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Wave-like Patterns in Precessing Elliptical Rings for Swarming Systems 

 
Ming Xu 1,2,† and Colin R McInnes 2,‡ 

1 Beihang University, Beijing 100191, China; 2 University of Glasgow, Glasgow G12 8QQ, UK 

A continuum model for a swarm of devices is investigated with the devices moving along 

precessing elliptical Earth-centred orbits. Wave-like patterns in these precessing elliptical rings 

with peaks in swarm density are found which can be used to provide enhanced coverage for 

Earth observation and space science. Two orbital models are considered for the purpose of 

comparison; perturbed by J2 and solar radiation pressure, and perturbed by J2 and J3 

respectively, each with a different frozen eccentricity. By removing osculating orbital elements, 

only the long-period orbit eccentricity and argument of perigee are chosen to derive closed-form 

solutions to the continuum model for the swarm density. Zero-density lines in the swarm density 

are found, as well as infinite density at certain boundaries. Comparison between the analytic and 

numerical number density evolution is made to yield the range of applicable eccentricity based 

the maximum error tolerance, as well as the minimum number of swarm members required to 

approximate continuous evolution. Closed-form solutions are then derived to predict the 

number density of swarm devices for magnetic-tail measurement and Earth observation 

applications. 

Nomenclature 

n     =  analytic swarm number density solution 

J2     =  second zonal coefficient of Earth's gravitational field 

J3     =  third zonal coefficient of Earth's gravitational field 

e     =  long-periodic eccentricity 

     =  long-periodic argument of perigee 
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e      =  mean eccentricity 

ef     =  frozen eccentricity 

      =  mean argument of perigee 

Re     =  Earth’s radius 

a     =  orbit semi-major axis 

i     =  orbit inclination 

Earth      =  gravitational parameter of Earth 

      =  pericentre angle between the Sun-Earth line and the pericentre of the elliptical orbit 

t     =  time 

Sunn       =  angular rate of the Earth around the Sun 

cR      =  reflectivity coefficient of the spacecraft, chosen as 1.8  

m      =  mass of the spacecraft 

A       =  effective area exposed to the Sun 

v        =  velocity vector of a single device 

N     =  total number of swarm devices 

      =  angle used to replace the time term in all relevant equations for simplicity 

n'     =  numerical swarm number density solution 

     =  relative errors of the analytic and numerical number density solutions 

crital

ar      =  critical radius for measuring deep magnetic tail or obtaining high resolution images 

max

ar      =  maximum radius restricted by the communications link budget 

Sunn      =  angular rate of the Earth around the Sun 

 

I. Introduction 

Elliptical orbits are of interest for applications such as Molniya-like orbits and ‘magic orbits’ [1], and have been 

considered for swarm applications for telecommunications and Earth observation services [2-4]. Moreover, high area-to-

mass ratio satellites strongly perturbed by solar radiation pressure have also been considered for forced orbit precession 

of elliptical orbits, again to deliver novel telecommunication and Earth observation services [5]. However, unlike the 
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discrete structure of constellations with a modest number of satellites, large constellations of Cubesats or ‘Chipsats’ 

exhibit a fluid-like continuum behaviour [6,7]. Therefore, rather than using ordinary differential equations (ODE) to 

propagate the motion of each member of the constellation, a continuum approach is employed in this paper to model the 

evolution of large numbers of small ‘smart-dust-type’ devices using partial differential equations (PDE). 

An initial application of the continuum approach in satellite astrodynamics was proposed by McInnes [8] for the 

evolution of debris clouds. Moreover, Gor’Kavyi et al. [9,10] used a continuum approach in orbital element space 

serving as a tool to analyse the transport of interplanetary dust grains as well as their long-term dynamical evolution. 

Later, considering both on-orbit failures and the deposition of new micro-satellites, McInnes [11] derived closed-form 

solutions to the PDE continuity equation based on the method of characteristics, which provided insights into the 

macroscopic dynamics of the problem and long-term, asymptotic behaviour. For pattern formation in elliptical rings, a 

wave-like pattern was found from a set of closed-form solutions to the continuity equation. In principle, the resulting 

density peaks could provide enhanced coverage [2]. Letizia et al. [12] summarized applications of the continuity 

equation approach, including interplanetary dust [9], nanosatellites [11] and high area-to-mass SpaceChips [13] and 

developed a standard procedure for the analytic solution to the continuity equation in orbital element space. McInnes [14] 

studied the evolution of the density of swarms of self-propelled devices in heliocentric orbit with closed-form solutions 

developed analytically for several scenarios, such as the evolution of an infinite sheet or a finite disk, with on-orbit 

failures, and with the constant disposition of new devices at one boundary. 

