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like next-generation sequencing of tumors and ddPCR on circulating free DNA have convincing analytical validity. Further
work needs to be undertaken to establish the clinical utility of liquid biopsies and the added clinical value of expanding
from individual gene tests into large gene panels. Experts agreed that standardized bioinformatics methods for biological
interpretation of genomic data are needed and that precision medicine trials should be stratified based on the level of evi-

dence available for the genomic alterations identified.
Key words: precision medicine, consensus, biomarkers

introduction

Recent advances in biotechnologies have led to the development
of multiplex genomic and proteomic analyses for clinical use.
Although this jump in the capacity to dissect biology in indivi-
duals looks appealing, its adoption, implementation and dis-
semination require careful examination of levels of evidence by
experts. Molecular tests are being used in two different ways in
patients with metastatic cancer. First, they can identify patients
who are eligible for biomarker-driven therapeutic trials, such as
phase I/II trials testing targeted therapies. This first application
will hereafter be referred to as ‘molecular screening’. Secondly,
they can identify patients who are eligible for a specific therapy
in the context of daily practice.

The MAP (Molecular Analyses for Personalized medicine)
conference brought together worldwide experts with the aim
to reach a consensus on recent advances in the field of
Personalized Medicine for cancer therapy. The first edition was
held in Paris, during 23-24 October 2015, under the sponsor-
ship of ESMO, CRUK and UNICANCER. The conference was
attended by more than 400 participants from 38 countries and
focused on ‘tailoring therapy for metastatic cancers’. The con-
ference consensus was developed by a panel consisting of 20
experts in the field. The list of questions was sent to the confer-
ence speakers; their answers were integrated in a first version of
the consensus and discussed during the conference. This first
version of the consensus was sent to speakers and the consensus
altered according to their suggestions. The consensus covered
five topics: methods for driver identification, validated drivers
in frequent diseases, multigene assays to improve outcome, cir-
culating DNA and other applications of genomics (resistance,
heterogeneity, DNA repair defects). The overall aim of the con-
sensus (summarized in Table 1) is to report the state of the art,
together with levels of evidence, in the field of cancer precision
medicine. The goal is not to provide clinical guidelines for the
oncologist, an exercise that requires a different method.

The level of evidence was defined according to the Evaluation of
Genomic Applications in Practice and Prevention [3]. Analytical
validity refers to the capacity to make accurate and reliable mea-
surements of the biomarker. Clinical validity refers to the ability of
the test to accurately and reliably identify or predict a relevant end
point. Clinical utility evaluates whether a treatment decision based
on a genomic test results in an improved clinical outcome. The
quality of evidence is ranked from inadequate to adequate to
convincing.

driver identification

The identification of drivers of cancer progression in patients
has clearly and dramatically improved the outcomes of many

cancer patients. There is a general consensus that identifying
and, when therapeutics exists, targeting the drivers of cancer
progression improves outcome.

Whenever possible, it is better to assess the molecular portrait
at the time of treatment, and to avoid archival samples. This is
particularly relevant for genomic alterations involved in resist-
ance to a previous therapy (EGFRT790M, ESR1 mutations ...).

does next-generation sequencing have convincing
analytical validity?

Several studies have evaluated the analytical validity of next-
generation sequencing (NGS) to accurately detect mutations
and copy number alterations (CNAs). As illustration, Frampton
et al. [4] reported the analytical validity of a panel of 287
cancer-related genes. A total of 118 samples were tested for
mutations and 185 for CNAs. High concordance was observed
between the genomic profiling using NGS and standard assays,
both for mutation detection and identifying CNAs. The panel
agreed that NGS has convincing analytical validity to detect var-
iants and copy number changes. This consensus item only
covers the technology of NGS, not the bioinformatics aspects.

in the context of molecular screening programs, is it
worth testing genes outside the catalog of known
cancer-related genes?

