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We show how a simple calculation leads to the surprising result that an excited two-level atom moving
through a vacuum sees a tiny friction force of first order in v=c. At first sight this seems to be in obvious
contradiction to other calculations showing that the interaction with the vacuum does not change the
velocity of an atom. It is even more surprising that this change in the atom’s momentum turns out to be a
necessary result of energy and momentum conservation in special relativity.
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Atoms moving through and interacting with electromag-
netic fields experience velocity dependent forces. For laser
fields this results in famous (sub-)Doppler cooling schemes
which form the foundation of modern atom-optical experi-
ments [1–3], while much earlier works by Einstein and
Hopf already showed how such friction forces are neces-
sary to discuss thermal radiation fields self-consistently
[4–6]. However, these considerations also showed that no
such forces will arise from the interaction with the vacuum.
Here, however, we report on how the simplest quantum-

optical model, an initially excited atom moving through the
vacuum, appears to be in contradiction with these results.
Our starting point is the usual, nonrelativistic atom-field
Hamiltonian in the dipole approximation including the
Röntgen term from which we first rederive the decay rate
from the excited state. Based on this well established
framework, we then go on to calculate the canonical and
kinetic momenta of the atom and see that these are not
constant in time, indicating the presence of a net force.
Such a force emanating from the vacuum is, of course,

highly suspicious. Even more suspicious is the fact that this
force has the form of a friction; that is, the change in
momentum is proportional to the initial momentum. This
suggests that there is no such force in the atom’s rest frame
and a comoving observer will stay next to the particle,
while any other observer will see that the atom decelerates.
Such a result would contradict the principle of relativity.
We find that only a proper consideration of energy and

momentum conservation can solve this puzzle and that the
momentum of the atom does change, while its velocity
remains constant.
For the sake of clarity and brevity, we describe the atom

as a two-level system; its dynamics will be calculated using

time-dependent perturbation theory. This model is
described by a Hamiltonian H ¼ H0 þHAF, where

H0 ¼
P̂2

2M
þ ℏωAjeihej þ

X
k;λ

ℏωkâ
†
k;λâk;λ ð1Þ

describes the kinetic energy and dynamics of the atom
with internal states jgi and jei, as well as the quantized
electromagnetic field. The last term includes sums over all
modes k and over the two polarization states λ ¼ 1, 2,
while âk;λ is the usual annihilation operator for a photon in
mode k and polarization λ.
The interaction between the atom and the field is given in

the dipole approximation, where we include the Röntgen
term [7–10]

HAF ¼ −d̂ ·E⊥ −
1

2M
½P̂ · ðB × d̂Þ þ ðB × d̂Þ · P̂�; ð2Þ

with the electric dipole operator d̂ ¼ dðjeihgj þ jgihejÞ,
where d ¼ ded and the electric and magnetic fields are
given as

E⊥ðRÞ ¼ i
X
k;λ

Ekϵk;λðâk;λeik·R̂ − â†k;λe
−ik·R̂Þ; ð3aÞ

BðRÞ ¼ i
c

X
k;λ

Ekðκ × ϵk;λÞðâk;λeik·R̂ − H:c:Þ: ð3bÞ

Here, Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωk=ð2ε0VÞ

p
is the electric field strength per

photon in the quantization volume V and ϵk;λ is a
polarization vector perpendicular to the mode propagating
in a direction κ ¼ kc=ωk.
Using the fields from Eq. (3) and expðik · R̂ÞP̂ ¼

ðP̂ − ℏkÞ expðik · R̂Þ, we can rewrite the interaction
Hamiltonian fromEq. (2) in the rotatingwave approximation,
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HAF ¼ iℏ
X
k;λ

Ωkðĝk;λeik·R̂jeihgjâk;λ − H:c:Þ; ð4Þ

with ℏΩk ≔ −dEk and a momentum-dependent coupling
term

ĝk;λ ≔ ϵk;λ · ed þ
1

Mc

�
P̂ −

ℏk
2

�
· ½ðκ × ϵk;λÞ × ed�: ð5Þ

The notation with a hat indicates that ĝk;λ depends on the
momentum operator P̂ and is thus an operator itself. More
familiar results froma theory ignoring theRöntgen interaction
term ∼B × d are recovered by setting ĝk;λ → ϵk;λ · ed.
The Röntgen term included in Eq. (2) describes the

coupling between a moving electric dipole and a magnetic
field [11]. Its presence leads to corrections ensuring the
correct decay pattern of a moving atom [10,12] and to a
subtle difference between the canonical momentum P̂ and
the kinetic momentum M½d=ðdtÞ�R̂, where [7–9,13,14]

