utility from

labour, to be sharply increasing at old ages, decreasing labour supply in later life

stages. This has been adopted for our empirical analysis.

We will now derive an analytic expression for the Lagrange multiplier λ and by

doing this identify the mortality dependence in (27) and (28). In order to proceed,

we need to make assumptions about the dynamics of the wage rate wt. We assume

for simplicity that the wage rate grows at a time-dependent growth rate at ≥ 0,
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i.e.17

dwt = wtatdt. (29)

It can then be shown that

λ− 1
γ

∫ ∞

0

e
− 1

γ

∫ t
0

(
ρs+(γ−1)

(
rs+

θ2s
2γ

))
ds
· e−

∫ t
0 νsdsdt (30)

= x+ λ
1
ηw

η+1
η

0

∫ ∞

0

e
1
η

∫ t
0

(
ρs−(η+1)

(
rs−as−

θ2s
2η

))
ds
· e−

∫ t
0 νsds · b

− 1
η

t dt.

The details of this computation are presented in Appendix A. Note that the com-

putability of the integrals above depends on the deterministic functions ρs, rs, θs,

as, bs and νs. If for example these are all constant, then it is straightforward to

compute all the integrals in (30) explicitly. However, it will still not be possible

to solve (30) analytically for λ, as the equation λa = x + λb can not be solved

explicitly for λ in the generic case. On the other hand, in the most general case,

it is a simple exercise to compute the integrals and λ from (30) numerically.

The non-existence of a bequest motive on the other hand can also be interpreted

as that the representative agent is born at time t = 0 without any means, i.e. x = 0.

In this case we obtain an explicit solution for the Lagrange multiplier

λ =

(w η+1
η

0

) ∫∞
0

e
1
η

∫ t
0

(
ρs−(η+1)

(
rs−as−

θ2s
2η

))
ds
· e−

∫ t
0 νsds · b

− 1
η

t dt∫∞
0

e
− 1

γ

∫ t
0

(
ρs+(γ−1)

(
rs+

θ2s
2γ

))
ds
· e−

∫ t
0 νsdsdt


− γη

γ+η

. (31)

We can see clearly in (31) the mortality dependence of the Lagrange multiplier.

17The derivation in Appendix A shows that it would not cause any trouble, if wt would be
assumed to be stochastic, following a geometric Brownian motion, e.g. dWt = wt(atdt+ φtdWt)
with a deterministic function φt which would enter equation (30). However we found it difficult
to calibrate for φt as it adds an extra layer of indeterminacy to the calibration and hence choose
wage growth to be deterministic.
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The classical model without mortality risk is obtained by setting νs ≡ 0. Noticing

once more that P(τ > t) = e−
∫ t
0 νsds we can see that compared to the classical

case without mortality the integrands in the nominator and denominator in (31)

are weighted by the probability of survival. We will later show that under re-

alistic choices of parameters, the inclusion of mortality risk will have significant

quantitative effects.

Let us summarize the results so far in the following theorem:

Theorem 3.1. The optimal strategies of consumption C∗
t and labour supply L∗

t

of the agent optimizing (1) under the dynamic constraint (9) and transversality

condition (17) are given by

C∗
t = e−

1
γ

∫ t
0 ρsdsH

− 1
γ

t

(w η+1
η

0

) ∫∞
0

e
1
η

∫ u
0

(
ρs−(η+1)

(
rs−as−

θ2s
2η

))
ds
· e−

∫ u
0 νsds · b

− 1
η

u du∫∞
0

e
− 1

γ

∫ u
0

(
ρs+(γ−1)

(
rs+

θ2s
2γ

))
ds
· e−

∫ u
0 νsdsdu


η

γ+η

L∗
t = e

1
η

∫ t
0 ρsds(Htwt)

1
η b

− 1
η

t

(w η+1
η

0

) ∫∞
0

e
1
η

∫ u
0

(
ρs−(η+1)

(
rs−as−

θ2s
2η

))
ds
· e−

∫ u
0 νsds · b

− 1
η

u du∫∞
0

e
− 1

γ

∫ u
0

(
ρs+(γ−1)

(
rs+

θ2s
2γ

))
ds
· e−

∫ u
0 νsdsdu


− γ

γ+η

.