Several efforts have been made to define a list of cancer-related
genes. Using the most recent definition, it is considered that
around 300 genes could be involved in cancer development and
progression in a recurring manner [5]. While there is still some
room to discover new cancer-related genes [5], the panel did
not recommend placing a patient onto a clinical trial based on a
genomic alteration located outside a known cancer-related
gene. Indeed, molecular screening programs should not aim to
discover new cancer-related genes, but rather to offer first
validation steps about their clinical relevance. Nevertheless, the
molecular data generated in the context of these screening pro-
grams are valuable for ancillary translational research.

Cancer ‘drivers’ include oncogenes and tumor suppressor
genes (TSGs). While biological interpretation of hotspot muta-
tions in oncogenes is relatively straightforward, the biological in-
terpretation of CNAs and alterations of TSGs continues to be
controversial. In particular, gene amplification does not always
lead to protein overexpression whereby an over-abundance of
the protein causes disruption in control of normal cellular
growth and division. Similarly, most tumor suppressors are
thought to act by virtue of deletion, gene silencing by mutation
or other alterations in their expression, but in some cases, tumor
suppressors can also carry activating mutations such as in TP53.
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Table 1. Summary of consensus items

Consensus

Driver identification
Does NGS have convincing analytical validity?
In the context of molecular screening programs, is it worth
testing genes outside the catalog of known cancer-related genes?
In a molecular screening program, which criteria suggest that a
gene amplification is involved in cancer progression?
Is the loss of function of the second allele required to consider a
tumor suppressor gene as a driver?

Validated drivers in frequent diseases
Breast cancer

Lung cancer

Gastric cancer

Multigene assays to improve outcome

Circulating tumor DNA (ctDNA)
Can ctDNA substitute biopsies to select patients with a genomic
alteration?

Can ctDNA identify patients who present a high risk of relapse?

Beyond driver identification: other applications of genomics
Detection of subclonal alterations involved in resistance
Detection of clonally dominant alterations involved in resistance
Methods to assess intratumor heterogeneity (ITH)

The development of protein-based multiplex assays in the field
of personalized medicine

NGS has convincing analytical validity to detect variants and copy number changes

It is not recommended to place patients onto a clinical trial based on a genomic
alteration located outside known cancer-related genes

The best criteria to define ‘driver gene amplification’ are those defined by Santarius
etal. [1]

For most of the genes, it is currently not possible to conclude whether the loss of the
second allele of a tumor suppressor gene is a mandatory event to drive
oncogenesis. Current data suggest that it could be gene and tissue site-specific.
More data, especially in patients treated with matched therapy, are needed

- ER, PR, Her2, BRCA1/2 are required in daily practice

- The optimal gene panel for breast cancer clinical trials should detect AKT1,
PIK3CA, PTEN, ESR1 mutations and FGFR1 amplification, in addition to the five
previously mentioned markers

- EGFR mutations, ALK and ROSI rearrangements should be tested in daily practice

- Atleast 20 genes should be tested in molecular screening programs to drive
patients onto therapeutic trials: mutations in EGFR, BRAF, HER2, KRAS,
PI3KCA, NTKR, ALK, MET (ex 14), AKT1, BRCA1/BRCA2, HRAS, NRAS;
rearrangement status of ALK, ROS1, NTRK; amplification of RET, MET and
EGFR; aberrations (mutations or amplifications) in FGFR1/2/3, NOTCH1/
NOTCH2

- Her2 should be tested in daily practice

- Atleast 11 genomic alterations should be included in molecular screening
programs (ERBB2, FGFR2, MET, KRAS, CDK4, CDK6, CDKN2A, EGFR,
PIK3CA, PTEN, RNF43)

- PDLI1 expression and MSI should also be tested as selection criteria to enter
clinical trials

There is no evidence that the use of large panels of genes improves outcome in
patients with metastatic cancer, when compared with standard panels

To facilitate interpretation and comparison of clinical trial results, each trial should at
least report the level of evidence for the selected genomic alterations being tested

