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Abstract
The Witten–Dijkgraaf–Verlinde–Verlinde (or WDVV) equations, as one would 
expect from an integrable system, has many symmetries, both continuous 
and discrete. One class—the so-called Legendre transformations—were 
introduced by Dubrovin. They are a discrete set of symmetries between 
the stronger concept of a Frobenius manifold, and are generated by certain 
flat vector fields. In this paper this construction is generalized to the case 
where the vector field (called here the Legendre field) is non-flat but satisfies 
a certain set of defining equations. One application of this more general 
theory is to generate the induced symmetry between almost-dual Frobenius 
manifolds whose underlying Frobenius manifolds are related by a Legendre 
transformation. This also provides a map between rational and trigonometric 
solutions of the WDVV equations.

Keywords: integrability, WDVV equations, legendre transformations

1. Introduction

The Witten–Dijkgraaf–Verlinde–Verlinde (or WDVV) equations of associativity

( ) ( ) ( ) ( )
η η

∂
∂ ∂ ∂

∂
∂ ∂ ∂

=
∂
∂ ∂ ∂

∂
∂ ∂ ∂α β ν

νµ
µ γ λ β γ ν

νµ
α µ λ

F t

t t t

F t

t t t

F t

t t t

F t

t t t
,

3 3 3 3

have been much studied from a variety of different points of view, amongst them, topologi-
cal quantum field theories, Seiberg–Witten theory, singularity theory and integrable sys-
tems. Geometrically, a solution defines a multiplication →×� M M MT T T:  of vector 
fields, i.e.

I A B Strachan and R Stedman

Generalized Legendre transformations and symmetries of the WDVV equations

Printed in the UK

095202

JPHAC5

© 2017 IOP Publishing Ltd

50

J. Phys. A: Math. Theor.

JPA

1751-8121

10.1088/1751-8121/aa58b2

Paper

9

1

17

Journal of Physics A: Mathematical and Theoretical

IOP

 Original content from this work may be used under the terms of the Creative Commons 
Attribution 3.0 licence. Any further distribution of this work must maintain attribution to 
the author(s) and the title of the work, journal citation and DOI.

2017

1751-8121/17/095202+17$33.00 © 2017 IOP Publishing Ltd Printed in the UK

J. Phys. A: Math. Theor. 50 (2017) 095202 (17pp) doi:10.1088/1751-8121/aa58b2

mailto:ian.strachan@glasgow.ac.uk
mailto:richard.stedman@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/aa58b2&domain=pdf&date_stamp=2017-01-27
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
https://doi.org/10.1088/1751-8121/aa58b2


2

     
η

∂
∂

∂
∂
=

∂
∂ ∂ ∂

∂
∂α β

µν
α β µ ν�

t t

F

t t t t
.

3

The metric η, used to raise and lower indices, is flat and the coordinates { }αt  are flat coordi-
nates, i.e. the components of the metric is this coordinate system are constants.

A symmetry of the WDVV equations are transformations

 (i) ˜α α�t t ,
 (ii) ˜η ηαβ αβ� ;
 (iii) ˜�F F

that preserve the WDVV equations, i.e. which map solutions of the WDVV equations to new 
solutions. In [3] the following transformation—called a transformation of Legendre type—
was shown to be such a symmetry:

η η

=
∂
∂ ∂

∂
∂ ∂

=
∂
∂ ∂

=

α α κ

α β α β

αβ αβ

t
F

t t
F

t t

F

t t

,

,

.

2

2 2

˜

˜
˜ ˜

˜

Here κ is a distinguished variable which labels the Legendre transformation. Moreover, this 
is more than just a map between solutions of the WDVV equations: it preserves the stronger 
notion of a Frobenius manifold.

This transformation may be reinterpreted more geometrically in terms of a vector field

  { }κ∂ =
∂
∂

∈ …κ M
t

, 1, , dim .

With this the metric transformation may be written

˜( ) ( )η η= ∂ ∂� �X Y X Y, ,

for arbitrary vector fields X and Y . The field ∂ is distinguished by the fact that it is flat for the 
Levi-Civita connection of the metric η, namely ∇ ∂ = 0.X

The aim of this paper is to study more general Legendre-type transformations where the 
vector field ∂ is replaced by a field satisfying the condition

∇ ∂ = ∇ ∂ ∈� � MX Y X Y T, , .Y X (1.1)

Such fields will be called Legendre fields. They have appeared in the literature before: in [10] 
they are used as generators of sets of commuting systems of hydrodynamic type. Here we fol-
low their role as a map between torsion free metric connections [2]. These fields are defined 
and studied in section 2. With such fields more general transformations between solutions 
of WDVV equations (but not for the stronger notion of a transformation between Frobenius 
manifold) may be constructed, and this construction is given in section 4, after a submanifold 
theory of Legendre fields is developed in section 3. Finally, in section 4, the theory is applied 
to the induced transformation between almost-dual Frobenius manifolds. In particular, it is 
shown how the twisted-Legendre transformation introduced in [11] fits into this more general 
picture.

Some of the results in section 2 have appeared in [2] and also in [10]. In the former, the 
emphasis was on Legendre transformation as maps between connections. While this is how 
they are initially defined, theorem 4.1 gives a coordinate description of the transformation 
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between flat coordinate systems, and is a direct generalization of the original transformation 
as defined in [3]. Similarly, some of the results in section 5 follows from the constructions in 
[2] as a special case, when an arbitrary eventual identity is replaced by a specific example—
the Euler vector field. However in this special case one may simplify the proofs and identify 
those Legendre fields that are actually flat. The link with the work in [10] is outlined in the 
final section.