As indicated above, perhaps the most important observation from Theorem 3.1

is that the mortality risk enters consumption and labour only through the time

independent factor in the large brackets on the right-hand sides of the relevant

expressions. As such changes in mortality at any age shift consumption and labour

supply over the whole life cycle.

We will now turn our attention to the optimal investment strategy π∗
t . The

computations in Appendix B show that the optimal wealth X∗
t can be written as

X∗
t = ftC

∗
t − gtwtL

∗
t , (32)
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where ft and gt are deterministic functions. Let us also note at this point that the

expression e−
∫ s
t νudu is equal to P(τ > s|τ > t), the probability of survival until s

given that the agent is still alive at time t < s.

Using the representation (32) together with (13) we compute

d
(
ĤtX

∗
t

)
= ĤtftdC

∗
t − ĤtgtwtdL

∗
t +X∗

t dĤt + (. . .)dt. (33)

The terms indicated by (. . .) in front of dt will be irrelevant for the following, which

is why we omit them. In fact we will only be interested in the diffusion term, i.e.

the expression in front of dWt, within the expression (33). To identify this term,

we compute

dC∗
t = −1

γ
C∗

t H
−1
t dHt + (. . .)dt (34)

dL∗
t =

1

η
L∗
tH

−1
t dHt + (. . .)dt (35)

Furthermore, using (14) and

dHt = −Ht(rtdt+ θtdWt), (36)

we eventually obtain

d
(
ĤtX

∗
t

)
=

1

γ
ĤtftC

∗
t θtdWt +

1

η
ĤtgtwtL

∗
t θtdWt − ĤtX

∗
t θtdWt + (. . .)dt

=

{
gtĤtwtL

∗
t

(
η + 1

η

)
− ftĤtC

∗
t

(
γ − 1

γ

)}
θtdWt + (. . .)dt,(37)

where for the second equality we used (32). Since the diffusion term in the repre-
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sentation (37) must coincide with the diffusion term in the representation (16) for

Xt = X∗
t , we obtain by noticing (32) once more and solving for π∗

t :

Theorem 3.2. The optimal investment strategy of the agent optimizing (1) under

the dynamic constraint (9) and transversality condition (17) is given by

π∗
t =

1

γ

µt − rt
σ2
t

+ gt ·
(
1

γ
+

1

η

)
µt − rt
σ2
t

· wtL
∗
t

X∗
t

. (38)

with gt =:
∫∞
t

e
−
∫ s
t

(
η+1
η

(
ru−au−

θ2u
2η

)
− 1

η
ρu

)
du
(

bs
bt

)− 1
η · e−

∫ s
t νududs.

Note that the function gt in (38) depends on mortality risk, and as such the

proportion invested into the risky asset does so as well. In fact expression (38)

represents a modification of the classical Merton (1969) rule πt =
1
γ
µt−rt
σ2
t

, where

the adjustment for flexible labour supply, wages and mortality risk is given by the

term gt ·
(

1
γ
+ 1

η

)
µt−rt
σ2
t

· wtL∗
t

X∗
t
. It can be observed that when the mortality curves

shift down, i.e. mortality rates decrease uniformly, the proportion of total wealth

invested into the risky asset increases. The rule also shares strong similarities with

the rule obtained in Richard (1974), with the addition of an extra term reflecting

the flexible labour and a different expression for the multiplier gt, which is due to

a different model setup.

An empirical comparative analysis of this expression will follow in the next

section.

We have already indicated above that the consumption growth is not directly

affected by the inclusion of the mortality risk. Nevertheless we believe that it

is interesting to derive the Euler equation for consumption growth at this point.
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Computing the term in front of dt in (34) explicitly, we obtain

dC∗
t =

1

γ
θtC

∗
t dWt +

1

γ

(
rt − ρt +

γ + 1

2γ
θ2t

)
C∗

t dt. (39)

Dividing (39) by C∗
t and taking the expectation,18 we obtain

d

dt
E
(
dC∗

t

C∗
t

)
=

1

γ

(
rt − ρt +

γ + 1

2γ
θ2t

)
. (40)

As expected, the consumption Euler equation does not depend on the mortality

risk parameter νt. This can be attributed to the full insurance against loss of life.

