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ABSTRACT

N-3 PUFA (n-3) polyunsaturated fatty acids (PUFA) are a family of fatty acids mainly found in
oily fish and fish oil supplements. The effects of n-3 PUFA on health are mainly derived from its
anti-inflammatory proprieties and its influence on immune function. Lately an increased
interest in n-3 PUFA supplementation has reached the world of sport nutrition, where the
majority of athletes rely on nutrition strategies to improve their training and performance. A vast
amount of attention is paid in increasing metabolic capacity, delaying the onset of fatigue, and
improving muscle hypertrophy and neuromuscular function. Nutritional strategies are also
frequently considered for enhancing recovery, improving immune function and decreasing
oxidative stress. The current review of the literature shows that data regarding the effects of n-3PUFA
supplementation are conflicting and we conclude that there is, therefore, not enough evidence

supporting a beneficial role on the aforementioned aspects of exercise performance.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(httpy/creativecommons.org/licenses/by/4.0/).

1. Introduction

infections (URTI). Athletes are, therefore, constantly seeking
effective nutrients to maintain good health and avoid disrup-

There has always been an interest in using different nutrients
and supplements for improving athletic performance and
recovery. Indeed, many athletes use daily dietary supplements
with most attention usually on increasing metabolic capacity,
delaying the onset of fatigue, improving muscle hypertrophy,
and shortening recovery periods. Moreover, exercise training
and competition are physiologically demanding for athletes
and as such they can face a temporary reduction in immune
function, where they are more at risk of upper respiratory tract

tions to their training regime. N-3 PUFA (n-3) polyunsaturated
fatty acids (PUFA) have recently been considered as a supple-
ment which may have a role in the above processes [1],
although the evidence for such claim is still premature. This
review will consider different aspects of exercise performance
and trials in this area using n-3 PUFA supplementation.

The n-3 PUFA family, derived from the essential fatty acid
alpha-linolenic acid (ALA), is involved in important body
functions. In the modern Western diet n-3 PUFA can be found
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rate variability; MPS, Muscle protein synthesis; n-3 PUFA, (n-3) Polyunsaturated fatty acids; PBMC, Peripheral blood mononuclear cells;
ROS, Reactive oxygen species; TBARS, Thiobarbituric acid reacting substances; URTI, Upper respiratory tract infection.
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Table 1 - Effects of n-3 PUFA supplementation on exercise performance.

Reference (y) Population (n) n-3 PUFA  Exercise Supplementation Effects of omega 3
dose (g/d) duration
Rodacki et al. (2012) Healthy women, 64 + 1.4y (n =45) 2 90 days strength training 90 and 150 days Peak torquet
Rate of torque development?
McGlory et al. (2016) Healthy men, 20.5 + 0y (n = 20) 4.5 Acute bout of 8 weeks MPS—
resistance exercise
Jouris et al. (2011) Healthy, 35 + 10y (n = 11) 3 Acute bout of eccentric 7 days DOMS |
biceps curls (120% 1RM)
Lembke et al. (2014) Healthy, 18.6 + 1.2y 2.7 Acute bout of maximum 30 days DOMS |
(n-3 PUFA: n = 43) eccentric forearm extensions Blood lactate |
and 18.9 + 1.1 y (placebo: n = 22) C-reactive protein |
Corder et al. (2016) Healthy women, 33 + 2 y (n = 27) 3 Maximum eccentric 9 days DOMS |
biceps curl exercises Skin temperature—
C-reactive protein—
Tsuchiya et al. (2016) Healthy men, 19.5 + 0.8 y (n = 24) 0.86 Maximum eccentric elbow 8 weeks DOMS |
flexion exercises Strength and range of motion{
IL-6]
Tinsley et al. (2016) Healthy women, 22.5 £ 1.8y 6 10 sets to failure of elbow 1 week DOMS |
(n-3 PUFA: n = 8) flexion and
and 24.7 + 3.6 y (placebo: n = 9) leg extension machines
Mickleborough et al. (2015) Untrained healthy, 1.2 Downbhill running (-16% grade) 26 days Blood markers of muscle damage/inflammation |
220+2y (n=32) DOMS |
Strength and range of motion
Lenn et al. (2002) Healthy, 22.7 + 39y 1.8 Maximum isokinetic 30 days Muscle strength —
men (n = 13) eccentric elbow flexion DOMS—
and 24.5 + 5.4 y women (n = 9) Blood markers of muscle damage/inflammation—
Gray et al. (2014) Healthy, 23 + 2.3 y (n = 20) 3 Maximum eccentric knee 6 weeks Muscle strength —
extensor muscles contractions DOMS —
Blood markers of muscle damage —
TBARS and cellular DNA damage |
Bortolotti et al. (2007) Healthy men, 24 + 1y (n = 8) 7.2 30 min cycling 14 days Energy metabolism—

exercise (50% VOomax)