2. Legendre fields and their properties

Consider the following structure: { }η ∇ �M, , , , where M is a manifold and

 (a) η is a metric;
 (b) ∇ a connection (not, at this stage, metric or torsion free);
 (c) →×� M M MT T T:  is a commutative, associative multiplication (so a completely 

symmetric (2,1)-tensor) with a unit e which is compatible with the metric, i.e.

( ) ( )η η=� �X Y Z X Y Z, , ;

 (d) ∇ � is a completely symmetric (3,1)-tensor.

A Legendre field will map metrics and connections to new metric and connections which 
preserve certain basic properties.

Definition 2.1. Let ∂ be an invertible vector field (so ∂ ∂ =− � e1 ). Let

η η= ∂ ∂

∇ = ∂ ∇ ∂−

� �

� �

X Y X Y

Y Y

, , ,

.X X
1

˜( ) ( )
˜ ( )

The following follows from direct calculation.

Lemma 2.2. For all vector fields ∈ MX Y Z T, ,

( ˜ )( ) ( )( )
( ) ( ) { }

( )( ) ( )( )

˜

˜

η η∇ = ∇ ∂ ∂

= + ∂ ∇ ∂− ∇ ∂

= ∂ ∂

∇ ∇ −

∇ − ∇

� �

� � �

� �

Y Z X Y

T X Y T X Y Y X

R X Y Z R X Y Z

, , ,

, , ,

, , ,

X X

X Y
1

1

where ∇T  and ∇R  are the torsion and curvature tensors of the connection ∇.

The torsion result uses the symmetry of ∇ �, i.e. ( )( ) ( )( )∇ ∂ = ∇ ∂� �Y X, , .X Y  This result 
motivates the following:

Definition 2.3. A Legendre field ∂∈ MT  is a solution to the equation

∇ ∂ = ∇ ∂� �X YY X

for all vectors ∈ MX Y T, .

Thus a Legendre field will map torsion free connections to torsion free connections, met-
ric connections to metric connections, and zero-curvature conditions to zero-curvature con-
ditions. The definition appears to be overdetermined, with more equations  than unknowns. 
However if one sets Y  =  e one obtains the manifestly determined system

∇ ∂ = ∇∂�X .X e

Conversely, a solution of this equation implies that ∂ is a Legendre field, so this provides and 
alternative definition of a Legendre field.
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In what follows we will apply Legendre fields to map solutions of the WDVV equations to 
new solutions, but the ideas may be applied more generally to situations where one has torsion 
free connections and non-metric connections, or curvature, such as Riemannian F-manifolds 
[1, 10].

Before doing this we derive certain basic properties of such Legendre fields. From now on 
we assume that ∇ is the torsion free metric connection for η. Clearly sums and constant scalar-
multiplies of Legendre fields are again Legendre fields. In addition, when suitably defined, 
inverses and composition of Legendre fields are again Legendre fields.

Proposition 2.4. If ∂ is a Legendre field for ∇ then ∂−1 is a Legendre field for ∇̃.

Proof. Expanding the symmetry condition ( )( ) ( )( )∇ = ∇� �e e X e, ,X e  yields

∇ = ∇�e X eX e

and hence e is a Legendre field (without the need for a condition such as ∇ =e 0). With this,

˜ ( )∇ ∂ = ∂ ∇ ∂ ∂
= ∂ ∇

− − −

−

� � � �
� �

X X

X e

,

.
Y Y

Y

1 1 1

1

But since e is a Legendre field the right-hand expression is symmetric in X and Y . Hence the 
result. □

Note that ∇̃ ∂ = ∂ ∇− − � eX X
1 1  so even if ∂ is flat for ∇ then it does not follow that ∂−1 is flat 

for ∇̃, a further condition is required, i.e. ∇ =e 0.

Proposition 2.5. Consider connections ( )∇ =i, 1, 2, 3i  with interconnecting Legendre 

fields ∂ ,j
i

⟶
     

⟶
     ( ) ( ) ( )∇

∂
∇

∂
∇ .1 1

2
2 2

3
3

Then

⟶
     ( ) ( )∇
∂
∇1 1

3
3

where ∂ = ∂ ∂� .1
3

1
2

2
3

Proof. Since

( ) ( )  
( ) ( )  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∇ = ∂ ∇ ∂ ∇ ∂ = ∇ ∂

∇ = ∂ ∇ ∂ ∇ ∂ = ∇ ∂

−

−

� � � �

� � � �

Y Y X Y

Y Y X Y

where ,

where ,
X X Y X

X X Y X

2
1
2 1 1

1
2 1

1
2 1

1
2

3
2
3 1 2

2
3 2

2
3 2

2
3

it follows that

( ) [( ) ]( ) ( )∇ = ∂ ∂ ∇ ∂ ∂−� � � �Y YX X
3

1
2

2
3 1 1

1
2

2
3

and that

( )

( )

( ) ( )

( )

( )

∇ ∂ ∂ = ∂ ∇ ∂

= ∂ ∇ ∂

= ∇ ∂ ∂

� � � �

� �

� �

X X

Y

Y

,

,

.