But the uncertainty attached to the financial market does affect the individual’s

consumption decision (see the third term in the bracket of (40)). 19

4 Examples and Empirical Analysis

Before considering the case of historical time dependent mortality rates, we start

with a toy example to highlight some of the fundamental forces and tradeoffs at

play. In this toy example only, all parameters, including the mortality rate νt,

are assumed to be constant. Furthermore, assuming that the representative agent

is born without any initial wealth20, i.e. x = 0, we can compute the Lagrange

multiplier λ(ν) in (31) as a function of the mortality rate ν (νt ≡ ν, for all t)

18Note that due to Theorem 3.1. the stochastic integral in (39) is indeed a martingale.
19We refer to Zhang (2010) for details on how the individual adjusts consumption according

to financial risk. Note that Zhang (2010) did not take account of the mortality risk.
20This is a consequence of no bequest motive as discussed earlier.
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explicitly:

λ(ν) = w
( η+1

η )
0 b(

γ
γ+η )

 ν + ρ
γ
+ γ−1

γ

(
r + θ2

2γ

)
ν − ρ

η
+ η+1

η

(
r − a− θ2

2η

)
− γη

γ+η

. (41)

In the following we will compute the elasticity of consumption with respect to the

mortality risk ν. This elasticity represents the percentage change in consumption

for each percentage change in the mortality rate. It is rather simple to verify by

using (27) and (41) that
dC∗

t (ν)

C∗
t (ν)

dν
ν

= −1

γ

dλ(ν)
λ(ν)

dν
ν

. (42)

That is, the elasticity of consumption is a constant fraction of the elasticity of the

Lagrange multiplier.21 The constant factors w0 and b do not affect the elasticities

with respect to the mortality risk.

Using (42) it is then a tedious but straightforward exercise to verify that

dC∗
t (ν)

C∗
t (ν)

dν
ν

=

1− ν+ ρ
γ
+

(γ−1)

(
r+ θ2

2γ

)
γ(

(ν− ρ
η
+

(η+1)(r−a− θ2
2η

η

)
 ην

(γ + η)

(
ν + ρ

γ
+

(γ−1)
(
r+ θ2

2γ

)
γ

) .

(43)

It can be concluded from (43) that for general parameters

dC∗
t (ν)

C∗
t (ν)

dν
ν

∣∣∣∣∣∣
ν=0

= 0. (44)

21Note that dC∗
t above is the change in consumption in effect of a change in mortality, and that

equation (42) is a priori unrelated to the consumption Euler equation (40), where the change
dC∗

t is in effect of a change in time t.
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This means that at the mortality rate ν = 0 there is no first order effect on con-

sumption by increasing the mortality rate. The two effects of increasing current

consumption because of fear of death in the future and decreasing consumption

because of a decrease in human wealth exactly offset each other. The same neu-

trality holds for linear costs of labour. It can also be easily verified that in the

limit for η → 0, expression (43) converges to 0 as well, i.e.

dC∗
t (ν)

C∗
t (ν)

dν
ν

∣∣∣∣∣∣
η→0

= 0, (45)

and independent of γ. The elasticity (43) can also be interpreted as a sensitivity

which measures the error in consumption forecast with regards to errors in the de-

termination of the mortality rate ν. The results (44) and (45) are hence reassuring

in a way that they indicate some form of stability, i.e. no first order effects at ν = 0

or η = 0. The numerical example below will show that for realistic parameters

this sensitivity will remain well below 1 in absolute value, meaning that a 1% error

in mortality (in relative terms) will cause less than a 1% error in consumption

forecast.

Neutrality ceases to hold however, when the mortality rate is positive and η > 0,

as the following numerical example shows.22

22For the case γ = 1, which corresponds to logarithmic utility from consumption, we obtain in
the limit

dC∗
t (ν)

C∗
t (ν)

dν
ν

∣∣∣∣∣∣
γ→1

=

(
1− ν+ρ

ν− ρ
η+

(η+1)(r−a− θ2
2η )

η

)
ην

(η + 1) (ν + ρ)
,

and observe, that even in this case, for ν ̸= 0, the elasticity of consumption with respect to
mortality is non-zero, except in the case where η = 0, i.e. linear costs of labour.

