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 6 

Abstract: Prior investigations concur that the granite plutons in Scotland which are most likely to 7 

prove favourable for geothermal exploration are the Ballater, Bennachie, Cairngorm, and Mount 8 

Battock plutons, all of which have heat production values greater than 5 μW/m3. This heat 9 

production arises from the significant concentrations of potassium, uranium, and thorium in some 10 

granite plutons. A new field-based gamma-ray spectrometric survey targeted plutons which were 11 

poorly surveyed in the past or near areas of high heat demand. This survey  identifies several other 12 

plutons (Ben Rhinnes, Cheviot, Hill of Fare, Lochnagar, and Monadhliath) with heat production rates 13 

between 3 and 5 μW/m3 that could well have geothermal gradients sufficient for direct heat use 14 

rather than higher temperatures required for electricity generation. 15 

The Criffel and Cheviot plutons are examples of Scottish granites which have concentric 16 

compositional zonation and some zones have significantly higher (up to 20%) heat production rates 17 

than others in the same plutons. However, the relatively small surface areas of individual high heat-18 

production zones mean that it is unlikely to be worthwhile specifically targeting them.   19 

Supplementary material: The full set of heat production data are available at: 20 

http://dx.doi.org/10.5525/gla.researchdata.302 21 

Renewed geothermal exploration worldwide is being driven by the need to provide low carbon 22 

renewable energy (Younger 2014). The last drive in British geothermal exploration concentrated on 23 

identifying resources capable of generating electricity. At this time the Scottish granites were 24 

identified as lacking the required geothermal resources due to the very high temperatures (>130°C) 25 

and production rates required for power generation.  Renewed interest in the geothermal potential 26 

of the Scottish granites has recently emerged for two reasons. Firstly, a change in proposed 27 

exploitation from electricity generation to direct use heat; requiring much lower temperatures. 28 

Secondly, rigorous re-assessment of heat flow leading to an upgraded geothermal resource 29 

potential; suggesting higher temperatures at shallower depths than previously thought.  30 

In Scotland, heat is currently responsible for over 55% of energy demand and electricity only 20% 31 

(The Scottish Government 2016a). Hence the modern interest in geothermal for direct use heat 32 

purposes. This paper focuses on the case of Scotland due to its acute need for renewable heat as the 33 

country only generates 3% of heat from renewable sources; compared to the EU average of 16% 34 

(Scottish Government 2016a). The Scottish Government has set a target of producing 11% of heat 35 

from renewable sources by 2020, so to meet this target there needs to be a sudden and sustained 36 

growth in renewable heat capacity. Currently, 90% of Scotland’s renewable heat output is from 37 

biomass (Scottish Government 2016a), however widespread uptake of biomass for district heating 38 

schemes is hampered due to particulate and NOx emission standards in cities. Geothermal resources 39 

remain a hitherto untapped supply of large scale renewable heat with no emission or additional 40 

infrastructure issues which could block development in cities or other locations of high heat demand 41 

(e.g. distilleries and other heat-intensive industries).  42 

http://dx.doi.org/10.5525/gla.researchdata.302


Granite geothermal reservoirs are one of the three principal geothermal resources identified in 43 

Scotland, the others being hot sedimentary aquifers and abandoned mine workings (Gillespie et al. 44 

2013). Granite geothermal resources arise where plutons are naturally enriched in potassium, 45 

uranium and thorium. The natural radioactive decay of these elements produces heat. Despite this 46 

heat production being relatively small (on the order of several μW/m3 of granite),  the large volumes 47 

of the granite plutons (e.g. Rollin 1984) means there is often sufficient heat-producing rock available 48 

to materially elevate the geothermal gradient beyond that of the background heat conduction from 49 

the mantle.  The geothermal potential of the granites of Scotland was previously investigated as part 50 

of the UK-wide assessment of the potential for new sources of electricity generation in the 1970s 51 

and 80s (Downing and Gray 1986). Gamma-ray spectrometric surveys identified  four high heat 52 

producing granites in Scotland; Ballater, Bennachie, Cairngorm, and Mount Battock (Fig. 1).  The 53 

findings of these gamma-ray surveys were summarised by Downing and Gray 1986 (their Table 3.9). 54 

However the original data and methods are documented in a range of sources, including in-house 55 

BGS reports (Webb and Brown 1984), theses (Barritt 1983, Tindle 1982, Cassidy 1979, and 56 

Hennessey 1979) as well as various reported personal communications. Different methods were also 57 

reportedly used, including Instrumental Neutron Activation Analysis (INAA), X-ray fluoresence (XRF) 58 

or vague “field based techniques”. Furthermore, some granites plutons only yielded small numbers 59 

of heat production values, resulting in estimates which are not robust. Shallow (≤ 300m) heat flow 60 

assessment boreholes were subsequently drilled into the four granite plutons identified as high heat 61 

producing. The heat flow results from these boreholes were much lower than expected (Wheildon et 62 

al. 1984) and predicted low geothermal gradients. Consequently, exploration of the Scottish granites 63 

was discontinued. However, these studies neglected to correct the heat flow measurements for the 64 

cooling effects from periods of lower temperatures during the Pleistocene. That past climate can 65 

affect temperature in boreholes of several hundred metres depth was established decades ago (e.g. 66 