As an extension of McInnes and Colombo [2], the continuum method is used in this paper to investigate the 

evolution of the number density of a swarm of devices on perturbed, precessing elliptical orbits. Firstly, by removing 

osculating terms, the simplified dynamics of the long-period eccentricity and argument of perigee angle are considered 

for J2 and solar radiation pressure (SRP) perturbations, as well as long-period eccentricity and argument of perigee angle 

dynamics for J2 and J3 perturbations. Then, a number of initial swarm density distributions are modelled through the 

orbit eccentricity and argument of perigee angle for the two perturbed precessing elliptical orbit models noted above. 

The closed-form solutions to these distributions are then derived by the method of characteristics. Finally, by integrating 

the swarm number density, the number of swarm devices available to provide in-situ observations for magnetic-tail and 

Earth imaging missions are investigated. 
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II. Orbital Evolution Models of Precessing Elliptical Rings 

A. Precessing Elliptical Orbit Perturbed by J2 and J3 

For a precessing elliptical orbit perturbed by the Earth’s oblateness, the evolution of the eccentricity e and argument 

of perigee  are considered to be effected by the J2 and J3 terms of the zonal spherical harmonics. The components of 

the eccentricity vector (ex, ey) are defined as coseex   and sineey  , shown in Fig.1. 

 
Fig.1 Geometry of elliptical orbit and the definition of (ex, ey). 

According to perturbation theory [15], by removing osculating terms, the long-period evolution of the eccentricity 

vector (ex, ey) can be presented as 

coseex  , sineee fy   (1) 

where e  and   are the mean eccentricity and the mean argument of perigee defined by Kozai [15], and 

i
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3  is the frozen eccentricity , Re is the Earth’s radius and a is the orbit semi-major axis. According to the 

classifications of short-period, long-period and secular terms by Kozai [15], the mean eccentricity e  stays invariant and 

  has a secular perturbation with a linear rate given by 
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where a is the orbit semi-major axis, i is the orbit inclination and Earth is the gravitational parameter of Earth, and the 

coefficients 0,0, 0,1 and 0,2 can be found in Ref. [16]. Due to the existence of the frozen eccentricity, from Fig. 1, the 

actual eccentricity e and the actual argument of perigee  have long-period terms depending on t  
0

, given by 
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where 
e

e
e

f
ˆ  is defined as the equivalent eccentricity, and the mean argument of perigee   can be solved from Eq. (4) 

as 
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The evolution of the actual eccentricity e and the actual argument of perigee  are shown in Fig.2, where a series of 

mean eccentricities e  0.1610-3, 0.3210-3, 0.4810-3, 0.6410-3 and 0.810-3 provide the initial conditions to create 

time-dependent functions e and . For an elliptical orbit with a given e  and ef, Eq. (3) can be rewritten as 

êsincostan    (6) 

Therefore,   can be derived from  based on Eq. (3) as 

  cosˆsin 1 e  (7) 

Substituting Eq. (7) into Eq. (4) formalises the mapping function 
3JF  from  to e as  

3JFe  , and substituting Eq. (5) 

into Eq. (3) formalises the inverse mapping function 1

3



JF  from e to  as  eFJ

1

3

 . 

 
Fig.2 Evolution of the actual eccentricity and argument of perigee perturbed by J2 and J3: the mean semi-major axis is chosen to be 7178.137km 

and the mean inclination is 1080, so that the frozen eccentricity is 0.001. 

Differentiating Eq. (6) yields  

     cossin-tancossec2 eee  (8) 

which can then be solved to obtain the derivative of  as 

 



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cos  (9) 

Combining Eqs. (7) and (9) provides the ‘velocity’ of  as 
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Then, differentiating Eq. (4) and then substituting Eq. (5) yields 

 





























  2

2

2
1

2

ˆ1
ˆ2

1
sincos e

e

e

ee

ee
eeve




  (11) 

Both Eqs. (10) and (11) provide the ‘velocities’ of  and e, i.e., v and ve, which can be used to obtain the characteristic 

functions of the continuity equation for the swarm density later in Section III.A. 

Finally, Eqs. (3) and (4) define the J2 and J3 perturbations and can be considered as the linearized equation of the full 

dynamics near the frozen eccentricity ef, which is derived in Refs. [16,17] as 
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where the coefficient 2,2 can be found in Ref. [16]. Thus, the linearized Eqs. (3) and (4) will be used to derive the 

analytic number density evolution in Section III.B, and the full dynamics from Eq. (12) will be used to implement the 

individual numerical evolution of swarm members in Section. III.C. 

B. Precessing Elliptical Orbit Perturbed by J2 and SRP 

Considering the planar evolution of swarm members perturbed by the Earth’s oblateness and solar radiation pressure 

(SRP) with the obliquity of the ecliptic ignored, another family of precessing elliptical orbits can be found, where the 

full orbital dynamics defined by ex=ecos and ey=esin, are given by the following [18-21] 
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where e is the actual eccentricity, 
Sunn  is the angular rate of the Earth around the Sun, and  is the actual pericentre angle 

between the Sun-Earth line and the pericentre of the elliptical orbit shown in Fig.3. Compared with Kozai’s model [22] 

including only SRP and without the J2 perturbation, the planar model used in this section includes both the SRP and J2 

terms, and has potential applications in orbit design for observations of the geomagnetic-tail. 
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Fig.3 Geometry of precessing elliptical orbit and the definition of pericentre angle. 