Y Y

X

X

1
1
2

2
3

1
2 2

2
3

1
2 2

2
3

1
1
2

2
3
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Hence ∂ = ∂ ∂�1
3

1
2

2
3 is a Legendre field between the connections ( )∇ 1  and ( )∇ .3  □

New Legendre fields may also be constructed from old.

Proposition 2.6. Let ∂ be a Legendre field. Then:

 (a) if ∇ =e 0 and ( ) =∇R X e, 0 then ∇∂e  is also a Legendre field;
 (b) the solution ∂new of the equation

∇ ∂ = ∂�XX new

  is a Legendre field;

Proof. 

 (a) From the easily proved identity

( ) ( ) ( )∇ ∇∂ − ∇ ∇∂ = ∂
=

�X R X e, ,
0

X e e e

  it follows that ( )∇ ∇∂�X Y e  is symmetric in X and Y .
 (b) Since ∇ ∂ = ∂� � �Y X YX new  is symmetric in X and Y the result follows. Note, this does 

not use the property that ∂ is a Legendre field. However, from part (a) with X  =  e it 
follows that ∇∂ = ∂e new  so if the conditions in part (a) hold the vector field ∂ must be 
Legendre. □

2.1. Homogeneous structures

If the original multiplication is homogeneous, i.e. there exists an Euler vector E such that 
=� �L ,E  with the metric η satisfying the homogeneity condition ( )η η= −L d2 ,E  then such 

conditions are preserved if the Legendre field is similarly homogeneous. The following result 
is straightforward and will be given without proof.

Lemma 2.7. Let =� �L ,E  and suppose

( )η η
µ

= −
∂ = ∂

L
L

d2 ,E

E

for constants d and µ. Then

˜ ( ) ˜η µ η= − +L d4 2 .E

Similar results may be proved for the homogeneity of ∇∂e  and related objects. Before 
applying these ideas to generate new solutions of the WDVV equations from old, we develop 
a submanifold theory for Legendre fields.

3. A submanifold theory for Legendre fields

Consider a submanifold ⊂N M with an orthogonal decomposition, with respect to the metric 
η, of the tangent bundle = ⊕ ⊥M N NT T T . We asume that N  is a natural submanifold [14], 
i.e. that ⊂�N N NT T T . In order to study the restriction of a Legendre field to a submanifold 
we first fix some notation.
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( )

( )

α

ξ ξ ξ

∇ = ∇ + ∈

∇ = − +∇ ∈ξ
⊥ ⊥

N

N

Y Y X Y X Y T

A X T

, , , ,

, ,

X X

x X

where the first terms on the right-hand side lie in NT  and the second in ⊥NT . Standard ideas 
from submanifold theory imply that α is symmetric and that ( ( ) ) ( ( ) )η η α ξ=ξA X Y X Y, , , .

A Legendre field ∂ on M when restricted to N  decomposes as

∂ = ∂ +∂ ∂ ∈ ∂ ∈|| ⊥ || ⊥
⊥N NT T, , ,

and on decomposing the Legendre condition (1.1) the component in NT  yields the equation

( ) ( )∇ ∂ − ∇ ∂ = − ∈|| || ∂ ∂⊥ ⊥� � � � NY X A X Y A Y X X Y T, , .X Y

This uses the result ξ ∈ ⊥� NX T  which follows from the natural submanifold condition 
( ) ( )η ξ η ξ= =� �X Y Y X0 , ,  . Hence

( ) ( ( ) ( ) )η η α α∇ ∂ − ∇ ∂ = − ∂|| || ⊥� � � �Y X Z X Y Z Y X Z, , , , .X Y

Similarly decomposing the symmetry condition ( )( ) ( )( )∇ = ∇� �Y Z X Z, ,X Y  for ∈ NX Y Z T, ,  
yields both the total symmetry of ∇ � and

( ) ( ) ( ) ( )α α α α− = −� � � �X Y Z Y X Z Y X Z X Y Z, , , , .

Thus

( ) ( ( ) ) ( ( ) )η η α η α∇ ∂ − ∇ ∂ = ∂ − ∂|| || ⊥ ⊥� � � �Y X Z Y X Z X Y Z, , , , , .X Y

Hence we arrive at the obstruction for a parallel component of a Legendre field on a natural 
submanifold to be Legendre.

Lemma 3.1. The vector field ∥∂  is a Legendre field if and only the tensor

( ( ) )η α ∂⊥�X Y Z, ,

is totally symmetric.
Thus what controls the properties of the nascent induced Legendre field is the nature of 
⊥ ⊥�N NT T . If ⊂⊥ ⊥ ⊥�N N NT T T  the above tensor is trivially totally symmetric—it van-

ishes identically. This happens in the case of a discriminant submanifold of a semi-simple 
Frobenius manifold [14].

Example 3.2. Suppose the multiplication on M is semi-simple. Then the component ∂|| of 
a Legendre field on a discriminant submanifold is a Legendre field for the induced structures 
on N.

Example 3.3. From above, the unity field e is a Legendre field. On decomposing this on a 
natural submanifold, = +|| ⊥e e e  gives

( )ξ ξ ξ+ = ∈|| ⊥
⊥� Ne e T, .

With this

( ) ( ) ( )η ξ η ξ η ξ+ = =|| ⊥� �e X e X X, , , 0.