VOomax—

°]7
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Peoples et al. (2008)

Ninio et al. (2008)

Buckley et al. (2009)

Rontoyanni et al. (2012)

Kawabata et al. (2014)

Macartney et al. (2014)
Gray et al. (2012)

Da Boit et al. (2015)

Oostenbrug et al. (1997)

Zebrowska et al. (2015)

Well-trained men, 27.1 + 2.7 y
(placebo: n = 7)

and 232 + 1.2 y (-3 PUFA: n = 9)
Overweight, 25-65 y (n = 65)
Footballers, 21.7 + 1.0y

(n-3 PUFA)

and 23.2 + 1.1 y (placebo) (n = 25)
Healthy men, 18-45y (n = 22)

Healthy, 23 £ 1y (n = 20)

Healthy, 1840y (n = 26)
Healthy, 24 + 3.8y (n = 16)

Healthy, 25.8 + 5.3 y (n = 37)

Trained cyclists, 19-42 y (n = 24)

Cyclists, 23.1 + 5.4y (n = 13)

4.7

3.6

13

Sustained submaximal
exercise tests (55% of peak workload)

Aerobic exercise
(45 min, 3 times a week, at 75% HRpax)
2 treadmill runs to exhaustion

12 min multi-stage exercise
stress (25 W increase)
Submaximal exercise test
(30 min at 2-mM of BLa,
followed by 30 min at 3-mM)
5 min maximum

work capacity trial

1 h cycling (70% VOzpeax)

Cycling time trial to fixed
energy expenditure

Cycling time trial of 1 h

VO,max cycling test

8 weeks

12 weeks

5 weeks

Single dose

8 weeks

8 weeks
6 weeks

6 weeks

3 weeks

3 weeks

Submaximal and peak HR and oxygen consumption
during exercise |

VOypeax , time to exhaustion and peak workload —
Resting and submaximal HR during exercise |

HRV (high-frequency)?t

Diastolic BP and submaximal HR during exercise |
VOypeak , time to exhausition and recovery time —

Systemic vascular resistance |
Cardiac output during exercise —
Oxygen consumption and RPE |

Resting and submaximal HR and HR recovery |
HR peak—

HR and O, consumption, at rest and

during submaximal exercise—

Time trial completion time, HR and

O, consumption, at rest and during
submaximal exercise —

VOomax, maximal power and time

to exhaustion —

VOumax and endothelial functiont
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in botanical sources, which are rich in ALA; and in marine
sources, e.g. oily fish (e.g. salmon), crustacean (e.g. krill) and
the liver of lean fish, which are rich in eicosapentaenoic acid
(EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid
(DPA). These n-3 PUFA are also frequently called ‘essential’ fatty acids,
as they cannot be readily synthesized de novo by the body. Hence, it is
important to consume n-3 PUFA to provide our body with the amount
of EPA and DHA necessary for optimal physiological functioning [2].

The effects of n-3 PUFA on health are mainly derived from
its immunomodulatory and anti-inflammatory proprieties
and its influence on immune function [3]. Through these
properties it has been demonstrated that n-3 PUFA supple-
mentation may help in the prevention or treatment of many
inflammatory-related diseases such as diabetes [4-6] and
cardiovascular disease [7-13]. However, in recent years, the
certainties of this assertion have been challenged by new
discoveries [14,15]. Particularly, recent meta-analysis has failed
to prove any associations between n-3 PUFA supplementation
and improvements in vascular diseases [16,17] or diabetes [18].

Because of the aforementioned properties over the last
decade or so there has also been an increasing interest in
potential benefits of n-3 PUFA supplementation in athletic
populations, with an ultimate goal to improve athletic/sporting
performance. The aim of the current review is to give a
comprehensive overview of the current literature which has
investigated the effect of n-3 PUFA supplementation in athletic/
sporting performance (Table 1).

2. Skeletal Muscle

Good muscle health is one of the main aspects influencing
athletes’ performance. Skeletal muscle performance is frequently
determined by the use of standard measurements such as rate of
muscle protein synthesis (MPS), muscle mass, maximum voluntary
contraction, rate of torque development, and for recovery measures
of soreness, swelling and markers of muscle damage. Regarding the
maintenance and hypertrophy of muscle, research has highlighted
positive effects of n-3 PUFA on muscle anabolism and catabolism
[19-21]. Although early research focused mainly on cancer cachexia
[22,23], more recent studies suggest a positive impact also in healthy
people. Indeed, Smith et al. [19] showed that 8 weeks of n-3 PUFA
(4 g/day) administration significantly increased (p < 0.05) MPS in
young and older healthy subjects during a hyperaminoacidemic-
hyperinsulinemic clamp. These findings are also supported by
animal [20,24], as well as in vitro studies [25,26]. While of clear
importance, these short-term studies do not necessarily mean
that long-term increases in muscle mass and function will be
observed with n-3 PUFA supplementation.