The solar radiation pressure parameter S and the oblateness parameter W are given by 
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where mAcpa RSRSRP   is the characteristic acceleration due to SRP, cR is the reflectivity coefficient of the spacecraft, 

chosen as 1.8 in this paper and A is the effective area exposed to the Sun and m is the mass of the spacecraft that defines 

the area-to-mass ratio of the spacecraft as A/m. Moreover, Re is again the mean Earth radius, a is the semi-major axis of 

the elliptic orbit, 3aEarth   is the mean orbital angular velocity of the orbit. 

Eq. (13) governs the evolution of (ex, ey) and are non-integrable, but possess several equilibrium points including the 

frozen eccentricity (ef, 0). These can be obtained from Eq. (13) and the following algebraic equation as 
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which can be approximated by ignoring higher order terms for small eccentricity, as 
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 (16) 

By the numerical investigation of the global evolution of the eccentricity vector, Colombo et al. [18] obtained 

different families of (ex, ey) which are considered to evolve around the equilibrium point (ef, 0), as shown in Fig.4. Only 

the scenario with one equilibrium point is considered in this paper, and so the bifurcation case will be considered as 

future work. 

Sun 
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a b c  

Fig.4 e- phase space evolution for high area-to-mass ratio spacecraft: a a=11,000km, A/m= 5m2/kg; b a=11,000km, A/m= 10m2/kg; c 

a=11,000km, A/m= 20m2/kg. 

To proceed with the analytic solution to Eq. (11), the simplified treatment developed in the classical perturbation 

theory of Kozai [15] is employed in the following section. Two new variables ex and ey are defined as the differences 

between (ex, ey) and the equilibrium point (ef, 0) so that 
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and are substituted into Eq. (14) to expand as a Taylor series, and then yield the linearized dynamics by ignoring high 

order terms in the expansion such that 
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where 221 fWeWP  ,     fff eWeWeSQ 22

2
1 211  , and 261 ff WeWSeR  , and Q is equal to 0 always 

due to the equilibrium point. Therefore, combining both these two equations from Eq. (18) it can be seen that 

02  ySuny ePRne  (19) 

Hence, it is easy to solve for ex and ey from the above equation as 
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where e  and   are referred as the mean eccentricity and the mean angle related to the pericentre. e  stays invariant 

which can be used to parameterize different families of (ex, ey), and t  0
 with its linear rate given by 

  WeWeSeWWnPRn fffSunSun  1621 22  (21) 

Therefore, similar to the precessing elliptical orbit derived by Kozai [15], the eccentricity vector (ex, ey) evolves as 

coseee fx  , sineey   (22) 
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Besides, an equivalent eccentricity 
e

e
e

f


  is defined for the precessing elliptical orbit as well. According to the 

definitions of ex and ey, the actual pericentre angle  and the actual eccentricity can be written as 
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Based on Eq. (24) the mean argument of perigee   can then be solved from e as 
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Then, rewriting Eq. (23) as  sincotcos eee f   and differentiating yields 
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Subsequently, the derivative of  can be obtained as 
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For any family (ex, ey) parameterized by the mean eccentricity e , the mean pericentre angle   can be solved from  

based on Eq. (23) as  
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which is substituted into Eq. (27) to obtain the derivative of the pericentre angle as 
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Then, differentiating Eq. (24) and substituting Eq. (25) into it yields 
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Both Eqs. (29) and (30) provide the ‘velocities’ of  and e, i.e., v and ve, which can then be used to obtain the 

characteristic functions of the continuity equation for the swarm density later in Section III.B. 

Besides, substituting Eq. (28) into Eq. (24) formalises the mapping function 
SRPG  from  to e as  SRPGe  , and 

substituting Eq. (25) into Eq. (23) formalises the inverse mapping function 1

SRPG  from e to  as  eGSRP

1 . 

The linearized Eqs. (23) and (24) are used to derive the analytic number density evolution in Section III.A, and the 

full dynamics of Eq. (12) are used to implement the individual numerical evolutions of swarm members in Section III.C. 
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III. Continuum Models of Number Density for Precessing Elliptical Rings 

By removing the short-period terms from the orbital elements, a single elliptical orbit with long-term precession is 

employed for a swarm of remote sensing satellites for Earth observation, or high area-to-mass ratio spacecraft for 

magnetic tail measurements. Different from classical orbital evolution formulated by an ordinary differential equation 

(ODE), the evolution of the swarm number density is modelled by a partial differential equation (PDE) as follows. 

