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The desire to push recent experiments on electron vortices to higher energies leads to some theoretical
difficulties. In particular the simple and very successful picture of phase vortices of vortex charge l
associated with lℏ units of orbital angular momentum per electron is challenged by the facts that (i) the
spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests that
the existence of a spin-orbit coupling will complicate matters, and (ii) that the velocity of a Dirac electron is
not simply the gradient of a phase as it is in the Schrödinger theory suggesting that, perhaps, electron
vortices might not exist at a fundamental level. We resolve these difficulties by showing that electron
vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is simply related
to a conserved orbital part of the total angular momentum, closely related to the familiar situation for the
orbital angular momentum of a photon.
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Vortices are ubiquitous wherever we have a fluid in
motion. They have been observed and studied in many
settings including in classical [1,2] and quantum fluids
[3–5], in nonlinear fields [6], and also in optics [7], where
their presence is associated with an orbital angular momen-
tum [8,9]. Recent developments have demonstrated, beyond
reasonable doubt, the existence of propagating electrons with
an on-axis vortex, corresponding to a phase singularity in the
wave function of the form eilϕ, where ϕ is the azimuthal
coordinate [10–19]. Comparison with paraxial optics [20,21]
or direct appeal to quantum theory [22,23] leads us to
associate these with lℏ units of orbital angular about the
direction of propagation. The experimental studies of
electron vortices are backed by an impressive array of
theoretical developments [24–32] and it may be said
justifiably that the phenomena of electron vortices and the
associated electron orbital angular momentum are now well
understood.
Theoretical investigations at higher energies, based on

the Dirac equation, have given cause to question the above
simple statements. As is well known, the spin and orbital
parts of the electron angular momentum are not separately
conserved [33] and this suggests the existence of a spin-
orbit coupling rather than a simple orbital angular momen-
tum associated with a vortex beam [34]. The velocity of a
Dirac electron, moreover, is not proportional to the
momentum operator [35] and hence the local velocity is
not the gradient of a phase [36]. These two features give
cause to question the validity of our simple nonrelativistic

analysis, with its phase vortices associated with an orbital
angular momentum. Even the existence of the vortices
seems to be in doubt [36].
There are three reasons why this problem is important:

one practical and two fundamental. The first derives from
the requirement to be able to describe, as simply as possible,
experiments with shaped electron beams as they move
towards higher energies. The second is the question of
whether electron vortices are real and if they are, as
experiments suggest, what happens to these topological
features in the relativistic limit? Finally, we have long
associated phase vortices with a well-defined orbital angu-
lar momentum, but Dirac theory tells us that the orbital and
spin parts of the angular momentum are not separately
conserved. Is this at odds, however, with the existence of
electron vortices? We are encouraged by the fact that
analogous issues arose and were resolved for light, which
is the quintessential relativistic field. To address these points
we ask if there is any sense in which the simplicity of the
nonrelativistic description of electron vortices persists in the
relativistic domain. We find that there is.
We work in the natural system of units in which

ℏ ¼ 1 ¼ c and write our Dirac equation in the form

i
∂ψ
∂t ¼ ðα · pþ βmÞψ ; ð1Þ

where ψ is the usual four-component spinor and α and β are
the matrices [35]

α ¼
�
0 σ

σ 0

�
; β ¼

�
I 0

0 −I

�
: ð2Þ

The orbital and spin angular momentum operators take the
expected forms

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PRL 118, 114802 (2017)
Selected for a Viewpoint in Physics

PHY S I CA L R EV I EW LE T T ER S
week ending

17 MARCH 2017

0031-9007=17=118(11)=114802(5) 114802-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.118.114802
http://dx.doi.org/10.1103/PhysRevLett.118.114802
http://dx.doi.org/10.1103/PhysRevLett.118.114802
http://dx.doi.org/10.1103/PhysRevLett.118.114802
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://link.aps.org/viewpoint-for/10.1103/PhysRevLett.118.114802


L ¼ x × p; S ¼ 1

2

�
σ 0

0 σ

�
; ð3Þ

but note that neither L nor S alone commutes with the
Dirac Hamiltonian H ¼ α · pþ βm. Only the total angular
momentum J ¼ Lþ S commutes with H and is conserved
[33]. This situation contrasts strongly with the nonrelativ-
istic Hamiltonian for the free electron

Hnonrel ¼
p2

2m
; ð4Þ

which manifestly commutes with bothL and S so that each
of these is separately conserved. It is straightforward,
moreover, to find propagating-electron solutions of the
Schrödinger equation with azimuthal dependence eilϕ,
which are eigenstates of Lz with eigenvalue l [26].
In seeking to link the relativistic and nonrelativistic

treatments it is natural to employ the Foldy-Wouthuysen
transformation as it is the low energy limit of this form that
leads to the Schrödinger equation [35,37]. To this end we
introduce the unitary operator

eiS ¼ eβα·pθ=p; tanð2θÞ ¼ p
m

ð5Þ

to transform our spinor to ψ 0 ¼ eiSψ . This transformation
diagonalizes the Dirac Hamiltonian