Anderson 1940). This effect is expected to be particularly acute in Britain, due to the large 67 

temperature differential between modern times and past ice ages largely a result of the current 68 

warming effect of the gulf stream.  Recent palaeoclimate corrections suggest that these granites 69 

represent significantly better resources than was previously realised (Westaway and Younger 2013, 70 

Busby et al. 2015). Topographical influences were also corrected for by Westaway and Younger 71 

(2013) and Wheildon et al. (1984) which had the effect of  reducing the heat flow estimate by 72 

approximately 5%.  73 

The corrected heat flow measurements combined with the current exploration being for direct use 74 

heat, mean that geothermal exploration and production would be at much shallower depths than 75 

previously considered. This has the effect of significantly reducing drilling costs and risk, lowering the 76 

significant economic barriers to the first steps of geothermal development. Although the previous 77 

gamma-ray spectrometry survey identified four high heat producing granites, other plutons were 78 

poorly surveyed e.g. the Hill of Fare pluton had only two measurements. To re-evaluate the 79 

radiogenic heat production properties of Scottish granite a new gamma-ray spectrometry survey has 80 

been conducted. The survey aims to reduce uncertainty over granite geothermal resources in 81 

Scotland by providing new heat production data for previously poorly surveyed granites. These data 82 

are made freely available so any assessment using these data can better understand how the heat 83 

production estimates were reached. The new data may also indicate possible granite geothermal 84 

resources that have previously been overlooked.   85 

Geological Setting 86 

The majority of Scottish granite plutons (and those of interest in this study) were emplaced following 87 
the Caledonian Orogeny and after final closure of the Iapetus during the late Silurian and Early 88 



Devonian (Thirlwall 1982, Stephens and Halliday 1984, Miles et al. 2016). Biostratigraphic (Kemp 89 
1987) and geochronological (Rock et al. 1986 and Kneller 1991) evidence provides a time of 420 Ma 90 
for final closure of the Iapetus. The post-Caledonian granites were emplaced between 435 and 390 91 
Ma (Halliday and Stephens 1984) but the majority were emplaced between 410 and 400 Ma (Soper 92 
1986). Magma was likely generated due to slab breakoff during collision of Baltica with the Scoto-93 
Greenland margin (Atherton and Ghani 2002).  The post-collisional regime of transpression and 94 
transtension resulted in the large lateral movements along the Great Glen and Highland Boundary 95 
Faults. 96 

The Scottish granites inherited their isotopic signature from their host terrain (Stephens and Halliday 97 
1984, Thirlwall 1989 and Canning et al. 1996) and the post Caledonian granites were emplaced over 98 
a similar time period (Miles et al. 2014). The granites are classified into four terranes: the Argyll and 99 
Northern Highlands Suite, the Cairngorm Suite, the South of Scotland Suite, and the Galloway 100 
Suite/Trans-Suture Suite (Highton 1999 and Miles et al. 2014). The Cairngorm Suite made up the 101 
granites which were previously identified as the best geothermal granite resource and these tend to 102 
have higher SiO2 contents and have generally evolved geochemical characteristics (Downing and 103 
Gray 1984).  Original interpretations of the post-Caledonian granites suggested emplacement was in 104 
analogous settings to Andean type subduction arcs. However there are significant compositional 105 
differences between the Caledonian Granite and granite in such an Andean environment (Pitch 106 
1983, Miles et al. 2014). Such disagreement testifies to the continuing research revealing ever 107 
increasing emplacement complexity of the Caledonian Granite than previously thought.  108 

A much younger suite of Tertiary granites in Scotland is represented in this study by the Arran 109 
granite. In contrast to the Caledonian granites, the Tertiary granites formed in response to 110 
emplacement of the Iceland mantle plume   111 

Methods 112 

Plutons Targeted 113 

In Scotland, there are many more distinct granite plutons than are covered in this study. Plutons 114 

were targetted in this study if they fulfilled one or more of these factors: whether the pluton had 115 

relatively few existing heat production data, whether the pluton was located near places of 116 

significant heat demand, and / or the pluton was previously considered a high heat producing 117 

granite.  118 

The Arran and Strathspey granites had no previous heat production data (locations shown on Fig. 1). 119 

Many Scottish granites had fewer than ten heat production data points, these were; Aberdeen (with 120 

a mean heat production of 2.2 µW/m3, and n=3), Ardclach (1.4 µW/m3, n=4), Ben Rhinnes (3.2 121 

µW/m3, n=6), Cheviot (3.0 µW/m3, n=6), Grantown (1.3 µW/m3, n=6), Hill of Fare (3.9 µW/m3, n=2), 122 

Monadhliath (5.7 µW/m3, n=6), Moy (2.1 µW/m3, n=6), and Ross of Mull (1.5 µW/m3, n=4). Many 123 

other Scottish granites also had similarly  few heat production data but the surveying focussed on 124 

those plutons nearer centres of heat demand and / or of larger exposed surface area. The Ballater 125 

(5.7 µW/m3, n=34), Bennachie (5.7 µW/m3, n=32), Cairngorm (5.0 µW/m3, n=233) and Mount 126 