The short-period wave-like patterns investigated by McInnes and Colombo [2] were driven by a fast variable, i.e., the 

true anomaly of the unperturbed elliptic orbit, while here the swarm density is described by a slow variable. However, 

due to the mapping functions 
3JF , 1

3



JF , 
SRPG  and 1

SRPG  between e and  (or ), only one variable will be selected for the 

continuum model. Thus, for both the J2 and J3 and the J2 and SRP perturbation cases, four continuum models are 

considered based on the selected variable marked by a superscript as e

Jn
3

, 

3Jn , e

SRPn  and 
SRPn . Generally, the density is 

defined as the derivative of the number of swarm devices to the selected variable, for example as    


 
d

tdN

SRP tn
,

,   for 

an illustration, where N is the total number of swam devices. 

Similar to treatments in fluid dynamics as well as the evolution of interplanetary dust [9,10], nano-satellite 

constellations [11], and heliocentric swarms [14], the continuum evolution of the swarm number density can be obtained 

by the follow PDE linking the swarm’s density and a single device’s velocity vector, as 

   0



n

t

n
v  (31) 

where n represents the swarm density,  is the gradient operator on the selected variable of the precessing elliptical orbit 

and v is velocity vector of a single device parameterized by this variable. 

A. Continuity Equation Modelled for J2 and SRP Perturbations 

For the J2 and SRP perturbation case, the continuum evolution of the swarm density is written in terms of e and  

respectively as 

0












 e

SRP
e

e

SRP
e

e

SRP n
e

v

e

n
v

t

n
 (32a) 

0












 







SRP

SRPSRP n
vn

v
t

n  (32b) 

The closed-form solution to Eqs. (32a) and (32b) is derived using the method of characteristics, as used by McInnes 

[11,14], McInnes and Colombo [2] and Letizia et al. [12]. Along the characteristic curves, the partial differential 

equation degenerates into two ordinary differential equations defined by Murphy [23] such that 
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


v

dt

d
  (33) 

 
ev

dt

de
  (34) 

0
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



 






SRP

SRP n
v
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dn , 0
1





 e

SRP
e

e

e

SRP n
e

v

vde

dn  (35) 

The first characteristic can be obtained from Eq. (29) as 

dtd
e

ee




 




22

22

sinˆ1

cosˆsinˆ1  (36) 

which can be integrated as 

 tCdtd
e

e
,

sin1
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1

22






















 





 (37) 

Therefore, the first characteristic function can be solved from the integration above as 

    tetC 
  sinˆsin, 1  (38) 

Similarly, the second characteristic can be integrated from Eq. (30) as 

 teCdteede

e
e

e

e

e
e ,
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1
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2

2

2
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
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

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 (39) 

which has a simple form as 
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





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 

2
sin,

222

1  (40) 

Besides, from Eq. (35), the number density can then be obtained from the first and second characteristic functions 

respectively, as 

 
  
 







v

tC
tnSRP

,
,


 ,  

  
 ev

teC
ten

e

eee

SRP

,
,


  (41) 

where e and  are some arbitrary functions of the characteristic equations and will be determined from the initial data 

 0,
SRPn  and  0,ene

SRP
 at the initial time t=0. 

Just as in McInnes [14] and McInnes and Colombo [2], the initial data condition is selected   10, 
SRPn  

or   10, ene

SRP
, chosen as an example to demonstrate the wave-like distribution of number density on a precessing 

elliptical orbit. Combining the initial data   10, 
SRPn  and   10, ene

SRP
 and Eq. (41) yields the forms of e and  as 

      vC  0, ,     eveC eee  0,  (42) 
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It should be noted that the initial data condition   10, 
SRPn  is not equivalent to   10, ene

SRP
 because there are non-

linear mapping functions between them, i.e., 
SRPG  and 1

SRPG . Thus, a uniform initial distribution about  will be mapped 

to a non-uniform initial distribution about e, given by 

   
   

de

edG

de

edG
n

de

d

d

dN

de

dN
en SRPSRP

SRP

e

SRP

11

0,0,


 




  (43) 
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Fig.5 Non-uniform initial distribution of density about e derived from the uniform distribution about  such that   10, 

SRPn  

and shown in Fig.5, where the area-to-mass ratio of the spacecraft is chosen as 10 m2/kg, the mean eccentricity e  is 

chosen as 0.3, and the semi-major axis of the elliptical orbit is chosen as 11,000km so that the frozen eccentricity is 

0.1826. To determine the functional form of e and  as functions of new variables z1 and z2, the inverse function of 

 0,1 Cz   is used to obtain  as a function of z1 as 











 

1

11

cosˆ

sin
tan

ze

z
  (44) 

and the inverse function of  0,2 eCz e  is used to obtain e as a function of z2 as 

2

2 cosˆ2ˆ1 zeeee   (45) 

Therefore, the arbitrary functions e and  can be obtained from Eqs. (44) and (45) as 

  









 