Academic molecular screening programs using multigene panels increase the
likelihood of access to a therapy matched to genomic alteration, if carried out in
the context of a large phase I program

ctDNA has convincing analytical validity to detect hotspot mutations using digital
PCR. Further work is needed to validate the detection of mutations in TSGs or
copy number alterations using NGS

More data are needed before this approach can be recommended

Currently, there is no evidence based on clinical trials that treating a patient based on
the detection of subclonal alteration improves outcome

Detecting and targeting a molecular mechanism of resistance could lead to an
objective response, as has been seen for the EGFR T790M mutation [2]

Whole-exome sequencing or high coverage multigene panels carried out on multiple
biopsy sites is currently the standard procedure to assess ITH. ctDNA is a
promising tool to assess ITH

There is a need to develop efforts to integrate phospho-protein assays in precision
medicine programs in order to complement genomics and to identify predictors

for drugs targeting pathways

in a molecular screening program, which criteria
suggest that a gene amplification is involved in
cancer progression?

Gene amplification can lead to overexpression of oncogenes

drive cancer progression. For example, ERBB2 amplifications

have been shown to be drivers of cancer progression in around
15% of breast cancer cases [6]. One of the current controversies
in the field of personalized medicine is how to identify a gene
that amplification in individual patients that leads to cancer progres-
sion. The panel agreed that the best definition of ‘driver gene
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amplification’ is the one defined by Santarius et al. [1]. Using
this definition, a gene amplification could be a driver if it leads to
gene overexpression, if the amplicon includes a low number of
genes, if inherited mutation of that gene predisposes to the same
cancer type, if gene overexpression/down-regulation causes bio-
logical effects and if the gene has been confirmed as an oncogene
in animal models. The best evidence to show that a gene amplifi-
cation is involved in cancer progression is if a therapy that targets
the protein product leads to an objective response (OR) in a
clinical trial in patients where the amplification is present, but not
in patients without it.

is the loss of function of the second allele required
to consider a TSG as a driver?

The loss of a TSG has been shown to mediate malignant trans-
formation [7]. In the initial model proposed by Knudson [7], the
two alleles of TSGs have to be lost (through mutations, deletion
or loss of function) to generate inactivation of the protein and
promote oncogenesis. While TSGs are not directly actionable,
their loss generates pathway activation that can subsequently be
targeted by therapies. For example, TSC1/2 loss activates mTOR
and has been associated with subependymal giant-cell astrocyto-
mas in tuberous sclerosis. Targeting mTOR in this disease led to
OR in 75% of patients included in a phase II trial [8]. Synthetic le-
thality is another strategy to treat patients who present with
loss of a TSG, as shown by the OR observed in patients with
BRCA-deficient cancers treated with PARP inhibitors [9].

With the exception of TSC1/2 loss, there are not many exam-
ples of targeted therapies given according to the loss of a TSG.
There are several reasons for this. First, targeting a pathway could
be less effective than targeting an oncogene. Secondly, it has been
difficult to define loss of TSGs from a companion diagnostic per-
spective. One open question is whether the loss of function of the
second allele of a TSG is a mandatory event to drive oncogenesis.
Indeed, in some models, like PTEN and breast cancer, the loss of
a single allele is sufficient to generate cancer [10]. Optimal detec-
tion of somatic alterations on TSG requires profiling of normal
DNA.

Overall, the panel agreed that, for most of the genes, it is cur-
rently not possible to conclude whether the loss of the second
allele of a TSG is a mandatory event to drive oncogenesis.
Current data suggest that it could be gene and tissue site-specif-
ic. More data, especially in patients treated with matched
therapy, are needed.

validated drivers in frequent diseases

Three frequent diseases (breast, lung and gastric cancers) were
discussed during the conference. The clinical questions consid-
ered were: which genes should be routinely tested in daily prac-
tice? How many genes should be tested in the context of
molecular screening programs?