Battock (5.0 µW/m3, n=48) granites were previously well surveyed but are included in this current 127 

survey to allow comparison between these likely high heat producers and the granites with lower 128 

heat production. Lochnagar (2.7 µW/m3, n=14) and Criffel (2.2 µW/m3, n=14) had fourteen and 129 

eighteen measurements respectively. Despite this current low heat production estimate Lochnagar 130 

is re-evaluated because of its close proximity and chemical similarity to the high heat-producing East 131 

Grampian granites (Webb and Brown 1984), which suggests it may have previously been 132 

underestimated. Whereas the proximity of the Criffel granite to the large heat demand of the town 133 

of Dumfries justifies a re-evaluation with a more robust estimate of heat production.    134 



Gamma-ray spectrometry measurements in the field 135 

A GAMMA SURVEYOR II (GSII), manufactured by GF Instruments in Brno, Czech Republic, was used 136 
to collect data from all the granites in this study. Using the same equipment and methods for each 137 
granite ensures the readings would  be consistent and directly comparable. The GSII uses a detector 138 
made of Bismuth Germanate Oxide with a volume of 20cm3. The analyser measures 1024 channels 139 
between 0.03 and 3 MeV. The detector material reacts with gamma-rays and produces photons of 140 
visible light. These release of these photons forces electrons to be ejected from another component, 141 
called the photomultiplier. These electrons then strike an anode producing a negative voltage pulse 142 
proportional to the energy of the incident gamma-ray photon. Analyzers within the GSII then use the 143 
combined pulses over minutes of readings to produce estimates for potassium, uranium, and 144 
thorium contents as radioactive decay from these elements produces gamma-rays of different 145 
energies.  For further details of the workings of gamma-ray spectrometry and geothermal 146 
exploration we refer the reader to McCay et al (2014). The  GSII was chosen for these surveys 147 
because it is not prone to significant signal drift caused by temperature and other influences, and 148 
thus does not require daily calibration. It is also a compact and relatively light device (weighing only 149 
a few kilograms) so is easy to carry in the mountainous and remote terrains which host most of the 150 
granite exposure in Scotland. The output of the GSII provides information on the concentrations of 151 
potassium (as percentage by weight), uranium and thorium (both as parts per million). These 152 
concentrations are readily converted into equivalent radiogenic heat-production rates, as explained 153 
below.  154 
 155 
To take measurements the GSII was placed directly against an exposed area of granite.  Gamma-rays 156 
can penetrate up to 0.5 m through rock, however the half-lengths of gamma-rays mean that the 157 
majority of the detected photons will come from the shallowest 15cm of rock with a smaller 158 
contribution from deeper sources. This effectively results in the sample collecting information from a 159 
15ch thick disc or rock which is 1m in radius (McCay et al. 2014). Raising the GSII above the ground 160 
would allow a much larger sample size to be effectively measured (e.g. Løvborg et al. 1979), due to 161 
gamma-rays being able to penetrate several hundred metres through air. However this elevated 162 
reading would be affected by the soil and vegetation cover on the rock so we opted for direct 163 
measurements to get a less ambiguous representation of granite heat production rates. The GSII is 164 
calibrated to take readings from a flat area of rock. If the measurement is taken in a depression then 165 
the readings will be overestimated due to gamma-rays from the overlooking areas of rock hitting the 166 
spectrometer, whereas if the measurement is on a mound that the readings will be underestimated 167 
(McCay et al. 2014).  Measurement time was between 3 to 5 minutes as this gave the best balance 168 
between accuracy and speed. For each sample, at least two measurements were taken, if these 169 
were not sufficiently similar (within 10% of the U value) then further readings were taken until  170 
consistent readings were gathered.  171 

 172 

Data Processing 173 

The concentrations of potassium, uranium, and thorium provided by the GSII were used in the 174 

following equation to estimate heat production (HP): 175 

𝐻𝑃(𝜇𝑊𝑚−3) =  𝜌 (0.035𝐶𝐾 + 0.097𝐶𝑈 + 0.026𝐶𝑇ℎ) (1)  

Where: ρ is rock density (kg m-3), CK is concentration of potassium by % weight, Cu and CTh are 176 

concentration of uranium and thorium in ppm. The potassium % weight used for heat production is 177 

elemental, as opposed to percentage weight of K2O used in other fields such as hydrogeology. The 178 

constants before each elemental concentration in equation 1 are based on the energy released 179 

during alpha, beta, and gamma decay of the radioelements (Birch 1954 and Rybach 1976).  180 