1

11

1
cosˆ

sin
tan

ze

z
vz 

,    2

2

2 cosˆ2ˆ1 zeeevz ee  . (46) 

Now, combining Eqs. (29), (30), (38), (40), (41) and (46) yields the full closed-form solutions for the swarm number 

density with the initial data   10,
~


SRPn  and   10,~ ene

SRP
 as 

 
   

 











v
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SRP

~
0,

~

,


 ,  
   

 ev

even
ten

e

e

e

SRPe

SRP

~0,~
,


  (47) 
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where 
 
 tCe

tC

,cosˆ

,sin
tan

~ 1











   and  teCeeee e ,cosˆ2ˆ1~ 2  . Thus, the full expressions of  tnSRP ,  and  tene

SRP ,  

are 

 
  

  teee
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ee
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


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sin1

cossin1
,
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1
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 (48a) 
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2
sinsincossin
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e
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e

e
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eee
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eee
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.(48b) 

The typical distributions of  tnSRP ,  are shown in Fig.6 with the initial condition   10, 
SRPn , and  tene

SRP ,  shown in 

Fig.7 with the initial condition   10, ene

SRP
, where the area-to-mass ratio of spacecraft is chosen as 10 m2/kg and the 

semi-major axis of the elliptical orbit is chosen as 11,000km. For illustration, for the 
fee   case, the uniform initial 

density distribution on the - space is forced by the velocity of  to create a dense region centred on (0,), where 0 is 

the frozen pericentre angle and  is defined as t 0
 (discussed later); for the 

fee   case, the actual value of 




cos

sin1tan
ee

e

f 

 ,   2,0  has a minimum value of 
fe

e1sin  and a maximum value of 
fe

e1sin , and the actual 

eccentricity has a minimum value of ee f   and a maximum value of ee f  . These limits are used in Figs. 6 and 7. 

Except for the case presented in Fig.6a, any of the other three cases in Figs. 6 and 7 have two zero-density lines, and also 

infinite density at the boundaries of variables. An illustration of the physical scenarios using 50 single devices is shown 

in Fig.8 to demonstrate the evolution of number density from the initial condition   10, 
SRPn  using the same 

parameters as Fig.6. It can be seen that the devices periodically gather or scatter in -e space corresponding to complex 

behaviour of the entire ensemble of devices. Similar evolution can also be seen for   10, ene

SRP
. 
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a b  
Fig.6 The distribution of number density on - space: a the mean eccentricity e  is chosen as 0.3, and  ranges from 00 to 3600; b the mean 

eccentricity e  is chosen as 0.1, and  ranges from -32.90+ to 32.90; where  is chosen as 0.030 to avoid the numerical singularity. 

a b  
Fig.7 The distribution of number density on e- space: a the mean eccentricity e  is chosen as 0.3, and e ranges from 0.1174+ to 0.4826; b the 

mean eccentricity e  is chosen as 0.1, and e ranges from 0.0826+ to 0.2826; where  is chosen as 0.005 to avoid the numerical singularity. 

a  

b  

Fig.8 The evolution of number density displayed by 50 devices in -e space: a the mean eccentricity e  is chosen as 0.3; b the mean eccentricity e  

is chosen as 0.1. 
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Some discussion of the small denominator and its limitations are now required for the closed-form solutions 

 tnSRP ,  and  tene

SRP ,  as follows. 

Firstly, the term t
  is periodic about 2 in the closed-form solution above, which can be seen by the periodic 

trigonometric functions in Eq. (45). Therefore, an angle variable   2,00  t  is introduced to replace the time 

term in all relevant equations for simplicity. Besides, the variable  is used to replace all the time terms t  for the J2 

and J3 precessing ellipse case in Section III.B as well. 

Secondly, for a given spacecraft area-to-mass ratio and semi-major axis, the ranges of the variables  and e depend 

on the value of the mean eccentricity e  only, which is classified as 

 
 
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e
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ff
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eeeee

ff
，

，

11 sinsin-

20 


. (49) 

For the case 
fee  , i.e., 1ˆ e , the minimum of the actual eccentricity e is zero, which may cause a small denominator 

in Eq. (30). Thus, the density distribution at 0e  ( is equal to 
2

  at this moment) can be found by the limit when 

   as: 

 
 
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



 


, [-, +]. (50) 

Thirdly, substituting 
 
 tCe

tC

,cosˆ

,sin
tan

~ 1











   and  teCeeee e ,cosˆ2ˆ1~ 2   into Eqs. (29) and (30) respectively 

yields  
 










CeCe

Ce
v

cosˆcosˆ1

,cosˆ1~




   and     ,sin~

2

eC
e

ee
ev ee

 , which are the numerators of the closed-form 

solutions in Eqs. (48a) and (48b). It is interesting to note that for the case 
fee   there are two conditions 

1̂  (or e

1̂ ) 

and 
2̂  (or e

2̂ ), defined as the zero-density lines, such that 

  sinˆsin
ˆ
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2,1 e
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