But ( ) ( )η ξ η ξ= =|| ||� �e X e X, , 0 since N  is a natural submanifold. Thus ξ ∈⊥ ⊥� Ne T  for 
all ξ∈ ⊥NT . Thus ( ( ) )η α =⊥�X Z e Y, , 0 and hence ||e  is a Legendre field on the submanifold.
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4. Symmetries of the WDVV equations

The WDVV equations may be described geometrically by the condition that the deformed 
connection

( ) λ∇ = ∇ −λ �Y Y X YX X

has vanishing curvature [3]. In particular =∇R 0 (the λ0-term in 
( )∇λR ) and hence there exists 

a coordinate system { }αt  in which the components ( )   η ∂
∂

∂
∂α β,

t
 are constant. Given a Legendre 

field it follows from above that if ˜ ˜( ) λ∇ = ∇ −λ �Y Y X YX X  then

( ) ( )( )˜( ) ( )
= ∂ ∂∇ − ∇λ λ

� �R X Y Z R X Y Z, ,1

and hence that the new deformed connection ˜( )∇λ YX  is also flat and hence defines a new—
Legendre transformed—solution of the WDVV equations. It is important to note that geomet-
rically the multiplication does not change when such a transformation is applied. However, the 
coordinate expression for this tensor does depend on the choice of flat-coordinate system and 
these do change under such a transformation.

The following theorem gives such coordinate dependent formulae for the new structures in 
terms of the old, and is a direct generalisation of the original Legendre transformation present 
in [3].

Theorem 4.1. Let { }αt  and {˜ }αt  be the flat coordinates of the metrics η and η̃ respectively. 
Then, given a solution of the WDVV equations with prepotential F and a Legendre field ∂, new 
flat coordinates, metric coefficients and prepotential are given by:

 (a) η̃ η=αβ αβ ;

 (b) 
˜ = ∂σ σβ

α∂
∂

α

β c ;t

t

 (c) ˜ =αβ αβF F .

Proof. 

 (a) Since ˜( ) ( )η η= ∂ ∂� �X Y X Y, ,  it follows that, up to an inessential linear transformation, 
that

   
˜

∂
∂
= ∂

∂
∂α α�

t t
 (4.1)

  and hence that

˜ ˜  
˜

 
˜

   

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

η η

η

η

=
∂
∂

∂
∂

=
∂
∂

∂
∂

=

αβ α β

α β

αβ

t t

t t

, ,

, ,

.

 (b) From (4.1) it follows that

 
˜

 

˜
 

⎜ ⎟
⎛
⎝

⎞
⎠

∂
∂
=
∂
∂

∂
∂
∂

=
∂
∂
∂

∂
∂

α

β

α β

β

α
σ
σβ
µ

µ

�
t

t

t t

t

t
c

t

,

.
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  Hence

˜
δ

∂
∂
∂ =

β

α
σ
σβ
µ

α
µt

t
c

  and (b) follows. On lowering an index and using the symmetry of σαβc  it follows that

˜ ˜∂
∂
=
∂
∂

α
β

β
α

t

t

t

t

  and hence ˜ = ∂α αt ht  for some locally defined function h.
 (c) To prove the final formula,

˜
˜

˜  
˜

 
˜

 
˜

˜  
˜

 
˜

 
˜

     
˜

˜
     

˜

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

η

η

∂
∂

=
∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

αβ
γ α β γ α β γ

α β σ

σ

γ

σ

γ α β σ
αβ
γ

�

�

F

t
c

t t t t t t

t t t

t

t

t

t
c

t t t

F

t

, , , ,

, ,

, , .

  Hence, on integrating, up to an inessential constant, part (c) follows. □

The geometry of the deformed flat connection encodes a canonical class of Legendre fields. 
Expanding a flat section ( )∇ =λ s 0X  as a power series

( )∑ λ= ∂
=

∞

s
n

n
n

0

and equating coefficients gives

( )∇ ∂ = 0,X 0 (4.2)

( ) ( )∇ ∂ = ∂ −�X .X n n 1 (4.3)

Thus each of the fields ( )∂ n  are Legendre fields. Conversely, starting from a flat vector field 
( )∂ 0  one may recursively construction the flat section, with each ( )∂ n  being a Legendre field. If 

( )
 ∂ = ∂
∂ κt0  for some κ one obtains an infinite family of Legendre fields labeled by ( )κn, .

Note that, when written in coordinate form (4.3) takes the form

 
( ) ( )

∂
∂
∂ = ∂α κ
β

ασ
β

κ
σ
−

t
c .n n, 1,

Furthermore, it was shown in [3] that the vector field may be written in terms of (scalar) 
Hamiltonian densities

 
( )

( )η∂ =
∂
∂

∂
∂

κ
αβ κ

α β

h

t t
.n

n
,

,

With this the coordinate transformation takes a simple form:

˜

 

( )

( )

∂
∂
= ∂

=
∂
∂
∂

α

β κ
σ

σβ
α

β κ
α
+

t

t
c

t

,n

n

,

1,
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and hence ˜ ( )= ∂α
κ

α
+t n 1,  or ˜ ( )=α

∂
∂

κ
α
+t

h

t
n 1,  (on lowering an index with the metric η).