Given the practical difficulty in obtaining and transporting granite samples, and the protected status 181 

of some of the sites we surveyed, we did not take samples from each measurement location in order 182 

to find the density of granite. Instead we assumed a density of granite of 2.7g/cm3 for all samples 183 

based on information from the (Rollin 2009). For an example of how this assumption may influence 184 

the results, a sample with heat production of 4µW/m3 with a density of 2.6 would have a change of 185 

heat production of +/- 0.2 µW/m3 with a variation in density of +/- 0.1 kg/m3. Although this is not an 186 

insignificant influence on heat production it is not enough for a granite pluton to be incorrectly 187 

identified (or dismissed) as of high heat production.  188 

The arithmetic mean of the measurements was used to create an estimate of heat production for 189 
each pluton. Geometric means might be more appropriate in such a geological distribution  due to 190 
the arithmetic mean losing information about the small scale hetereogeneties in heat production 191 
observed in some locations, which could be due to the incremental emplacments of plutons over 192 
tens of millions of years (e.g. Glazner et al. 2004). For example, the Mount Battock pluton has an 193 
area approximately 2m2 where heat production is 15µW/m3. However arithmetic mean is preferred 194 
to be consistent with the previous literature on heat production data in the United Kingdom (e.g. 195 
Downing and Gray 1986). Any measurements which were noted in the field as being influenced by 196 
nearfield topography (Tyler 2000) were removed prior to averaging (for information these data are 197 
still included and clearly identified in the database linked to this paper). Many of the measurements 198 
from the Hill of Fare granite were overestimates because they were collected within abandoned 199 
quarries. A bespoke method was developed to deal with these issues in this plutons which is 200 
explained below. Finally the calculated arithmetic means were combined with those of previous 201 
studies presented in Downing and Gray (1986).  202 
 203 

Correction for overestimation in Quarry Measurements  204 

Many sample locations of the Hill of Fare pluton were taken from abandoned quarries. These 205 

quarries have the advantage of being relatively fresh faces as they have not exposed to erosion for 206 

as long as the natural outcrops. However 10 of these sample locations had the disadvantage that the 207 

nearby quarry walls and ledges would lead to overestimated results. There are no standard methods 208 

detailed in the gamma-ray spectrometry literature to deal with such problems, so a novel solution is 209 

proposed here. Potassium shows the most consistent concentrations of the three radio-elements in 210 

granites so it is the variation in uranium and thorium concentrations that generally determine higher 211 

and lower heat production zones. Weight percent K in granite is typically between 3.8 and 4.5 for 212 

the East Grampian Siluro-Devonian granites (Table 3.9 Downing and Gray 1986), which is the suite to 213 

which the Hill of Fare granite belongs. However values of potassium concentration in the quarries 214 

were consistently higher than 5.0 indicating that they are likely overestimates due to the other 215 

quarry walls and surfaces.  216 

The GSII is calibrated to be accurate when placed on a flat surface, the spectrometer effectively 217 

samples radiation incident from a solid angle of 2π steradians or a half space (Fig. 2). Hypothetically, 218 

a spectrometer placed underground would sample from and angle of 4π steradians or a full space, as 219 

it would be completely surrounded by radiogenic rock (Fix x – quarry effective sample volume). The 220 

shape of the quarries meant that the sample was effectively from 3π steradians or a three quarters 221 

space. This 3π sample volume should lead to an overestimation of the concentrations of 222 

radioelements by approximately 50%.  223 

Such an overestimation would affect all three radio-element estimations by the same proportion. So 224 

if a “true” value of one of the radio-elements was known, then the ratio between that true value and 225 

the spectrometer estimation would indicate the degree of overestimation.The concentrations of 226 

potassium have previously been relatively consistent in high heat production granites compared 227 



with uranium and thorium. Downing and Gray (1984) report that high heat producing granites in 228 

Scotland have average potassium concentrations ranging between 4.1% and 4.4%. On the Hill of Fare 229 

granite, flat surface measurements were consistent with this trend giving values ranging between 230 

4.0% and 4.8%.  When tested against quarry faces (i.e. the quarry effective sample volume on Fig. 2) 231 

the GSII gave a potassium concentration of 7.14%. Which is 60-70% higher than what would be 232 

expected from a flat surface, but in-line with the enhancement expected from a 3π steradian, or 233 

greater, sample volume.   234 

From the above test  a method was developed to normalise potassium, uranium, and thorium 235 

values. A “true” value of 4.5 was assumed for potassium concentrations. Then, all three of the 236 

radioelements were divided by the ratio between the measured potassium and the assumed 237 

“correct” value of 4.5. For example, if a potassium concentration value in the quarries was measured 238 

as 9.0, then the correction factor is 4.5/9.0 which is 0.5.The potassium, uranium, and thorium 239 

concentrations would need to be halved to achieve a corrected estimate of their concentrations. In 240 

total, ten sample locations underwent this correction for quarry topography in the Hill of Fare 241 

granite.  242 

Results 243 

Heat production values of granite plutons 244 

New gamma-ray spectrometry data were collected from 18 granite plutons (Table 1 and Fig. 3). The 245 

granites show a range of heat production values, with Strathspey the lowest at 1.20 μW/m3 and 246 

Ballater the highest at 8.22 μW/m3. Generally, with heat production any granite greater than 4 247 

μW/m3 is of interest for direct-use geothermal exploration as this value tends to be high enough to 248 

significantly raise the geothermal gradient over that of the surrounding rock (Gillespie et al. 2013). 249 

Additionally, 4 μW/m3 corresponds to approximately a value of 10 in the old imperial units for heat 250 

production (i.e. 10-13 calories/cm3). Naturally this is a guide and dependent upon local conditions; for 251 

instance, the unexposed Weardale granite in County Durham, England, has a heat production of 4.11 252 

μW/m3 but its insulating Carboniferous sedimentary overburden allows much higher temperatures 253 

to build up than the granite was exposed at the surface (Manning et al. 2007).  254 