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1

2,1   (51) 

which will make  eve
~  equal to zero, and then make  ̂,,en   equal to zero, which are also verified by the two zero-

density lines in Figs. 6 and 7. 
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Fourthly, for the case 
fee  , both the minimum and maximum of  and e will make the denominator functions of 

ve(e) and v() equal to zero, which means that the density tends to infinity all the times except the specified conditions 

=2k, k=1,2,3,…, making the density equal to 1. From the physical viewpoint, the swarm of devices are forced by the 

laws formulated by ve(e) and v() away from the uniform initial distribution; however, the null-velocity states of ve(e)=0 

and v()=0 result in a larger density than other states. The same conclusion can be achieved for the density  tene

SRP ,  

even for the case 
fee  . Actually, an infinite density is in principle acceptable because it does not change the total 

number    
max

min





  dntN SRP
 of swarm devices, whose rate with respect to time is simplified by Eq. (31) as 
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where 
 
 tCe

tC

,cosˆ

,sin
arctan

~











 . The numerical implementation later indicates that      maxmin

~~
  vv   for all the 

time t, which means   0tN . Obviously, the total number of devices is invariant for the case 
fee  as well, which is 

equal to        210,0   ddnNtN SRP
. 

According to the statements above, the uniform initial data distribution about  for the case 
fee   does not result in 

infinite density at [0, 2] because the velocity v of  at the conditions =0 and = are non-zero, so that the finite 

density distribution about e can be derived from the mapping  SRPGe  , as shown in Fig.9 by the same parameters as 

Fig.6. Compared with the infinite density caused by the uniform initial distribution, the finite density about e is created 

by the non-uniform initial distribution demonstrated in Fig.5, because the numerator  ene

SRP
~  in Eq. (48b) is no longer 

equal to 1, and has a finite limit of 
 

 
 ev

en

e

e

SRP

eee

0,~
lim

maxmin
  when e approaches its boundaries. 
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a b  

Fig.9 Distribution of number density on e- space created by a non-uniform initial distribution: the initial data condition is non-uniform as 

addressed in Eq. (42); a the 2-D distribution on e- space; b the time history of density on the boundaries. 

B. Continuity Equation Modelled for J2 and J3 Perturbations 

Similar to elliptical orbits perturbed by J2 and SRP, the continuum evolution for the J2 and J3 case is written by the 

argument of perigee  as 
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with the characteristic functions derived from Eqs. (10) and (11) as 

    tetD 
  cosˆsin, 1  (54) 
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Based on the derivations in Section III.A, the number density can then be obtained as 
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eee
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  (56) 

where e and  are some arbitrary functions of the characteristic equation and will be determined from the initial data 

 0,
3


Jn  and  0,
3

ene

J
 at the initial time t=0. 

Combining the uniform initial data distribution and Eq. (56) yields the arbitrary functions e and  formulated by 

new variables  0,1 Dy   and  0,2 eDy e  as 
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Now combining Eqs. (10), (11), (54), (55), (56) and (57) yields the full closed-form solution for the number density with 

the uniform initial data distribution as 
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The typical distributions of  tnJ ,
3
  are shown in Fig.10 with the initial condition   10,

3


Jn , and  tene

J ,
3

 shown in 

Fig.11 with the initial condition   10,
3

ene

J
, where the area-to-mass ratio of spacecraft is chosen as 10 m2/kg and the 

semi-major axis of the given elliptical orbit is chosen as 11,000km. For the 
fee   case, the uniform initial density 

distribution on the - space is forced by the velocity of  to create a dense region centred on (0,), where 0 is the 

frozen argument of perigee; for the 
fee   case, the actual value of 






cos

sin1tan
e

ee f ,   2,0 , has a minimum value 

of 
fe

e1

2
sin , and a maximum value of 

fe
e1

2
sin  and the actual eccentricity has a minimum value of ee f   and a 

maximum value of ee f  . These limits are used in Figs. 10 and 11. For comparison with Figs. 6 and 7, the frozen 

eccentricity is chosen as the same value of 0.1826, although this frozen eccentricity cannot be reached by the J2 and J3 

perturbations. Compared with Figs. 6 and 7, the transition of frozen eccentricity from (ef, 0) to (0, ef) causes the 

distribution of density on the  ()- space to shift 900 along the () direction but has no change along the  direction. 