Example 4.2. Consider the two-dimensional Frobenius manifold defined by the prepotential1

= +F t t
1

2
e ,t

1
2

2
2

and Euler vector field

= ∂ + ∂E t 2 ,t t1 1 2

On writing ( ) ( )∂ = ∂ + ∂a t t b t t, ,t t1 2 1 21 2 the Legendre field condition implies

∂ = ∂
∂ = ∂
a b

e b a

,

.
t t
t

t t

1 2

2
1 2

If we additionally impose homogeneity µ∂ = ∂LE  we obtain

( )µ

µ

∂
∂
+
∂
∂
− = +

∂
∂
+
∂
∂
=

t
a

t

a

t
a

t
b

t

b

t
b

2 1 ,

2 .

1
1 2

1
1 2

These imply that ( ) ( )= µ+a t t t A z,1 2 1
1 , ( ) ( )= µb t t t B z,1 2 1  where = −z t et

1
2 2 and with these the Leg-

endre field conditions (1.1) become the following ordinary differential equations for the func-
tions A and B:

( ) ( ) ( ) ( )
( ) ( ) ( )
µ
µ
+ − =
− =

′ ′
′ ′

A z zA z zB z

B z zB z A z

1 2 ,
2 .

On eliminating B(z) and setting w  =  4z we obtain the equation

( ) ( ) ( ) ( ) ( )″
µ µ µ

− +
−

−
+

=′w w A w wA w A w1
2 1

2

1

4
0.

This is a hypergeometric equation

( ) ( ) [ ( ) ] ( ) ( )″− + − + + − =′w w A w c a b w A w abA w1 1 0,

with = − = −µ µ+a b,
2

1

2
 and =c 0. Explicit solutions may hence be found using the well-

known general theory of such hypergeometric equations (see [12]).

5. Twisted Legendre transformation and almost-duality

Given a Frobenius manifold with metric η and multiplication ° one may construct an associ-
ated manifold—an almost-dual Frobenius manifold—with new metric and multiplication

( ) ( )η=
=

−

−

�

� ��

g X Y E X Y

X Y E X Y

, , ,1

1

1 In examples we lower indices for notational convenience.
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where E is the Euler vector field and =− �E E e.1  It was shown in [3, 4] that g is flat and 
compatible with the new product and, moreover, that a dual solution of the WDVV equa-
tions (written in the flat coordinates of the metric g) may be constructed. While the metrics η 
and g are related by the simple formula above, the corresponding connections, ∇ and ∇�, are 
related by a more complicated formula (see, for example, [9])

( ) ( ) ( )∇ = ∇ − ∇ + −− −
−� � � � � �� Y E E Y Y X d E X Y

1

2
3 ,X E

1 1
1

where ( )= −Lg d g3  for some constant d. Since we have an almost-dual solution of the 
WDVV equations, we automatically have a flat pencil of connections

λ∇ = ∇ −λ �� �Y Y X YX X

and hence the above theory of generalized Legendre transformations may be applied directly 
to solutions by replacing η with g and ∇ with ∇� and replacing the coordinates { }αt  by the 
flat coordinates of the metric g. However, there is a distinguished Legendre transformation 
between such almost-dual solutions.

We have, schematically2,

( ) ⟶ ( ˜ ˜ )

( ) ( ˜ ˜ )

η η∇ ∇
↓ ↓

∇ ∇

∂

� �� �

� �

g g

, , , ,
almost duality

, , , , .

Here ∂ is a flat Legendre field, i.e. ∇∂ = 0. This ensures we have a map between Frobenius 
manifolds, rather than just between solutions of the WDVV equations, so the almost-duality 
transformation may be applied to both sides (the vertical arrows in the above diagram). The 
aim of this section, and in fact the original aim of this paper, is to construct a transformation 
to make the above diagram commute, i.e. to construct a Legendre field ∂̂

∇ ∇
∂

� �� �g g, , , , .( ) ⟶ ( ˜ ˜ )
ˆ

This field—called a twisted Legendre field—was first studied in [11]. However the full 
 geometric properties were not fully described there.

Theorem 5.1. The following diagram commutes:

η η∇ ∇
↓ ↓

∇ ∇

∂

∂
� �� �

� �

g g

, , , ,

, , , , ,

( ) ⟶ ( ˜ ˜ )

( ) ⟶ ( ˜ ˜ )
ˆ

where ∂̂ = ∂�E  and ∇∂ = 0. In particular:

 (a) ˜( ) ( ˆ ˆ )= ∂ ∂� �g X Y g X Y, ,  ;

 (b) ˜ ˆ ( ˆ )∇ = ∂ ∇ ∂
−
� �

� �Y YX X
1

 ;

 (c) ∂̂ is a Legendre field for the connection ∇�.

2 Here, and for the rest of this section, ( )η ∇ �, ,  will we used to denote a Frobenius manifold, not just a solution to 
the WDVV equations, and ( )∇ ��g, ,  the corresponding almost-dual Frobenius manifold. We suppress, for notational 
convenience, the full data.
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Proof. We begin by noting that ˆ∂ = ∂� �X X. We also take  ∂ = ∂
∂ κt

 for some κ, where the { }αt  

are the flat coordinates of the metric η.

 (a) By definition

˜( ) ˜( )
( )
( )
( ˆ ˆ )

η
η

=
= ∂ ∂
= ∂ ∂

= ∂ ∂

−

−

�

� � �
� �

� �

g X Y E X Y

E X Y

g X Y

g X Y

, , ,

, ,
, ,

, .