For this paper we adopt the convention that any granite pluton with a mean surface heat production 255 

above 5 μW/m3 is considered high heat production, between 3 and 5 μW/m3 is considered 256 

marginally high heat production (referred to as marginal heat production), and below 3μW/m3 is low 257 

heat production. Four of the surveyed granites have high values of heat production; Ballater, 258 

Bennachie, Cairngorm, and Mount Battock (shown on Fig. 1). Five of the granites have marginal 259 

values of heat production; Ben Rhinnes, Cheviot, Hill of Fare, Lochnagar, and Monadhliath (shown in 260 

yellow on Fig. 1). Eight of the surveyed granites have low heat production; Aberdeen, Ardclach, 261 

Arran, Criffel, Strathspey, Grantown, Moy, and Ross of Mull (shown as grey on Fig. 1). The past heat 262 

production estimates were classified as “satisfactory” if there was sufficient quantity and spatial 263 

distribution of data (Downing and Gray 1986), however it was not stated what this meant. However, 264 

it is possible to infer that those plutons previously labelled as having satisfactory heat production 265 

estimates had more than ten samples from several locations in a pluton; for consistency this 266 

classification will be used in the following discussion.   267 

The Lochnagar granite can be classified as marginal heat production, with a value of 3.89 µW/m3. 268 

The lower historical value (2.7 µW/m3) was classified as low confidence, possibly due to only having 269 

14 heat production samples from the Lochnagar pluton. Downing and Gray (1984) classify granites 270 

with similarly few data as robust estimates, but do not specify why Lochnagar is not considered a 271 

robust estimate.   272 



The Hill of Fare pluton previously only had two data points, far too few for the estimate of 3.9 273 

μW/m3  to be considered representative of the pluton. The new estimate, consisting of 31 data 274 

points, give a surface heat production average for of μW/m3. The Hill of Fare therefore classified as a 275 

marginal heat producer.  276 

The heat production estimate for the Monadhliath pluton is 4.98 μW/m3. Although this is a marginal 277 

classification, it is only 0.02 μW/m3 below a high heat production classification, it could therefore be 278 

reasonably classified as a marginal/high heat production granite. Only six measurement informed 279 

the previous heat production estimate for the Monadhliath pluton, but with the addition of the 17 280 

new measurements then the current estimate would typically be considered representative of the 281 

pluton (i.e. following the method of Downing and Gray 1984). Lochnagar, Hill of Fare and 282 

Monadhliath are located relatively close to each other (Fig. 1) and are part of the same geochemical 283 

suite as the four high heat producing granites (Busby et al. 2015). 284 

Cheviot and Ben Rhinnes were both previously estimated as low heat producers but these did not 285 

have enough data for confidence in these estimations (Fig. 4 and Table 1). The new heat production 286 

data indicate the Cheviot granite is marginal at 3.70 μW/m3 which is higher than the previous 287 

estimate of 3.00 μW/m3. There are still few data available for the Ben Rhinnes pluton, due to lack of 288 

exposure, but a combined mean of 3.33μW/m3 suggests this granite is likely to be at the lower end 289 

of the marginal category.   290 

Of the eight plutons classified as low heat production only Arran and Criffel previously had 291 

significant number of measurements, at 20 and 93 respectively. The plutons Moy, Ross of Mull, and 292 

Grantown had over ten measurements when the new and old data were combined. Even with the 293 

combination of new and old data Aberdeen (six measurements), Ardclach (seven measurements), 294 

and Strathspey (five measurements) are still currently poorly surveyed. The lack of exposure of these 295 

granites inhibits further field campaigns adding to these totals. However no measurements of these 296 

plutons were much greater than the mean, as shown by the small error bars on figure 3, which does 297 

not suggest that further measurements would be likely to reclassify these plutons. 298 

Zoned plutons 299 

Some granite plutons are concentrically zoned, with the zones differentiated on the basis of 300 

geochemical/mineralogical changes in composition (e.g. Stephens et al. 1985). Here we investigate 301 

whether these individual zones represent distinctive areas of high heat production within a pluton. 302 

Sufficient data were collected from two zoned plutons which would allow robust comparison 303 

between the individual zones. These are the Criffel Pluton in near Dumfries in South West Scotland, 304 

and the Cheviot Pluton which lies on the eastern area of the Scottish-English border (see Fig. 1 for 305 

specific locations). 306 

Criffel Pluton 307 

Work by Stephens et al. (1985), Stephens (1992) and continued by Miles et al. (2013) identified five 308 

zones of granite forming concentric rings within the Criffel Pluton (Fig. 5). The outer two zones (1 309 

and 2) are granodiorites while the inner three zones (3, 4 and 5) are granites. The general trend is for 310 

the granite to become more silicic towards the inner zones, with the outer zone having SiO2 at 311 

approximately 65% compared with 72% of the inner most zone (Stephens and Halliday 1980). 312 