M
d
dt

R̂ ¼ P̂ −B × d̂: ð6Þ

A simple perturbative treatment suffices to demonstrate
the problem. In this Letter we consider the evolution of an
initially excited atom in an eigenstate of the canonical
momentum operator in vacuum, i.e., jψei ≔ je;p0; 0i. The
coupling HAF initiates transitions to the ground state with
reduced momentum and a photon of momentum ℏk, i.e.,
jψk;λi ≔ jg;p0 − ℏk; 1k;λi, with j1k;λi ≔ â†k;λj0i. These
are, of course, eigenstates of H0 with energies ℏωe and
ℏωgðkÞ, separated by ~ωk ≔ ωe − ωgðkÞ,

~ωk ¼ ωA − ωk þ
1

M
k · ðp0 − ℏk=2Þ: ð7Þ

The state at time t can thus be described by

jψðtÞi ¼ ceðtÞe−iωetjψei þ
X
k;λ

ck;λðtÞe−iωgðkÞtjψk;λi; ð8Þ

with ceð0Þ ¼ 1 and ck;λð0Þ ¼ 0. These amplitudes evolve
as

_ceðtÞ ¼
X
k;λ

Ωkgk;λðp0Þck;λðtÞei ~ωkt; ð9aÞ

_ck;λðtÞ ¼ −Ωkgk;λðp0ÞceðtÞe−i ~ωkt; ð9bÞ

where gk;λðpÞ is the eigenvalue of ĝk;λ given in Eq. (5).
We can integrate these to find that Rec�k;λðtÞ_ck;λðtÞ is

ReΩ2
kg

2
k;λðp0ÞceðtÞ

Z
t

0

c�eðt0Þe−i ~ωkðt−t0Þ

≈ πΩ2
kg

2
k;λðp0Þδð ~ωkÞ: ð10Þ

Here, we truncated ceðtÞc�eðt0Þ ≈ 1þOðΩkÞ and used
Re

R
t
0 e

−ixðt−t0Þdt0 → πδðxÞ for t ≫ x. Using these approx-
imations, we quickly obtain the decay rate Γ ¼ ½ðd=ðdtÞ�P

k;λ jck;λðtÞj2 ¼ 2Re
P

k;λ c
�
k;λðtÞ_ck;λðtÞ,

Γ ¼ 2π
X
k;λ

Ω2
kg

2
k;λðp0Þδ

�
ωA − ωk þ

k · p0 − ℏk2=2
M

�
;

ð11Þ

which is what we would expect from Fermi’s golden rule
[10,12]. Note that the δ function includes both the Doppler
shift k · p0=M and the recoil shift ℏk2=ð2MÞ [15].
A calculation of the total decay rate to first order 1=Mc2

is given in the Supplemental Material [16].
After calculating the decay rate, it is a straightforward

task to calculate the expectation value for the canonical
momentum hPðtÞi ¼ hψðtÞjP̂jψðtÞi. As P̂ commutes
with H0, we see that hPðtÞi ¼ p0jceðtÞj2 þ

P
k;λðp0 − ℏkÞ

jck;λðtÞj2, such that ½d=ðdtÞ�hPðtÞi ¼ −
P

k;λ ℏk½d=ðdtÞ�
jck;λðtÞj2 or

d
dt

hPðtÞi ¼ −2π
X
k;λ

ℏkΩ2
kg

2
k;λðp0Þδð ~ωkÞ: ð12Þ

Comparing this to Γ, as given in Eq. (11), we see that the
momentum change of the atom is simply given by the
probability to emit a photon into a mode k multiplied by
the momentum of such a photon, ℏk. Let us stress again
that the directional decay rate given in Eq. (11) is consistent
with a first-order approximation of the emission pattern of a
moving dipole [10]. This result for the momentum change
is thus required by momentum conservation.
As mentioned in Eq. (6), kinetic and canonical momenta

are different in the presence of the Röntgen term. This
difference is given by a term

B × d̂ ¼ −
iℏ
c

X
k;λ

Ωkbk;λðeik·R̂jeihgjâk;λ − H:c:Þ; ð13Þ

with bk;λ ≔ ðκ × ϵk;λÞ × ed. In the notation of Eq. (8), this
is B × d̂ ¼ −½ðiℏÞ=c�PΩkbk;λðjψeihψk;λj − jψk;λihψejÞ.
To see the difference in the change of these momenta,

we calculate the time derivative of

hB × di ¼ −
2ℏ
c
Im

X
k;λ

Ωkbk;λcec�k;λe
−i ~ωkt: ð14Þ

This derivative will consist of three terms [cf. Eq. (9)]: the
first is proportional to Ωk _cec�k;λ ∼ΩkΩk0ck0;λ0c�k;λ ∼Ω2

kΩ2
k0 ;

(it therefore goes beyond our perturbation theory) the
second is ce _c�k;λ expð−iωegtÞ ¼ −Ωkgk;λðp0 − ℏk=2Þjcej2
(its imaginary part is therefore zero). Hence, the only
surviving term is