1

1

 (b) Starting with the connection at the lower right hand corner and unpacking definitions 
yields

˜ ˜ ( ) ( ˜ ) ( ˜)

{ ( )} { ( )}

( ˜)

( ) { ( )}

( ˜)

∇ = ∇ − ∇ + −

= ∂ ∇ ∂ − ∂ ∇ ∂

+ −

= ∂ ∇ ∂ + ∂ ∇ −∇ ∂

+ −

− −

− − −

−

− −
∂

−

−

−

− −

� � � � � �

� � � � � � �

� �

� � � � �

� �

�

� � �

�

�

Y E E Y Y X d E X Y

E E Y E X

d E X Y

Y E E X

d d E X Y

1

2
3 ,

1

2
3 ,

1

2
.

X X E

X E Y

X E Y E Y

1 1

1 1 1

1

1 1

1

1

1

1 1

  On using the following formula derived in [2]

( ) {[ ] [ ] }
( )

∇ −∇ ∂ = ∂ + ∂

= − ∂κ

∂
−

−

− − � � � �

� �
� � �E E E E e Y E

d Y E

, , ,

1
E Y E Y

1

1

1 1

  (this last line uses standard definitions: ( )= ∑ + ∂ = ∂E d t r e, ,i
i

i i 1  etc), hence

{ }˜ ( ) ( ˜)∇ = ∂ ∇ ∂ + − + −κ
− −� � � �

� �Y Y d d d E X Y1
1

2
.X X

1 1

  As derived in [3], a Legendre transformation changes the spectrum of the Frobenius 
manifold, so ˜ µ µ= − = −κd d2 , 2 1 and since ( )µ µ= − −κ κd 1 1  the result follows.

 (c) Finally, as will be proved in the next proposition,

ˆ ⎜ ⎟
⎛
⎝

⎞
⎠µ∇ ∂ = + ∂κ �� X

1

2
.X

  With this,

ˆ

ˆ

⎜ ⎟
⎛
⎝

⎞
⎠µ∇ ∂ = + ∂

= ∇ ∂

κ
−� � ��

�

�

�

Y E X Y

X

1

2
,

.

X

Y

1

  Hence the twisted Legendre field ∂̂ = ∂�E  is a Legendre field for the  
connection ∇�. □

It is important to note that, while ∂ is flat for ∇, the corresponding twisted Legendre field 
∂̂ is not, in general, flat for the connection ∇�. It depends on the spectrum of the original 
Frobenius manifold.
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Proposition 5.2. The twisted Legendre field ∂̂ satisfies the equation

ˆ µ∇ ∂ = + ∂κ⎜ ⎟
⎛
⎝

⎞
⎠

� �X
1

2
.X

In particular it is flat for ∇� if and only if µ = −κ .1

2

Proof. By direct calculation

ˆ ( ˆ ( )) ( ) ˆ

( ) ( )

ˆ∇ ∂ = ∇ ∂− ∇ + − ∂

= ∇ ∂− ∇ + − ∂

−
∂

− −

∂

−� � � � �

� � �

�
� E E E X d E E

E E X d X

1

2
3 ,

1

2
3 .

X X E

X

1 1 1
1

Since by definition δ is flat for the torsion free connection ∇,

{ }ˆ [ ] ( )∇ ∂ = ∂ + − ∂ �� E d X,
1

2
3 .X

But [ ]∂ = − ∂κE d,  (since ( )= ∑ + ∂E d t ri
i

i i and ∂ = ∂κ) and since ( )µ µ= − −κ κd 1 1  and 
µ= −d 2 ,1  the result follows. □

Remark 5.3. The inverse twisted Legendre field, defined by the equation  ˆ ˆ∂ ∂ =
−
� E,

1
 is 

also a twisted Legendre field, in particular, ∂̂ = ∂
− −�E .

1 1  From the formulae above, this 
satisfies the equation

˜ ˆ ˆ∇ ∂ = ∂ ∇
− −

�
� �E.X X

1 1

Since, for an almost-dual Frobenius manifold ∇ ≠�E 0X  in general, the inverse twisted  Legendre 
field will not be, in general, flat, even if ∂̂ is flat for ∇�.

Example 5.4 ([11]). Starting with the prepotential = +F t t et1

2 1
2

2
2 we can perform a 

 Legendre transformation with ∂ = ∂t2 to obtain a prepotential F̃ together with almost-duality 
transformations for these two prepotentials to obtain a commuting diagram

⟶ ˜

⟶ ˜
ˆ

↓ ↓

∂

∂� �

F F

F F

where

˜ ˜ ˜ ˜ ˜

{ ( ) ( )}

˜ {˜ ˜ ˜ ˜ ( ˜ ˜ ) ( ˜ ˜ )}

= +

= − + +

= + − − −

−�

�

F t t t t

F z z z Li e Li e

F z z z z z z z z

1

2
log ,

1

24

1

8

1

2
,

1

4
log log log

z z

2
2

1 1
2

1

1
3

1 2
2

3 3

1
2

1 2
2

2 1 2
2

1 2

2 2

and Li3(w) is the tri-logarithm function.
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We note in passing that the twisted Legendre transformation, in this example, maps trigo-

nometric ∨-systems [7] to rational ∨-systems [15]. We end this section by giving a more sub-

stantial example.