As mentioned in several guidelines, five markers are currently
tested to indicate breast cancer therapy. These include expres-
sion of the estrogen receptor (ER), progesterone receptor (PgR)
and Her?2 proteins, together with BRCA1 and BRCA2 mutations
[11]. The optimal panel for breast cancer clinical trials should
detect AKT1, PIK3CA, PTEN, ESR1, ERBB2 mutations and
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FGFR1 amplification, in addition to the five previously men-
tioned markers.

In lung cancer, tests for EGFR mutations and ALK and ROS1
rearrangement status should be carried out in daily practice.
The panel proposed testing at least 20 genes in molecular
screening programs that aim to drive patients onto therapeutic
trials [mutations in EGFR, BRAF, HER2, KRAS, PI3KCA,
NTKR, ALK, MET (ex 14), AKT1, BRCA1/BRCA2, HRAS,
NRAS; rearrangement status of ALK, ROS1, NTRK; amplifica-
tion of RET, MET and EGFR; aberrations (mutations or amplifi-
cations) in FGFR1/2/3, NOTCH1/NOTCH2].

Finally, in gastric adenocarcinoma, Her2 is the only target
that is currently evaluated in the context of daily practice. The
panel agreed that >10 genomic alterations should be included in
molecular screening programs dedicated to gastric cancers
(ERBB2, FGFR2, MET, KRAS, CDK4, CDK6, CDKN2A, EGFR,
PIK3CA, PTEN, RNF43). In addition, PDL1 expression and
MSI should be tested as selection criteria to enter clinical trials.

multigene assays to improve outcome

The panel agreed that there is no evidence so far that the use of
large panels of genes improves outcome in patients with meta-
static cancer, when compared with smaller and validated panels.

In individuals, the level of evidence that a genomic alteration
is involved in cancer progression can vary from ‘biological inter-
pretation without supporting data’ (level IV) to ‘evidence from
clinical trials’ (level I) [12]. The inclusion of patients presenting
genomic alterations with very different levels of evidence is one
of the major limitations of trials testing the clinical utility of
multigene panels. Indeed, it is expected that a clinical trial that
includes only validated genomic alterations (level I) would
easily show an improvement in patient outcome, while those in-
cluding a majority of ‘putative’ alterations (level IV, including
new variants on oncogenes) will struggle to report any improve-
ments in outcomes. To facilitate interpretation and comparison
of clinical trial results, the panel agreed that each trial should at
least report the level of evidence for the selected genomic altera-
tions being tested. Several levels of evidence scales are available
[12-14]. These level of evidence scales are consistent and there
is no reason to favor one over the others.

Finally, the panel agreed that academic molecular screening
programs using multigene panels increase the likelihood of
access to a therapy matched to genomic alteration, if carried out
in the context of a large phase I program. Changes in the design
of clinical trials for targeted therapies are certainly increasing
the chances for therapeutic access.

circulating tumor DNA

can circulating tumor DNA substitute biopsies
to select patients with a genomic alteration?

It has been shown that circulating tumor DNA (ctDNA) can be
detected in the blood of most metastatic cancer patients
[15-17]. The panel agreed that ctDNA has convincing analytical
validity to detect hotspot mutations using digital PCR. This is
based on several studies that compared the detection of muta-
tions in biopsies versus in plasma. For example, Thierry et al.
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[18, 19] reported high accuracy when using ctDNA to detect
mutations in KRAS and BRAF in colorectal tumors. Similar
observations have been seen with AKT1 and ESR1 mutations.
The threshold that defines a clonally dominant alteration is not
yet consensual. More efforts are needed to implement NGS for
ctDNA-based assays [20-22]. While progress is rapid, suitable
methods need to be applied, and more evidence is required to
support the validity of liquid biopsies for detection of clinically
relevant mutations in TSGs or CNAs.

can ctDNA identify patients who present a high risk
of relapse?