The change in the shape of the distributions on the e- space can be seen from the zero-density lines, i.e., 

  0,sin eCe
 for J2 and SRP perturbations and   0,cos eDe

 for J2 and J3 perturbations so that the transition causes 

the two distributions to have mirror symmetry about the 0
4
3    line. The evolution of the number density of 

devices from the initial condition   10,
3


Jn , with the same parameters as Fig.10, is shown in Fig. 12 with 50 single 

devices periodically gathering or scattering on -e space. Similar evolution can also be seen for   10,
3

ene

J
. 
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a b  
Fig.10 The distribution of number density on - space: a the mean eccentricity e  is chosen as 0.3, and  ranges from 00 to 3600; b the mean 

eccentricity e  is chosen as 0.1, and  ranges from 56.790+ to 123.210; where  is chosen as 0.030 to avoid the numerical singularity. 

a b  
Fig.11 The distribution of number density on e- space: a the mean eccentricity e  is chosen as 0.3, and e ranges from 0.1174+ to 0.4826; b 

the mean eccentricity e  is chosen as 0.1, and e ranges from 0.0826+ to 0.2826; where  is chosen as 0.005 to avoid the numerical 

singularity. 

a  

b  
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Fig.12 Evolution of number density displayed by 50 single devices on -e space: a the mean eccentricity e  is chosen as 0.3; b the mean 

eccentricity e  is chosen as 0.1. 

C. Comparison between Analytic and Numerical Number Density Evolutions 

Taking the J2-SRP problem for example, the full dynamics defined by Eqs. (13) are propagated by a Runge-Kutta 

7(8) integrator from the initial eccentricity eee f 0
 and 0=00 to yield a one-period evolution of (e,). Then, several 

points are chosen with a uniform distribution about  from the (e,) evolution as new initial conditions to propagate the 

full dynamics in parallel. The swarm number N(,) in the any interval 

   
2
1

2
1

2
1

2
1   is obtained statistically, where the interval step  and  are 

chosen as 10 and 10, respectively. The numerical density is approximated as       ,, Nn . 

Thus, the comparison is made by the relative errors of the analytic results n(,) and the numerical results   ,n , 

which is defined as 

   

max

,,

n

nn







  (59) 

where the denominator 
maxn  is the maximum of the numerical results, instead of   ,n  to avoid the singular case at 

the zero-density lines   0, n  when 
fee  . Besides, to avoid the infinite case at min or max when 

fee  , the 

comparison is made within the subinterval  max2
1

min2
1   , which is shown in Fig.13. Compared with the analytic 

distribution of number density on the - space in Fig.6, it is concluded from Fig.13 that the relative error reaches its 

maximum at the peak of the analytic distribution for the 
fee   case, and reaches its maximum at the zero-density lines 

of the analytic distribution for the 
fee   case. 



21-28 

a b  

Fig.13 Relative error of analytic number density solution to the numerical number density: a=11,000km and A/m= 10m2/kg; a 3.0e ; b 1.0e . 

Due to the analytic density derived from the linearized dynamics, it is necessary to investigate the relationship 

between the mean eccentricity and relative errors, which are shown in Fig.14 for the J2-J3 and J2-SRP problems, 

respectively. It is shown that the analytic number density solution has increasing errors with increasing mean 

eccentricity, but has a modest error of less than 12% even for a large 3.0e . 
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Fig.14 Relationship between the mean eccentricity and the relative error of the analytic number density solution: a J2-J3 problem: 

a=7178.137km and i=1080; b planar J2-SRP problem: a=11,000km and A/m= 10m2/kg. 

Moreover, different numbers of swarm members can be employed to investigate the relationship between the relative 

errors and the number of swarm members, shown in Fig.15. It is interesting to note that a larger number of swarm 

members may cause less error, but the error will decrease until the employed number is approximately 3600. Thus, for 

all scenarios used in this paper, the minimum number of swarm members can be set as 3600. However, only 50 devices 
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are used for the purpose of displaying the evolution of the swarm number density in Figs. 8 and 12, since too many 

devices will make the figures filled with points and unclear. 
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Fig.15 Relationship between the number of swarm members and the relative error of the analytic number density solution: a=11,000km and 

A/m= 10m2/kg, 3.0e . 

IV. Applications of Continuum Density Models 

A. Number of Swarm Devices with Distant Apogees for J2 and SRP Perturbations 

The closed-form solution has potential application in predicting the time-dependent number of swarm devices which 

have apogees further than some critical radius crital

ar , for example for the purpose of measuring the deep magnetic tail. 

This can be found from 

     dtntN SRP ,  (60) 

where the area  is a range of [e1, e2] derived from   max1 a

crital

a rear   for the given invariant semi-major axis a and 

the maximum radius of apogee max

ar  (for example restricted by the communications link budget), i.e., 11 
a

r
e

crital

a  and 

1
max

2 
a

r
e a , shown in Fig.16. 
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Fig.16 The geometry of required apogee between 

max

ar  and 
crital

ar . 