Example 5.5. The extended A2 Frobenius manifold found in [5] has prepotential

= + + −F t t t t t e t
1

2

1

4

1

96
,t

1
2

3 1 2
2

2 2
43

and Euler vector field

= ∂ + ∂ + ∂E t t
1

2

3

2
.1 1 2 2 3

The flat coordinates, zi, of the intersection form are given, implicitly, by

( )

( )

= + +

= + +
=

− −

− −

t e e e e

t e e e e
t z

,

,
.

z z z z z

z z z z z

1
2
3

2
1
3

3 3

3 1 2 2 1

3 2 1 1 2

We can thus use (4.1) to find the almost dual prepotential:

[ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] ( ) ( )

= + + +

+ + + − − − + +

∗ − − − −

+ − −

F Li e Li e Li e Li e

Li e Li e z z z z z z z z z

1

2

1

2
1

2

1

4

2

3

2

27
,

z z z z z z z z

z z z z

3
2

3
2

3
2

3
2

3 3 1 2 1 2 1
2

1 2 2
2

3
3

2 1 1 2 2 1 1 2

1 2 1 2

and can perform generalised Legendre transformations generated by the vector fields

∂̂ = ∂ =�E i 2, 3.t ti i

Calculating these vector fields gives

ˆ

ˆ

⎛

⎝
⎜

⎞

⎠
⎟∂ = ∂ + − ∂ + ∂

∂ = ∂ + ∂ + ∂

e t
t

t

t e e t

3

2 4

1

4
,

2 3 ,

t

t t

2 1 1
2
2

2 2 3

3 2 1 2 1 3

3

3 3

or in the z-coordinates

∂ = − + − ∂ + + − ∂

+ + + ∂

− − − −

− −

⎡
⎣⎢

⎤
⎦⎥

e
e e e e e e

e e e

2

1

3
2

1

3
2

1

2

z

z z z z
z

z z z z
z

z z z z
z

2

3
3

1 2 1 2
1

1 2 1 2
2

1 2 1 2
3

ˆ ( ) ( )

( )

ˆ ( ) ( )

( )

⎡
⎣⎢

⎤
⎦⎥

∂ = + − ∂ + − − ∂

+ + + ∂

− − − −

− −

e e e e e e e

e e e

1

3
2

1

3
2

.

z
z z z z

z
z z z z

z

z z z z
z

3

2
3

3
2 2 1 1

1
2 2 1 1

2

2 2 1 1
3
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We can now perform the transformations as outlined in theorem 4.1 for different κ.

 • Transformation ∂̂ :2  From

ˆ∂
∂
= ∂α

β
γ
αβγ

z

z
c ,

  we obtain new coordinates

ˆ ( )

ˆ ( )

ˆ ( )

= − +

= − + −

= − + +

− −

− −

− −

z e e e e

z e e e e

z e e e e

2 ,

2 ,
3

2
.

z z z z z

z z z z z

z z z z z

1
1
3

2
1
3

3
1
3

3 1 2 1 2

3 1 2 1 2

3 1 2 1 2

  which can be inverted

( ˆ ˆ )( ˆ ˆ ˆ )
( ˆ ˆ )

( ˆ ˆ )
( ˆ ˆ )( ˆ ˆ ˆ )

( ˆ ˆ )( ˆ ˆ ˆ )( ˆ ˆ )⎜ ⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠

=
− − −

+

=
− −

+ − −

= − − − − +

z
z z z z z

z z

z
z z

z z z z z

z z z z z z z z

log
3 2 3 3 2

3 2
,

log
3 2

3 2 3 3 2
,

log
1

9
3 2 3 3 2 3 2 .

1
2 3 1 2 3

1 3
2

1
3

2
2 3

2

1 3 1 2 3

1
3

3 3 2 3 1 2 3 1 3

  Then from

ˆ
ˆ ˆ
∂
∂ ∂

=
∂
∂ ∂

∗ ∗F

z z

F

z za b a b

2 2

we derive the prepotential

ˆ ( ) ( ) ( ) ( )( ) ∑ ∑α α β β= ⋅ ⋅ + ⋅ ⋅
α β

∗

∈ ∈R W

F z z z zlog log2
2 2

2

  where (after the linear transformation →−z z2 2)

( )
( )
( )

⎧
⎨
⎪

⎩⎪
= −R

1, 2, 0
1, 1, 0 ,
2, 1, 0

  the roots of the A2 system and

( / )
( / )
( / )

⎧
⎨
⎪

⎩⎪
=
±
±
± − −

W
1, 0, 2 3
0, 1, 2 3 .

1, 1, 2 3
2

 • Transformation ∂̂ :3  Similarly we find

ˆ ( )

ˆ ( )

ˆ ( )

= − +

= + −

= − + +

− −

− −

− −

z e e e e

z e e e e

z e e e e

2 ,

2 ,

3 ,

z z z z z

z z z z z

z z z z z

1
2
3

2
2
3

3
2
3

3 2 1 1 2

3 2 1 1 2

3 2 1 1 2
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  inverting,

( ˆ ˆ )
( ˆ ˆ )( ˆ ˆ ˆ )

( ˆ ˆ )( ˆ ˆ ˆ )
( ˆ ˆ )

( ˆ ˆ )( ˆ ˆ ˆ )( ˆ ˆ )⎜ ⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠

=
−

+ − +

=
− − − +

+

= − − − + +

z
z z

z z z z z

z
z z z z z

z z

z z z z z z z z

log
3

3 2 3 3
,

log
3 3 3

3
,

log
1

9
3 3 3 3 .