Studies have suggested that detection of residual ctDNA post-
therapy is associated with worse outcome, for example, in early
breast cancer patients [23]. It has also been shown that KRAS
mutations emerge in the blood of patients who receive anti-
EGFR antibodies months before radiographic relapse [24, 25].
While these results are extremely promising, more data are
needed before this approach can be recommended.

other applications of genomics:
resistance and intratumor heterogeneity

While the identification of drivers is the most frequent applica-
tion of precision medicine in 2015, there are several other appli-
cations with important perspectives.

Detecting subclonal alterations involved in resistance could
theoretically allow an early introduction of new therapy. Several
studies have shown that ctDNA can detect minor subclonal
alterations before they drive resistance (EGFR, T790M, ESR1,
K-Ras). Nevertheless, there is currently no evidence based on
clinical trials that treating a patient based on the detection of
subclonal alterations improves outcome. It must be pointed out
that purity of the samples and percentage of cancer cells must be
taken into account when analyzing subclonal alterations.

Detecting a clonally dominant genomic alteration involved in
resistance could allow patients to be treated with an individua-
lized approach to overcome resistance. Several phase I/II trials
[2] have shown that detecting and targeting a molecular mech-
anism of resistance could lead to an OR. For example, in the
AURA trials [2], AZD9291 was associated with 59% OR in
patients presenting with the EGFR T790M mutation, a genomic
alteration involved in resistance to gefitinib and erlotinib [2]. In
contrast, the response rates fell to 23% in patients without the
T790M mutation [2]. These results led to the approval of
AZD9291 by the FDA for patients presenting with the T790M
mutation diagnosed using an FDA-approved test (cobas® EGFR
Mutation Test v2, PCR-based assay, Roche Molecular Systems,
Inc.).

Genomic studies have shown that intratumor heterogeneity
(ITH) is present in many cancers [26]. Some studies have sug-
gested that heterogeneity, measured by the existence of multiple
subclonal alterations, could be associated with poor outcome
[27]. Nevertheless, the lack of standard methods to assess ITH is
currently limiting the capacity to explore its clinical implica-
tions. The panel agreed that whole-exome sequencing or high
coverage multigene panels carried out on multiple biopsy sites is
currently the standard procedure to assess ITH. Defining an
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optimal method for ITH scoring still requires some research.
New methods to assess ITH should be compared with this gold
standard approach. The panel agreed that ctDNA is a promising
tool to assess ITH [28].

Currently, genomics cannot explain cancer progression in all
patients. For example, expression of ER and AR are validated
targets in breast and prostate cancers, but there is no detectable
alteration at the DNA level in most patients. One important per-
spective in the field of personalized medicine is the development
of protein-based multiplex assays, like reverse-phase protein
array, to quantify protein expression and activation. There is a
body of evidence suggesting that a mutation in a driver kinase/
TSG does not always lead to activation of the corresponding
pathway. For example, mutations in PIK3CA do not necessarily
correlate with an active pathway at the time of diagnosis [29].
Selecting drugs based on mutation status only is therefore in-
complete. One major limitation of protein-based assays is the
lack of analytical validity and lack of guidelines for sample pro-
cessing. Another is the relative lack of sensitivity compared with
genomic assays. The panel agreed that there is a need to develop
efforts to integrate phospho-protein assays in precision medicine
programs in order to complement genomics and to identify pre-
dictors for drugs targeting pathways (mTOR, CDK4 inhibitors).

conclusion

The conclusion of this first consensus conference was that new
technologies have convincing analytical validity and the use of
small panels of biomarkers is required for optimal cancer care.
Nevertheless, there is not yet sufficient evidence that using large
gene panels improves patient outcome. Randomized trials are
currently addressing this question. The next MAP consensus
conference will be held in London, during 23-24 September 2016.
Among many items, this new consensus will discuss which
genomic alterations should be screened in patients with colon,
prostate cancer and sarcoma, together with precision medicine for
immunotherapeutics and models of implementation. Regarding
this latter point, speakers will debate about whether one universal
panel of genes should be implemented across diseases, or whether
each disease should have its own panel.
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