The highest value of heat production is in zone 2 (the most outer zone but one) with 2.51 µW/m3, 313 

and the lowest is in the central zone 5 with 1.83 µW/m3 (Fig. 6 and Table 2). From zone 2 to zone 5 314 

there is a general trend for heat production to decrease towards the centre of the pluton. However 315 

the outermost zone 1 does not follow this trend. Although there are clear differences in the heat 316 



production, none of the zones are above 3 µW/m3. All zones are considered as low heat production 317 

and unlikely to host enhanced geothermal gradients due to the natural decay of radioactive 318 

material.  319 

Cheviot Pluton 320 

The first detailed geological mapping of the Cheviot pluton was conducted by Jhingran (1942), who 321 

identified three main types of granite, an outer Marginal zone (1), an middle Granophyric zone (2), 322 

and an inner Standrop zone (3);  with a fourth zone being an area that displays properties of the 323 

outer zones 2 and 1 (Fig. 7). The Cheviot pluton is surrounded by contemporaneous lavas. Al-Hadf 324 

(1985) subsequently produced a more detailed map of the Cheviot pluton; however this has not 325 

been peer-reviewed and published. Additionally we do not have enough data for the Cheviot pluton 326 

to provide robust differentiation between many granite types, for these reasons we use the Jhingran 327 

(1942) classification. The whole pluton is classified as granodiorite, except for some small areas of 328 

the middle Granophyric zone 2 which are true granite. 329 

The outer marginal Zone 1 has the highest heat production of 4.16 µW/m3, which would be enough 330 

to classify it as a marginal heat producing granite (Fig. 8 and Table 3). Zone 3 has a lower heat 331 

production of 3.51µW/m3, zone 2 also appears relatively low however only having one 332 

measurement means that this value cannot be considered representative of the zone. The 333 

surrounding lavas heat production, of 3.43 μW/m3 is lower than that of the granites, however this 334 

value is surprisingly high for andesites. A possible explanation for the high heat production is the 335 

hydrothermal alteration of feldspar to saussurite (Lee 1982, Al-Hafdh 1985). Hydrothermal 336 

Alteration breaks down the structure of the minerals allowing remobilisation of the radioelements, 337 

which can result in high concentrations of radio-elements away from their emplacement location. 338 

Discussion 339 

Are there any reclassifications of geothermal potential for any Scottish granites? 340 

Figure 4 compares our new heat production estimates with previous estimates for those plutons (cf 341 

Downing and Gray 1986 - their Table 3.9). Any significant divergence from the equivalence line 342 

would indicate a pluton that may require re-evaluation. Table 1 shows the mean surface estimate 343 

values plotted on figure 4 and then number of data used for each mean, in addition to the mean 344 

surface heat production of the combined new and historical data. 345 

The four East Grampian granite plutons of Ballater, Bennachie, Cairngorm, and Mount Battock all 346 

have heat production rates in excess of 5 µW/m3 , and are robustly characterised as high heat 347 

producers by both the new and historical data (Fig. 4 and Table 1). All four of these plutons are 348 

classified as part of the Cairngorm suite of post-Caledonian granites (Highton 1999).The new and 349 

historical data agree that Cairngorm, Mount Battock, Ballater, and Bennachie plutons are all high 350 

heat producers. However, the new estimates are generally higher than the historical estimates but 351 

not to the degree to require a significant re-appraisal of their geothermal potential.  The new data 352 

show that four granite plutons should be reconsidered  potential resources as marginally high: Hill of 353 

Fare, Monadhliath, Lochnagar, and Cheviot. The Hill or Fare, Lochnagar, and Cheviot granites were 354 

previously overlooked due to lack of data, and the few data available appeared to indicate that they 355 

would be low heat producers. Monadhliath was previously considered a high heat producer, but the 356 

few heat production data and poor accessibility meant it has achieved less attention than the four 357 

other high heat production granites. All of these plutons, with the exception of the Cheviot, are part 358 

of the Cairngorm suite, the same as the high heat producing granites..  359 



The Hill of Fare pluton had only two previous measurements of heat production which gave a mean 360 

value of 3.9 µW/m3 (Table 1). The new data (n=29) give a more robust value of 4.03 µW/m3 when 361 

combined with the two previous data, which classifies the grantie as a marginal heat producer.  362 

The Monadhliath granite was previously thought likely to be a high heat producer and potential 363 

geothermal resource. However, only six heat production data were collected on the Monadhliath 364 

granite. The new 17 data points show the Monadhliath granite being a comparable resource to the 365 

four high heat producing granites with a heat production of 4.98 μW/m3, which is barely under the 366 

threshold to be considered a high heat producer.  367 

The Lochnagar and Cheviot granites have, hitherto, been disregarded as potential geothermal 368 

resources, as they apparently had low heat production values of 2.7 µW/m3 and 3.0 µW/m3 369 

respectively (Table 1). However, when our new data are considered then the Lochnagar granite is 370 

classified as a marginal heat producer at 3.89 µW/m3 and the Cheviot granite is only slightly lower at 371 

3.70 µW/m3.  372 

What is the significance of classifications for geothermal exploration?  373 

The new gamma-ray spectrometry results confirm the classification of the high heat production 374 

granites i.e. Bennachie, Ballater, Cairngorm, and Mount Battock. These four granites are the most 375 

likely to have useful temperatures for direct use heat exploitation at the shallowest depths of the 376 