1
1 3

2

2 3 1 2 3

1
3

2
1 3 1 2 3

1 3
2

1
3

3 3 1 3 1 2 3 1 3

1
2

  and the prepotential is

ˆ ( ) ( ) ( ) ( )( ) ∑ ∑α α β β= ⋅ ⋅ − ⋅ ⋅
α β

∗

∈ ∈R W

F z z z zlog 2 log3
2 2

3

  where R is as above but now

( / )
( / )
( / )

⎧
⎨
⎪

⎩⎪
=
± −
± −
± − − −

W
1, 0, 1 3
0, 1, 1 3 .

1, 1, 1 3
3

We can also perform the standard Legendre transformations S2 (generated by ∂t2) and S3 (gen-
erated by ∂t3) to obtain, respectively, the prepotentials

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

( )

( )

= + + +

= + +

F t t t t t t t t

F t t t t t t

1

12

1

2
log

1

3
,

1

4

1

2

1

2
log .

2 2
3

1 2 3 1
2

1 1 3
3

3 2
2

3 1 3
2

1
2

2

  Schematically, then, we have

ˆ ⟵ ⟵ ˆ

ˆ ⟵ ⟵ ˆ

( ) ( )

( )
ˆ ˆ

( )

↓ ↓ ↓
∗ ∗ ∗

F F F

F F F

S S

S S

3 2

3 2

3 3

3 3

  and one may check, by direct calculation, that this diagram commutes.

  The geometry of such configurations—the vectors in ∪R Wi—are examples of extended 

∨-systems and are studied further in [12, 13].

6. The semi-simple case

It has already been stated that, geometrically, the tensor ° does not change under a generalized 
Legendre transformation. What does change are the sets of flat coordinate systems which one 
uses to find a coordinate representation of this tensor, and hence solutions of the WDVV equa-
tions. This invariance actually goes deeper, and this is best seen in the case of a semi-simple 
multiplication.
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At a generic point of a semi-simple manifold, a basis of vector fields, and coordinates {ui}, 
may be found so the multiplication is diagonal,

     
δ

∂
∂

∂
∂
=

∂
∂

�
u u ui j ij i

and with this, the Frobenius condition ( ) ( )η η=� �X Y Z X Y Z, ,  implies that the metric is 
diagonal, so may be written in the form

    ( )⎜ ⎟
⎛
⎝

⎞
⎠η δ

∂
∂

∂
∂

=
u u

H u, ,
i j i ij

2

where the Hi are the Lamé coefficients. On writing the generalized Legendre field in the form

 
∑δ
ψ

=
∂
∂=

M

H ui

i

i
i

1

dim

it easily follows that the new metric takes the form

˜     ( )⎜ ⎟
⎛
⎝

⎞
⎠η ψ δ

∂
∂

∂
∂

=
u u

u, .
i j i ij

2

The Legendre field definition, when written in this coordinate system, reduce to the equation

 
ψ β ψ

∂
∂

= ≠
u

i j, ,
i j ij i

where βij are the rotation coefficients (assumed to be symmetric) of the original metric, 

β = ∂
.ij

H

H
i j

i
 Re-expressing this shows that the Legendre field condition reduces to the state-

ment that the two diagonal metrics η and η̃ have the same (off-diagonal) rotation coefficients, 
and hence flatness will be preserved. But this construction does not imply, as is required in 
the Frobenius manifold case [3], the condition ψ∑ ∂ = 0i i j  so one obtains a wider class of 
flat coordinate systems and solutions of the WDVV equations than in the original construc-
tion (where the constraint ψ∑ ∂ = 0i i j  is required to preserve the full Frobenius manifold 
structure).

7. Comments

The Legendre fields—solutions of equation (1.1)—also appear in the theory of hydrodynam-
ics systems associated to F-manifolds [10]. They appeared there as generators of commuting 
flows

= ∂�u ut X

which generalizes the principal hierarchy defined by Dubrovin in the case of Frobenius mani-
folds [3]. The role of ∂ in this paper is somewhat different: here it plays the role in defining a 
symmetry between different principal hierarchies. But the use of conservation laws to define 
new sets of variables for hydrodynamic systems is well established and the theory developed 
here may be seen as a generalization of this idea (in the sense that the hierarchies as defined 
above have an underlying connection, and hence one can use ∂ to provide a map between 
such connections). Further, since the Legendre condition comes from the preservation of the 
torsion-free condition, the theory could be developed to more general situations where one has 
torsion free, but not metric, connections [1].

I A B Strachan and R Stedman J. Phys. A: Math. Theor. 50 (2017) 095202



17

One unexpected feature of the special case of twisted-Legendre fields (for almost-dual 
structures) is that they map rational solutions to the WDVV equations to trigonometric solu-
tions, or more specifically, for those almost-dual solutions coming from classical extended- 
affine-Weyl Frobenius manifolds [6, 13]. Since the restriction of Legendre fields to discri-
minant submanifolds are again Legendre, one should be able to derive similar results for the 
induced WDVV equations on discriminant submanifolds (for which the induced intersection 
form is flat), following the ideas in [8, 14]. More generally, one needs to see if one can apply 
these ideas directly to rational/trigonometric ∨-systems.
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