23



For the analysis below we assume the following parameter values: ρ = 0.06;

γ = 2; r = 0.03, µ = 0.09, σ = 0.35; a = 0.01, b = 0.5 and η = 3. These values

are of similar magnitude as those chosen in Milevsky and Young (2007) and Pang

and Warshawsky (2010). Figure 1 shows the elasticity of consumption depending

on the level of the mortality rate, for mortality rates ranging from 0 to 0.025. The

mortality rate of 0.025 corresponds to a 72 year old male living in the UK in 2011,

according to recent UK historical life tables published by the Office for National

Statistics (2012).

Figure 1: Elasticity of consumption with respect to mortality.

We observe that the elasticities are all negative, meaning that with increasing

mortality consumption declines. In conclusion, here the human wealth mechanisms

dominates the precautionary savings and fear of death mechanisms as indicated

on page 4. Furthermore, the effect of a change in the mortality rate is strongest

at about ν = 0.00157, which corresponds to the mortality rate of a 39 year old

male living in the UK in 2010. At that age, the elasticity of consumption is

24



approximately at −0.53, which can be loosely interpreted as saying that if the

mortality rate of a 39 year old declines by 10%, then consumption will increase

by about 5.3%. The mortality rate of a 39 year old male living in the UK in

1980 was 0.0017739, and hence declined over the period of 30 years between 1980

and 2010 by 12% inducing a growth in consumption of about 6.5%. If we look

further down, at around pension age of 66 the mortality rate in 1980 was 0.03332

while in 2010 the mortality rate for the same age group was 0.01498, which means

that the mortality rate has been reduced over the period by roughly 55%. The

elasticity of consumption at that mortality rate is −0.44, so that the reduction in

mortality of this age group affects consumption by approximately 24%. Real GDP

over the period from 1980 to 2010 in the UK grew by about 100%. This implies

that the simple analysis above, provides an indication that a reduction in mortality

rates may have had a significant impact on real GDP, possibly explaining between

10%− 25% of its growth.23

We now consider the case of time dependent mortality rates. Figure 2 shows

age dependent mortality rates for various years between 1960 and 2060 in the UK.

The mortality rates from 2011 onward are projected.

The figure clearly shows that mortality rates are on very similar levels until

about age 50, but then diverge. The following Figure 3 represents the mortality

rate of different age groups over the period 1951-2060.

It can be seen that the mortality rates in the more senior age groups have

decreased very significantly over the years, while in the more junior age groups up

to age 30, the effect is far less significant.

23Worldbank data show that household final consumption expenditure in the UK has been fluc-
tuating between 57% and 65% of GDP over the years 1980-2010, being rather stable at just below
65% during the last decade, see http : //data.worldbank.org/indicator/NE.CON.PETC.ZS
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Figure 2: Age dependent mortality rates for selected years between 1960 and 2060.

For our next analysis we use the following set of parameters, which have been

informed from relevant studies such as Milevsky and Young (2007) and Pang and

Warshawsky (2010): ρ = 0.05, γ = 2, r = 0.03, µ = 0.09, σ = 0.5, a = 0.0224,

w = 8000025, η = 3. Figure 4 has been obtained by computing C∗
0 in Theorem 3.1

with time dependent mortality rates obtained from UK life expectancy tables26 for

UK males from the years 1951 to 2060 with a starting age of 25, i.e. C∗
0 represents

the consumption at the reference time of a 25 year old.

24Note that a represents an age increment and not a salary inflation and is the same for all
agents independent of their year of birth.

25This is the annual wage if an agent would work non-stop for 24 hours 7 days a week. Ob-
viously, this is not optimal. For a hypothetical 40 hour working week, this value corresponds
to approximately 19000 GBP annually, which is slightly above the 16400 GBP after tax average
income in the UK according to recent OECD data.