To proceed, integrating Eq. (60) with the variable , it is necessary to derive the inverse function of 1

SRPG  mapping 

from e to  for the given ef and e . Due to the symmetric geometry presented in Fig.2, two intervals labelled as I and II 

with two pairs of lower and upper values of  can be solved as  1

11 eGSRPlower

  and  2

11 eGSRPupper

  for Interval I, 

 2

12 eGSRPlower

  and  1

12 eGSRPupper

  for Interval II. Thus, the integration of the swarm to obtain the total number of 

devices within the apogee limits can be written as 

   
i
upper

i
lower

dtntN SRPi





 , , i=1,2. (61) 

where N1(t) is the integration in Interval I, and N2(t) in Interval II. Differentiating Eq. (39) with respect to the variable  

yields 
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22
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and then substituting Eqs. (39) and (61) into Eq. (49a) yields  
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Therefore, replacing the variable  in Eq. (63) by C(,t) provides 
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
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C
i dC
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which can be simplified as 

upper

lower

C

C

i

C

e

e

e

e
CN 
























 

2
tan

ˆ1

ˆ1
tan

ˆ1

ˆ1
2

2
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Therefore, the closed-form of the integration can be derived from Eqs. (39) and (65) as 
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For a practical mission exploring the deep magnetic tail, the allowed eccentricities are assumed to belong to the set 

[1, 2], where 

minmax

min

ee

ee




 , and the time history of the fraction of the accessible devices (relative to the total number, 

i.e., 2) is illustrated in Fig.17 using the same parameters as Fig.10. It can be seen that the swarm can achieve spatially 

dense measurements near =900 and 2700. 

 
Fig.17 The time history of the fraction of accessible devices relative to the total number: the initial data condition is uniform as   10, 

SRPn  and 

1 and 2 are chosen as 0.3 and 0.9 respectively. 

B. Number of Satellites Visible Above the Horizon for the J2 and J3 Perturbations 

As another illustration, the closed-form solution for the J2 and J3 perturbations will be used to predict the number of 

swarm members with apogees less than a critical radius crital

ar , for example to obtain the high resolution images, as 

shown in Fig.18. The number of devices is then given by 

     dtntN J ,
3

 (67) 

where the area  corresponds to a range of [emax, ec] derived from 1
a

r
e

crital

a
c

 for the given invariant semi-major axis 

a. 
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Fig.18 Sphere of high-resolution imaging for orbit apogee less than 

crital

ar . 

The inverse function of 1

3



JF  is employed to yield the lower and upper value of  for the integration above, as 

 cJlower eF 1

3

  and  cJupper eF 1

3

  . Similar to the derivations in Section IV.A, the number integration of swarm 

members less than a critical apogee radius can be found from the characteristic function as 

   




upper

lower

D

D
dD

Dee

De
tN 





sinˆ2ˆ1

sinˆ1
2

 (68) 

which can be simplified as 
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Therefore, the closed-form of the integration can be derived from Eqs. (55) and (69) as 

        

   





































































1ˆ

ˆ2

2

cosˆsin
tan

1ˆ

1ˆ
tan

1ˆ

ˆ2

2

cosˆsin
tan

1ˆ

1ˆ
tan2

ˆsincosˆsin
2

1

2

1

2

1

2

2
1

2

1

2

2
1

11

e

ete

e

e

e

ete

e

e

coeetN

lowerlowerupperupper

lowerupperlowerupper






 (70) 

For a practical imaging mission, an eccentricity less than ec is now required and the time history of the fraction of the 

number of devices relative to the total number       minmax

max

min

max

min
3

10,0 








   ddnNtN J
, is illustrated in 

Fig.19, where the mean semi-major axis is chosen to be 7178.137km, the mean inclination is 1080 so that the frozen 

eccentricity is 0.001, and the mean eccentricity e  is chosen as 0.8, and ec is chosen as 0.4. The swarm can achieve the 

dense measurements near =1800. 
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Fig.19 The time history of the percent of devices relative to the total number: the initial data condition is uniform as   10,

3


Jn . 

V. Conclusion 

Wave-like patterns have been presented using a continuum approach by deriving closed-form solutions to continuity 

partial differential equations (PDEs) for the number density of swarm devices. By removing the osculating orbital 

elements, only the long-period eccentricity and argument of perigee angle in the J2 and solar radiation pressure (SRP) 

cases are used to investigate the natural evolution of such wave-like patterns. As a comparison, the transition of the 

frozen eccentricity in the J2 and SRP perturbation case to the J2 and J3 perturbation case causes the distribution of 

density to shift 900 along the direction of argument of perigee angle, and causes the two distributions to have mirror 

symmetry about the eccentricity with each other. Zero-density lines in the density distribution are found, as well as 

infinite density at the boundaries of eccentricity. Comparison between the analytic and numerical number density 

evolution is made through the relative errors of the analytic results and the numerical results, which can be used to yield 

the range of applicable eccentricity based the maximum error tolerance, as well as the minimum number of swarm 

members required to approximate continuous evolution. 

Moreover, the closed-form solutions have potential applications in predicting the fraction of high area-to-mass ratio 

swarm devices which have apogees further than a critical radius for the purpose of measuring the magnetic tail, as well 

as predicting the number of Earth-observing devices which require an apogees less than some critical radius for imaging. 
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