H0 ¼ eiSHe−iS ¼ βðp2 þm2Þ1=2; ð6Þ

so that our transformed Dirac equation is

i
∂ψ 0

∂t ¼ βðp2 þm2Þ1=2ψ 0: ð7Þ

It should be emphasized that this is an exact form of the
Dirac equation for the free electron and that no approxi-
mation has been made in order to obtain it.
The transformed Dirac Hamiltonian H0 commutes with

bothL and S and it follows that, in the transformed picture,
these quantities are separately conserved. The unitary
operator eiS commutes with J, moreover, and the above
observation provides the basis for extracting two separately
conserved parts of the angular momentum.
We can write exact solutions of our transformed

Dirac equation (7) with an aximuthal dependence eilϕ

and these will have a phase vortex along the z axis. These
solutions will be eigenstates, moreover, of the operator
Lz ¼ −i∂=∂ϕ. Rather than work with the exact Dirac
equation, it is helpful to introduce an approximation at
this stage, so as to make a natural link with previous studies
and with experiments. To this end let us assume that
the electron motion is principally in the z direction, by
which we mean that pz ≫ px; py. We further specialize,
for simplicity, to a monoenergetic state with energy

ðm2 þ p2
0Þ1=2. This restricts us, naturally, to the two-

component upper part of our spinor ψ 0. Finally, let us
write

ψ 0
upper ¼ e−i

ffiffiffiffiffiffiffiffiffiffiffi
m2þp2

0

p
teip0zuðrÞ

�
a

b

�
; ð8Þ

where a and b determine the orientation of the electron
spin and jaj2 þ jbj2 ¼ 1. If we expand the Hamiltonian
operator

ðm2 þ p2Þ1=2 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

q
þ p2

x þ p2
y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p þ p0ðpz − p0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p
ð9Þ

then we are led to

i
∂u
∂z ¼ −

1

2p0

� ∂2

∂x2 þ
∂2

∂y2
�
u; ð10Þ

which is the paraxial wave equation familiar from optics
[38]. This is entirely natural as we can write Maxwell’s
equations for the free electromagnetic field in Dirac form
and applying to these the appropriate Foldy-Wouthuysen
transformation and making the paraxial approximation
leads to the same equation [39]. Note that in deriving this
equation we have placed no restriction on the value of p0

and that, despite its similarity to the Schrödinger equation,
it is a fully relativistic expression. Solutions to this equation
include the Laguerre-Gaussian modes, familiar from optics
[20,21], with the desired azimuthal dependence eilϕ.
We have solutions for ψ 0 that are eigenstates of the z

component of the orbital angular momentum operator,
Lz ¼ xpy − ypx, with integer eigenvalue l. We can also
select eigenstates of the z component of the spin, Sz, with
eigenvalue �1=2 by choosing a ¼ 1 or b ¼ 1 in our
solution (8). It remains to determine the forms of these
observables for the original Dirac equation. Clearly, they
will not simply be Lz and Sz as these operators do not
commute with the unitary operator eiS. We find in this way
two separately conserved parts of the total angular momen-
tum for a free Dirac electron:

~L ¼ e−iSx × peiS ¼ x × pþ i
βα × pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
þ
�
1 −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p ��
S −

ðp · SÞp
p2

�
;

~S ¼ e−iSSeiS ¼ S − i
βα × pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
−
�
1 −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p ��
S −

ðp · SÞp
p2

�
: ð11Þ
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The physical significance of these remains to be fully
established. Each, however, is a separately conserved part
of the total angular momentum for a free Dirac electron and
the z components, in particular, correspond to the con-
served quantities Lz and Sz for our solution to the trans-
formed Dirac equation, ψ 0. It follows that for a transformed
state ψ 0 with an azimuthal dependence eilϕ the correspond-
ing state ψ will be an eigenstate of ~Lz with eigenvalue l.
We may ask how to interpret and even name the

separately conserved parts of the total angular momentum.
It is clear, by their construction, that ~L and ~S are associated
with phase vortices and the electron spin that appear in the
transformed state ψ 0. For this reason, if no other, it seems
appropriate to call ~L the conserved orbital part of the
electron angular momentum and ~S, correspondingly, the
conserved spin part [40]. The z component of the conserved
orbital part of the angular momentum, ~Lz, is clearly
associated with the presence of a phase vortex in ψ 0 such
as occurs on the z axis for a Laguerre-Gaussian mode.
It should again be emphasized that Eq. (7) is an exact

reexpression of the Dirac equation and that we can
construct any positive energy solution by superposing
plane waves with components in the upper half of the
spinor. For practical purposes, however, the paraxial
approximate form will often suffice, just as it does in
optics. Let us construct a solution with an on-axis vortex
associated with the conserved orbital part of the angular
momentum. Direct comparison with the paraxial modes
from optics [20,21,38] leads us to write [44]

ul;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!
πðnþjljÞ!

s
ðρ ffiffiffi

2
p Þjlj

wjljþ1ðzÞexp
�
−

p0ρ
2

2ðzRþ izÞ
�

×Ljlj
n

�
2ρ2

w2ðzÞ
�
eilϕ exp½−ið2nþjljþ1Þtan−1ðz=zRÞ�;