26The computation of the integrals in Theorem 3.1 requires discretization. The step length
has been chosen as one year in order to meet the frequency of the mortality data.
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Figure 3: Mortality rates for selected age groups between 1951 and 2060.
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Figure 4: Consumption under historical mortality at age 25.
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Figure 5: Dis-utility from labour.

Figure 4 shows an upward trend, as expected. The overall change in consump-

tion caused by the changing mortality curves over the 110 year period in this case

is about 12%. The most prominent growth occurs in the 30 year period from 1980

until 2010. The growth in consumption caused by changing mortality patterns over

this period is 5%, compared with the aforementioned 100% in real GDP growth

over the same period. Changes in the mortality curves in this setting still seem to

have a significant impact on GDP.

Figure 5 below shows the function representing the dis-utility from labour that

was used in this analysis. As can be seen, disutility increases rapidly at old age.

This is due to factors such as age related ailments or difficulties to obtain em-

ployment, if able and willing to work. The following figure 6 shows consumption

for different years (from right to left) as a function of age. The curve at the

top-boundary of the figure corresponds to the curve in figure 4, i.e. age 25.
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Figure 6: Consumption under historical mortality at different ages.

It can be observed that while consumption is decreasing with age, it is increas-

ing across all ages under historical and predicted changes in mortality. We do not

observe a consumption hump at a given age as discussed in Feigenbaum (2008),

Feigenbaum and Li (2012), Kraft et. al (2016) and Gourinchas and Parker (2002).

One reason for this is that our main borrowing constraint, which is expressed in

the transversality condition (17) is less restrictive than those used in the litera-

ture above. A second reason is that we include life insurance in our model. As

Feigenbaum (2008) states, a mortality induced consumption hump can no longer be

observed if a pay-as-you-go social security system is incorporated into the model.

Feigenbaum and Li (2012) argue among other things that age dependent wage

uncertainty can contribute to the occurrence of a consumption hump, but also say

that in comparison to previous studies, their results show a less pronounced hump.
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In principle our model would be able to cope with age dependent wage uncertainty,

even though in order to derive explicit solutions in Theorem 3.1 we assumed that

wage is deterministic, i.e. equation (29). As the focus of our paper is not on the

consumption hump, we leave this interesting topic for future research.

Let us now have a look at the labour supply. With the same parameters

as before, we compute labour supply from Theorem 3.1 for the above historical

mortality curves and obtain the following Figure 7. Labour supply is expressed in

terms of hours per week.
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Figure 7: Labour supply under historical mortality in hours per week.

We observe a noticeable downward trend which can also be observed in reality.

Specifically labour supply in our model decreases due to changing mortality curves

between 1980 and 2010 by about 4% from 40.2 hours per week in 1980 to 38.6

hours in 2010.
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Finally, let us look at portfolio investment. We have already indicated that

the optimal portfolio investment strategy consists of a Merton type rule, which is

adjusted by an additional term. We fix the ratio of wage income to initial wealth

as 0.03 and choose ρ = 0.06, γ = 0.95, r = 0.03, µ = 0.045, σ = 0.5, at ≡ a = 0,

η = 0.72 and bt ≡ 3 in order to make results comparable. The following figure 8

shows the percentage of (financial) wealth invested into the risky asset.
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Figure 8: Portfolio investment under historical mortality.

As expected, we observe that over historical time, the agent invests more into

the risky asset and less into the risk-less asset, primarily as a consequence of the

reduced mortality and the increased life expectancy. This observation is similar to

Pang and Warshawsky (2010) where the same effect occurs for reduced uncertainty

in health care costs.

Figure 9 below displays investment into the risky asset under strategy (38) in

excess of the classical Merton rule πt =
1
γ
µt−rt
σ2
t

, depending on the age of the investor
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and year in history.27
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Figure 9: Excess investment into risky asset as function of age and year in history.

We observe that among all ages of investors between 1980 to 2010 the propor-

tions of wealth invested into the risky asset increase. Additional, fixing any year in

history between 1980 and 2010, the proportion of wealth invested into the risky as-

set declines with the age of the investor. This is intuitive of course, as with the age

of the investor, her/his mortality risk increases, and safer short term investments

are sought. This effect can also be observed in reality, but none of the previous

models, including Milevsky and Young (2007) and Pang and Warshawsky (2010),

had been able to explain this feature through changes in the mortality rate.