Scottish granites. And would therefore, present the most promising resources if there were nearby 377 

heat demands. This study also identifies those granites with low heat production, which are not 378 

expected to have useful temperatures at depths for an economic geothermal scheme. These low 379 

heat production granites include Arran and Strathspey on which there were previously no heat 380 

production data.  All, apart from Grantown, of the low heat production granites previously had few 381 

measurements leading to uncertainty in their classification (Table 1). An example of the poor heat 382 

resource of these granites comes from a borehole (NJ91SE3 at UK national grid reference 395090 810900) 383 

which was drilled into country rock 3km adjacent to the Aberdeen granite. The borehole recorded a 384 

temperature of 32⁰C at 1494m (Groves et al. 2012). Although the borehole is not directly in the 385 

granite a higher geothermal gradient would be expected if the granite itself had significantly 386 

elevated temperatures. The geothermal gradient found in this borehole is very low at around 13.4°C 387 

per km. This would require such great depths to be drilled to reach useful temperatures, that even a 388 

direct use geothermal project would be unlikely to be economic. Removing the uncertainty that 389 

these granites have poor geothermal resource, means that exploration effort can be focussed on 390 

those granites with favourable resources potential. 391 

More crucially, marginal heat production granites have been identified, these are the Lochnagar, 392 

Monadhliath, Hill of Fare, and Cheviot granite as well as the Ben Rhines pluton to a lesser extent. 393 

These plutons could be viable geothermal resources if a heat-demanding development be proposed 394 

within close proximity to these granites. The Hill of Fare Pluton is of particular interest because it lies 395 

close to the large heat demand of the growing Banchory District Heating Scheme. For this reason, a 396 

feasibility study investigated using the Hill of Fare granite as a geothermal resource for the Banchory 397 

District Heating Scheme (The Scottish Government 2016b). The study predicted temperatures at 398 

depth within the Hill of Fare Pluton (Table 4). These predicted geotherms are sufficient for direct use 399 

geothermal to compete economically with a natural gas boiler over the lifespan of a project; in 400 

addition to the significant emissions advantage over natural gas and air quality advantages over 401 

biomass. This suggests, that geothermal exploration in Scotland can rightly expand, beyond merely 402 

the four high heat production granites, to also consider the marginal heat production granites as 403 

targets.  404 



Robust values of heat production are the first step in the geothermal exploration process of 405 

radiothermal granites. The simple ranking system, proposed in this paper, builds the framework 406 

upon which the next stage of the exploration process can be targeted towards the granites which 407 

are most likely to have favourable geothermal gradients, i.e. the high and marginal heat production 408 

granites. The next stage in the appraisal of these granites would require deep scientific boreholes of 409 

1000m and greater depth. The kilometre depth of these scientific boreholes is required to provide 410 

certainty of the heat resource, due to past experience of the misleading heat flow that shallow 411 

boreholes can present (Westaway and Younger 2013 and Busby et al. 2015). The scientific borehole 412 

would provide information about heat and permeability at depth (cf Manning et al. 2007; Younger 413 

and Manning 2010), which would create the information required to justify commercial exploration 414 

boreholes.   415 

Could the higher heat production outer rims of the zoned granites be a potential 416 

geothermal resource? 417 

Significant variations in heat production can exist with a pluton made up of distinct geochemical 418 

zones.  Here, we discuss the possibility of these distinct high heat production zones offering a 419 

potential geothermal exploration target within an otherwise discounted granite. We do not explore 420 

the emplacement and post-emplacement processes which have led to zonal differences in 421 

concentrations of potassium, uranium, or thorium but focus on the potential geothermal resource 422 

that these differences could pose. However there is much scientific and applied merit in 423 

investigating these processes further as they could elucidate how heat production may change with 424 

depth (particularly in relation to 3D geometry) and help reduce the risk of the geothermal 425 

exploration process within granite.  426 

The investigation of the Criffel pluton shows that there were heat production differences between 427 

the geochemically distinct zones of the granite (Figures 7 and 8). However none of these zones were 428 

of high heat production, so these differences are not considered significant for geothermal 429 

exploration of this pluton. 430 

In the Cheviot granite  all the zones would also individually be classed as a marginal heat producer, 431 

except for  the outermost zone 1 which has a heat production of about 4 μW/m3. Zone 1 was 432 

significantly higher (by 0.47 μW/m3) than the next highest heat production which was zone 2, 433 

however zone 2 only had one measurement so can not be considered a reliable estimate.  This outer 434 

zone 1 may have high enough heat production to be regarded as a possible geothermal target but it 435 

has a relatively small surface area compared to the uniformly high heat producing granites. For 436 

comparison the surface area of the Bennachie pluton is 55 km2 whereas the surface area of the 437 

marginal zone 1 of the Cheviot Pluton is 14 km2. Zone 1 only represents 25% of the entire Cheviot 438 

Pluton surface area. There are some Scottish granites which are high heat producing and have small 439 

surface areas, e.g. the Fearn Pluton (5.1 μW/m3, 12 km2) located north of the Great Glen Fault (Fig. 440 