ð12Þ

where we have used cylindrical polar coordinates,
wðzÞ ¼ wð0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=z2R

p
, and zR is the Rayleigh range

p0w2ð0Þ=2. The full solution for ψ 0 is

ψ 0 ¼ e−i
ffiffiffiffiffiffiffiffiffiffiffi
m2þp2

0

p
teip0zul;n

0
BBB@

a

b

0

0

1
CCCA: ð13Þ

If we wish to work with the Dirac equation in its original
form then this solution becomes

ψ ¼ e−iSψ 0; ð14Þ

which will have nonzero entries in both the upper and lower
parts of the spinor, corresponding to a superposition of

positive and negative energy states of the stationary
electron.
We have established the existence of vortex solutions

and, within the paraxial approximation, Laguerre-Gaussian
solutions akin to those arising in optics, but these are for the
transformed state ψ 0 rather than ψ and it remains to show
that vortices appear also for ψ. This point is far from
obvious, as the position coordinates in the two states are not
the same by virtue of the fact that e−iS depends on the
momentum operator. The coordinate transformation mixes
positions over a distance of the order of the Compton
wavelength for the electron and it suffices, therefore, to
consider only the region of space that is very close to the z
axis. We further simplify the analysis by considering the
focal plane z ¼ 0 and hence write

ψ 0 ≈ Ne−i
ffiffiffiffiffiffiffiffiffiffiffi
m2þp2

0

p
teip0zðxþ iyÞl

0
BBB@

a

b

0

0

1
CCCA; ð15Þ

where N is a normalization constant and we have chosen l
to be positive. It is straightforward to perform the required
unitary transformation and we find

ψ ¼ Nffiffiffi
2

p e−i
ffiffiffiffiffiffiffiffiffiffiffi
m2þp2

0

p
teip0z

2
6664uþðxþ iyÞl

0
BBB@

a

b

0

0

1
CCCA

þ u−

0
BBB@ðxþ iyÞl

0
BBB@

0

0

a

−b

1
CCCA− i

2l
p0

ðxþ iyÞl−1

0
BBB@

0

0

b

0

1
CCCA
1
CCCA
3
7775;

ð16Þ

where u� ¼ ð1�m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p
Þ1=2. That the phase vortex

behavior remains is clear from the presence of the terms
ðxþ iyÞl ¼ ρleilϕ. Some quenching of the vortex occurs if
the electron is spinning in the opposite sense to the rotation
of the vortex in that very near the center the state with a
vortex charge reduced to l − 1 and the electron spinning in
the opposite direction will dominate. The length scale for
this to happen is very small, however, being of the order of
a few Compton wavelengths. We see that phase vortex
solutions for the transformed state ψ 0 occur very naturally
and, moreover, that these persist when transformed back
into the original form of the Dirac state.
The final question to address is whether or not there is an

azimuthal current flow associated with the region around
the vortex. The point is that the electron velocity operator is
α and that this leads to a local current that is not the gradient
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of the phase of the spinor [36]. To address this point
we evaluate, within our paraxial approximation, the expect-
ation value of the z component of x × α for our solution
(13) [45]:

hðx × αÞzi ¼
Z

d3xψ 0†eiSðxαy − yαxÞe−iSψ 0

¼
Z

d3x
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
0

p ψ 0†
�
−i

∂
∂ϕ

�
ψ 0

¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p : ð17Þ

It follows that we have a net azimuthal current around the
vortex. Moreover, as this quantity gives the expectation
value of the cross product of the position and the velocity,
we can think of the product of this quantity and the energyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p
as being the orbital angular momentum,

although strictly speaking it is the expectation value of ~Lz.
It remains to assess our progress in addressing the three

important issues that motivated this study and were listed at
the beginning of this Letter. First, we have shown that the
same paraxial methods of solution that have been used in
optics and for low energy electrons can be applied in the
fully relativistic regime. This means that much of the
simplicity of the low energy solutions is retained. We have
shown also that electron vortices are indeed real in the
relativistic limit, but that the natural way to look for them is
to work with the Foldy-Wouthuysen transformed spinor.
Finally, the electron vortex is indeed associated with a well-
defined and conserved part of the total angular momentum,
but that this quantity is ~L, given in Eq. (11), rather than the
simple orbital angular momentum we find for low energies.
We conclude by noting that the description given here

applies for the free electron, but that simple electron vortex
solutions have been found, also, for propagation in a
constant magnetic field pointing along the direction of
propagation [25]. Extending our relativistic analysis to this
situation presents no fundamental difficulties; we can
introduce a vector potential with components in the x–y
plane and then apply a two-stage Foldy-Wouthuysen
transformation [35], treating the transverse momentum
components as small. This leads to a paraxial wave
equation similar in form to Eq. (11) but with −i∂=∂x
(−i∂=∂y) replaced by px − eAx (py − eAy) and a Zeeman
energy shift associated with the electron spinning in the
magnetic field. The ideas expressed here are not restricted
to electrons but apply also to relativistic motion of other
spin-half particles including neutrons, for which the exist-
ence of phase vortices has recently been demonstrated [46].
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