27Note that the classical Merton (1969) set up does not include income and human wealth and
that therefore this fraction refers to financial wealth only.
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5 Conclusions

We have extended the consumption-investment life cycle model for an uncertain

lived agent by Richard (1974) to include flexible labour. We have derived closed-

form solutions for optimal consumption, labor supply and investment strategy and

showed that the inclusion of mortality risk, and in fact the shape of the mortality

risk curve, significantly affects the level of consumption as well as the decomposi-

tion of the investment portfolio. Our model is able to cope with historical mortality

data which can be fed directly into our closed form solutions. An empirical analysis

based on UK actuarial data from 1951 to 2060 supports our results. As such we

observe that historical changes in mortality might indeed be responsible for about

5% of GDP growth in the period from 1980 until 2010, more risk taking and a

reduction in labour.

Appendix

A. Computations to derive the Lagrange Multiplier

Substitution of (27) and (28) into (20) and using (14) we obtain

λ− 1
γE
(∫ ∞

0

(
e−

∫ t
0(νs+

1
γ
ρs)ds

)
H

γ−1
γ

t dt

)
(46)

= x+ λ
1
η E

(∫∞
0

(
e−

∫ t
0(νs−

1
η
ρs)ds

)
b
− 1

η

t (Htwt)
η+1
η dt

)
.
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Then using that everything, except Ht and wt, is deterministic, we obtain

λ− 1
γ

(∫ ∞

0

e−
∫ t
0(νs+

1
γ
ρs)dsE

(
H

γ−1
γ

t

)
dt

)
(47)

= x+ λ
1
η

(∫∞
0

e−
∫ t
0(νs−

1
η
ρs)dsb

− 1
η

t E
(
(Htwt)

η+1
η

)
dt

)
.

Using (15) and (29) we can compute

E
(
H

γ−1
γ

t

)
= e

−
∫ t
0

γ−1
γ

(
rs+

θ2s
2γ

)
ds
, (48)

E
(
(Htwt)

η+1
η

)
= w

η+1
η

0 e
−
∫ t
0

η+1
η

(
rs−as−

θ2s
2η

)
ds
. (49)

Substituting this into (47) leads to the expression (30).

B. Computations to derive the Optimal Investment Rule

From (19) we obtain that the wealth process X∗
t under the optimal strategy

(π∗
t , C

∗
t , L

∗
t ) is given by

X∗
t = At −Bt, (50)

with

At = C∗
t Et

(∫ ∞

t

Ĥs

Ĥt

C∗
s

C∗
t

ds

)
(51)

Bt = (wtL
∗
t )Et

(∫ ∞

t

Ĥs

Ĥt

(wsL
∗
s)

(wtL∗
t )

)
ds. (52)
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In the following we will compute At and Bt. Substituting the expressions for C∗
t

and L∗
t from Theorem 3.1. gives

At = C∗
t Et

(∫ ∞

t

Hs

Ht

C∗
s

C∗
t

· e−
∫ s
t νududs

)
= C∗

t Et

(∫ ∞

t

(
Hs

Ht

) γ−1
γ

· e−
∫ s
t (νu+

1
γ
ρu)duds

)

= C∗
t

∫ ∞

t

Et

((
Hs

Ht

) γ−1
γ

)
· e−

∫ s
t (νu+

1
γ
ρu)duds.

Now, using that Hs

Ht
is independent of Ft and distributed like a geometric Brownian

motion with time varying drift term, we obtain

At = C∗
t ft, with (53)

ft =:

∫ ∞

t

e
−
∫ s
t

(
γ−1
γ

(
ru+

θ2u
2γ

)
+ 1

γ
ρu

)
du

· e−
∫ s
t νududs.

Similarly we can compute

Bt = wtL
∗
tgt, with (54)

gt =:

∫ ∞

t

e
−
∫ s
t

(
η+1
η

(
ru−au−

θ2u
2η

)
− 1

η
ρu

)
du
(
bs
bt

)− 1
η

· e−
∫ s
t νududs.

Using (53) and (54) we then obtain the expression in (32).
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