3.3 in Downing and Gray 1986). These small surface area granites have not been considered for 441 

geothermal resources as their likely low volume at depth may not allow heat to sufficiently 442 

accumulate from the heat production. Although their surface area may be misleading and actually 443 

be part of a significant volume of granite at depth (i.e. similar to the tip of the iceberg). However the 444 

small surface area of high heat production couple with the uncertainty of the three dimensional 445 

shape of the granites mean that these zoned granites are unlikely to be favourable exploration 446 

targets. For these reasons, exploration has been focussed on those granites known to have 447 

significant subsurface volumes due to their large surface areas. The heat production data do not 448 

support a change to this approach. For the Cheviot Pluton a model of how the different granite types 449 

are distributed at depth would help constrain how much of the volume of the Cheviot Pluton is the 450 



higher heat producing zone. The Cheviot Pluton could still represent an interesting geothermal 451 

target if it is likely that zone 1 encompasses a larger proportion of the volume than its surface area 452 

suggests. 453 

Conclusions 454 

High heat production Scottish granites are identified as the Ballater, Bennachie, Cairngorm, and 455 

Mount Battock plutons. These four are likely to be the best granite-based geothermal resources in 456 

Scotland. 457 

Marginal heat production granites are identified as the Ben Rhinnes, Cheviot, Hill of Fare, Lochnagar, 458 

and Monadhliath plutons. Although these granites may not present such a favourable geothermal 459 

resource as the high heat producers, they are still worth investigating as a supply to any proximal 460 

large heat demand.  461 

Low heat production granites are identified as Aberdeen, Ardclach, Arran, Criffel, Strathspey, 462 

Grantown, Moy, and Ross of Mull. These granites are very unlikely to offer geothermal gradients of 463 

interest for economical direct use of heat. As such, they would be unlikely to be worth further 464 

exploration if a large heat demand existed in the vicinity of these granites.  465 

Zoned granites are unlikely to present geothermal resources within specific geochemical zones. The 466 

relatively small surface area and likely small volume of any single higher heat production zone means 467 

that they are unlikely to create large reservoirs of elevated temperature at depth.  468 

This study shows the value that a relatively quick and simple gamma-ray spectrometry survey can set 469 

initial targets for geothermal exploration into granite plutons. The classifications of high, marginal, 470 

and low heat production provide a basis for exploring the possibility of exploiting direct-use 471 

geothermal heat by any future development with large heat demands.  472 
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 631 

Figure Captions 632 

 633 

Fig. 1. Map showing locations of major exposed granite plutons in Scotland. Numbered plutons are 634 

those surveyed in this study. 1 Moy, 2 Ardclach, 3 Ben Rhinnes, 4 Grantown, 5 Monadhliath, 6 635 

Bennachie, 7 Cairngorm, 8 Ballater, 9 Hill of Fare, 10 Aberdeen, 11Strathspey, 12 Lochnagar, 13 636 

Mount Battock, 14 Ross of Mull, 15 Arran, 16 Cheviot, 17 Criffel. Plutons identified in this study as 637 

high heat producing are 6, 7, 8, and 13, those identified as marginally high heat producing  are (3, 5, 638 

9, 12, and 16). 639 
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Fig. 3. Schematic of simplified quarry topography. The GSII spectrometer is calibrated assuming a 2π 640 

sample volume, but the quarry topography led to an effective sample volume of approximately 3π. 641 

Fig. 3. Mean surface heat production estimates for surveyed plutons in this study. Whiskers on the 642 

icons are the standard error of the mean (standard deviation divided by the square root of the 643 

number of data). 644 

Fig. 4. Mean surface heat production estimates from figure 3 (y-axis) compared with historical 645 

estimates (x-axis) given in table 3.9 in Downing and Gray (1986). Dotted line shows equivalence line. 646 

Hollow circles show the estimates which Downing and Gray (1986) stated there was inadequate data 647 

to derive a satisfactory heat production estimate. Arran and Strathspey granites are not included in 648 

this graph as these plutons had no previous heat production data. 649 

Fig. 5. Map of the different geochemical zones within the Criffel Pluton, after Miles et al. (2013). 650 

Dotted lines show areas where sample points are clustered. 651 

Fig. 6. Mean surface heat production values for the zones of the Criffel Pluton . 652 

Fig. 7. Map of the different geochemical zones within the Cheviot Pluton, after Jhingran (1942). 653 

Dotted lines show areas where sample points are clustered. 654 

Fig. 8. Mean surface heat production values for the zones of the Cheviot Pluton. Note zone 2 only 655 

had one measurement so does not include standard error.  656 

Table 1 Number of data and surface heat production estimate for each pluton from the new data 657 

presented in this paper and the historical data from Downing and Gray (1986; their Table 3.9), and 658 

then the combined surface heat production estimate from new and historical data. *Indicates 659 

historical data with low confidence attached to the estimate. + criteria for re-evaluation are classified 660 

as follows: (1) few existing heat production data, (2) located near places of significant heat demand, 661 

(3) previously considered a high heat producing granite 662 

Table 2 Mean surface heat production values for the zones of the Criffel Pluton. 663 

Table 3 Mean surface heat production values for the zones of the Cheviot Pluton 664 

TABLE 4 Predicted temperatures in the Hill of Fare granite for three “heat scenarios” from The 665 

Scottish Government (2016b).Temperatures were calculated assuming a related but lower heat flow 666 

to that measured in the nearby high heat producing granites. 667 