PRL 118, 053601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 FEBRUARY 2017

053601-2



d
dt

hB × di ¼ 2ℏ
c
Re

X
k;λ

Ωkbk;λ ~ωkcec�k;λe
−i ~ωkt: ð15Þ

We recognize that this expression is quite similar to what
we had in Eq. (10), but here we get ½d=ðdtÞ�hB × di∼P

Ω2
kbk;λgk;λðp0Þ ~ωkδð ~ωkÞ. This is an integral involving a

δ function multiplied by its argument. ½d=ðdtÞ�hB × di thus
vanishes and the change of our kinetic momentum is equal
to the change in canonical momentum given by Eq. (12).
Calculating a value for ½d=ðdtÞ�hPi from Eq. (12)

involves a rather straightforward, albeit lengthy, integra-
tion. In contrast to previous works [10,12], we do not
assume an infinitely heavy atom here but keep recoil terms
to first order of 1=M, as these appear in g2k;λðp0Þ and the δ
function. More details on this calculation are given in the
Supplemental Material [16]. In the end, we find

d
dt

hPðtÞi≃ −Γ
ℏωA

Mc2
p0; ð16Þ

where Γ ¼ ω3
Ad

2=ð3πε0ℏc3Þ is the total decay rate from
Eq. (11). We see that the change in momentum is propor-
tional to the atom’s decay rate, the recoil energy, and the
initial momentum of the atom.
The momentum change given in Eq. (16) is the main

result and topic of this Letter. It shows that an atom
spontaneously emitting a photon changes its average
momentum at a rate proportional to its initial momentum
p0. As mentioned in the introduction, such friction terms in
the interaction between light and matter are not unusual.
Here, however, this friction comes from the interaction with
the vacuum and we see that there is no force in the atom’s
rest frame where p0 ¼ 0 [17].
Equation (16) seems to indicate that an observer comov-

ing with the initially excited atom will (on average) observe
no change in the atom’s motional state, as the photons are
emitted in a random direction and the recoil adds up to zero.
However, any other observer will see that the atom changes
its initial momentum, p0 ≠ 0. Thus, we note that observers
in two different reference frames record different physical
behavior, a clear contradiction to the principle of relativity.
Note that this is different from the Unruh-Davis effect,
which applies to particles initially accelerating through the
vacuum [18].
Of course, we know that the physics described by the

Hamiltonian H0 þHAF will not include all relativistic
effects, yet we expect its results to be correct to first order
in v=c, especially after we included the Röntgen term,
which ensures that the emission pattern on the right-hand
side of Eq. (16) is consistent with a moving dipole.
It is also of concern that the physics involved in this

derivation was not at all complicated. Of course, we made
some assumptions, especially the dipole and rotating wave
approximations and the truncation of the time-dependent
perturbation theory, but these simplifications are standard

textbook quantum optics [19,20] and should not lead to
obviously wrong physical results. Another simplification
was to put the atom into a momentum eigenstate, but our
arguments are repeatable for more physical initial states
which are superpositions of these.
The resolution to this puzzle comes when we recognize

that, in general, a change in (kinetic) momentum p ¼ Mv,
as given in Eq. (16), is related not only to a change in
velocity but also to a change in mass, as _p ¼ M _v þ _Mv
(this relationship holds also in special relativity, at least to
first-order v=c). Furthermore, we know that the total mass
of an atom (here described as a dipole) is not just the sum of
its constituents (electron and nucleus), but it is reduced by
the internal binding energy M ¼ m1 þm2 − Ebinding=c2.
This mass defect is, of course, well known, but it is usually
discussed in connection with particle and nuclear physics,
where the binding energies are considerably larger than in
atomic physics.
In our case the decaying atom increases its binding

energy by an amount ℏωA, thus changing its mass at a rate
Γ as

_M ¼ −ΓℏωA=c2: ð17Þ

Such a change in mass is consistent with a change in
momentum, _p ¼ −ΓℏωAv0=c2 ¼ −ΓℏωA=ðMc2Þp0, if the
velocity remains unchanged, _v ¼ 0. The change in momen-
tum of a decaying atom can therefore be explained by a
change in its mass energy, while its velocity remains
constant.
This also resolves the issue of two observers in different

reference frames who now both see the same physics: an
atom with constant velocity emitting a photon and thus
losing energy, as ½d=ðdtÞ�hHAi ¼ −ΓℏωA, with HA ¼
ℏωAjeihej. This loss of energy is then also connected to
a change in inertia and momentum.
This resolution brings up another question, however:

how did the changing mass enter our description of an atom
interacting with an electromagnetic field? It is certainly
not included in the Hamiltonian which can be derived by
explicitly setting M ¼ m1 þm2 [9]. We can also directly
calculate the change in the particle’s velocity as
½d2=ðdt2Þ�R̂ ¼ −½H; ½H; R̂��=ℏ2 to find a nonzero acceler-
ation because ½d=ðdtÞ�hB × di ¼ 0; cf. Eq. (6). A proper
distinction between a change in momentum and an accel-
eration thus requires the derivation of a new atomic
Hamiltonian which also includes a dynamical mass-energy
term coupled to P̂.
By virtue of the Röntgen term, the Hamiltonian used

here properly describes the physics involved in the emis-
sion of the photon, and this is also what enters the
calculation of ½d=ðdtÞ�hPi in Eq. (12). In the following
short calculation, we use a simple example to show that the
proper description of the emission process is sufficient for
deriving the friction term.
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Figure 1 shows a battery-powered device emitting a pair
of photons with the same frequency in two opposite
directions. If Ei (Ef) denotes the total mass-energy of
the apparatus before (after) the emission process, we see
that its internal energy changes as ΔE ¼ Ef − Ei ¼
−2ℏω0. The motion of the emitter remains constant by
design, as both photons carry equal momentum �ℏω0=c in
opposite directions.
Let this apparatus now move at a speed v relative to two

perfect detectors, each measuring the frequency of one
photon. Because of the Doppler shift, these frequencies are
different, as ω0

l ¼ ω0γð1 − v=cÞ and ω0
r ¼ ω0γð1þ v=cÞ,

with γ ¼ ð1 − v2=c2Þ−1=2 ≃ 1 − v2=ð2c2Þ. Using the avail-
able data, the observer will construct the following relations
of energy-momentum conservation:

E0
i ¼ E0

f þ ℏðω0
l þ ω0

rÞ; ð18aÞ

p0
i ¼ p0

f þ ℏð−ω0
l þ ω0

rÞ=c; ð18bÞ

such that ΔE0 ¼ E0
f − E0

i ¼ −2ℏω0γ and Δp0 ¼ p0
f − p0

i ¼
−2ℏω0γv=c2. We thus see that the observer would calculate
a change in the momentum of the apparatus even though
there is no change in its velocity [21].
This simple example illustrates how the Doppler effect

directly links the change in internal energy during an
emission process to a frictionlike change in the momentum.
Note again that, although this momentum change is real, it
is not connected to an acceleration: the motion of the object
remains unchanged. In our case of the decaying atom, the
presence of the Röntgen term in Eq. (2) led to a correct
emission pattern in Eq. (11), which in turn was all that we
needed to calculate the momentum change of the atom in
Eq. (12). Our calculations were therefore similar to the
energy-momentum balance in Eq. (18) and also gave the
same result, Δp0 ¼ ΔE0v=c2.
Recently, we were made aware of a work by Guo

discussing the same setup, but omitting the Röntgen
interaction [22]. Unsurprisingly, this gives a different form
to the friction term derived here and, importantly, one that
would truly violate the principle of relativity, as observed
by the author.
In conclusion, we have shown how a simple calculation

of an excited two-level atom in a vacuum results in a

momentum change proportional to the initial velocity of the
atom; cf. Eq. (16). If this momentum change were linked to
a true deceleration of the atom, it would be in contradiction
to the principle of relativity. This riddle is solved, however,
by recognizing the change in the internal energy (mass) of
the atom as the source of the momentum change. Thus, the
momentum of the atom changes, but its velocity remains
constant.
Let us stress that this effect is not, intrinsically, a

quantum-optical phenomenon and is also not limited to
the special case of a decaying atom in a vacuum. Rather, it
is a general phenomenon occurring whenever a particle
changes its internal energy, for instance, due to stimulated
absorption and emission or, in a more subtle manner, due
to Stark or Zeeman shifts. In these cases with external
fields and resulting (friction) forces, this effect is con-
cealed within the stronger interactions leading to a true
acceleration.
In contrast to nuclear or particle physics, the energies

involved in atom optics are far below the atom’s rest mass.
It is therefore not surprising that this subtle difference
between momentum change and acceleration has not been
measured yet. Ion traps have been used to measure nuclear
masses to a precision of 1–10 keV [23], which is roughly
3 orders of magnitude more than the mass defect due to
atomic binding energies, Me −Mg ¼ ℏωA=c2 ≈ 1 eV.
Finally, we would like to point out again that the current

Hamiltonian describing a dipole in an external field does
not include a dynamic mass. Although the calculation of
the momentum change h _Pi bypasses this insufficiency, the
result obtained for the actual acceleration hR̈i is flawed.
This calls for a small correction of the atomic Hamiltonian
to include the coupling between the momentum and a
change in internal energy, which will be the topic of a
future work.
Regarding the question in the title: we have shown that,

yes, a decaying atom sees a force resembling friction.
However, this force is a change in momentum due to a
change in internal mass energy and is not connected to
decelerated motion.
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