However, in recent work 6 months of supplementation
with 3.36 g of n-3 PUFA (1.86 g EPA and 1.50 g DHA) daily
resulted in a significant increase (p < 0.05) in thigh muscle
volume (of 3.6%) and muscle strength (of 4.0%) in older people
[21]. Furthermore, when n-3 PUFA is combined with physical
activity similar effects have been noted [27]. In this study
90 days of strength training improved peak torque and rate of
torque development to a greater extent (p < 0.05) in older
women, supplemented with 2 g/day of n-3 PUFA (~0.4 g EPA
and 0.3 g DHA/day) for 90 or 150 days, compared to the group
receiving only the training. Interestingly, our recent work has

indicated that this effect may only be seen in older women but not
older men (unpublished data). Whilst these data in older people are
of interest and important, its relevance to young athletic populations
undertaking regular strength training, where the anabolic response
to exercise alone will be closer to maximal compared to older people,
is not clear. Indeed, recent work has shown that 8 weeks of
supplementation with 4.5 g/day n-3 PUFA (3.5 g EPA, 0.9 g DHA
and 0.1 g DPA) in young healthy males had no effect on MPS
measured after a bout of resistance exercise and the ingestion of
30 g whey protein [28]. The long-term effect of n-3 PUFA
supplementation in such populations remains to be established.

Muscle recovery after an exercise bout might influence
training adaptations. In recent years considerable interest has
been shown in the effect of n-3 PUFA on muscle recovery,
damage and soreness - although the findings are mixed. In
one study eleven healthy adults performed eccentric biceps
curls at 120% of their 1RM after 14 days of dietary n-3 PUFA
restriction and again after 7 days of 3 g/day n-3 PUFA
supplementation. The results showed that n-3 PUFA supple-
mentation decreased (p < 0.05) post-exercise soreness [29],
with similar findings reported in other studies [30-33]. Further
studies support these findings with n-3 PUFA attenuating
(p < 0.05) blood markers of muscle damage (skeletal muscle
slow troponin I, myoglobin, creatine kinase), inflammation
(TNF-a), DOMS and loss of strength and range of motion [34].
On the other hand Lenn et al. [35] did not find any change in
strength, pain or markers of muscle damage and inflamma-
tion following 50 maximal effort isokinetic eccentric elbow
flexion contractions after 30 days of 1.8 g/day of n-3 PUFA in
healthy volunteers. Similarly, 6-week supplementation with
3 g/day n-3 PUFA did not alter force recovery, muscle soreness
or markers of muscle damage after eccentric contractions of
the knee extensor muscles in recreationally active individuals
(age 23 + 2.3, mean + SD) [36]. It is, therefore, unclear whether
n-3 PUFA can be recommended to athletic populations to
improve these aspects of recovery during training or in
competition. A possible explanation for these contrasting
results is the use of different types of exercise to induce
muscle damage, as well as dose and duration of n-3 PUFA
supplementations among studies.

3. Energy Metabolism

The availability of energy, i.e. the supply of ATP to the actin-
myosin cross-bridge, is clearly another important aspect of
exercise performance. To date the information available regarding
energy metabolism and n-3 PUFA in humans is very limited, while
there are many in vitro and animal studies [37-39]. However, in
this review we have chosen to focus on human studies.

Healthy skeletal muscle tissue is characterized by metabolic
flexibility, which is the ability to switch from one substrate to
another when required. Briefly, metabolic flexibility in human
muscle cells comprises suppressibility: the ability of glucose to
suppress fatty acid (FA) oxidation; adaptability: the ability of
cells to increase FA oxidation upon increased FA availability;
and substrate-regulated flexibility: the ability to increase FA
oxidation when changing from a high glucose, low fatty acid
condition to a high fatty acid, low glucose condition. In an in
vitro study Hessvik and colleagues found that 24 hours of
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exposure with 100 pM EPA in human myotubes significantly
increased suppressibility, adaptability, substrate-regulated
flexibility and upregulated specific genes involved in fatty acid
p-oxidation compared to pre-treatment with unsaturated fatty
acid oleic acid [40]. This suggests an overall improvement in
skeletal muscle metabolic flexibility after EPA administration.
In agreement with these findings a recent metabolic study
reported that treatment with n-3 PUFA prevents metabolic
dysfunction in skeletal muscle of mice, by limiting the
accumulation of intramyocellular lipid in type I muscle fibres
[41]. According to these findings n-3 PUFA supplementation
might be beneficial for endurance athletes who rely on fatty
acid as substrate to sustain prolonged efforts.

Nevertheless, n-3 PUFA seems to have little effect on human
metabolism [42]. Six weeks of n-3 PUFA (2.4 g/day) supplementation
failed to modify both resting metabolic rate (n-3 PUFA = +17 +
260 kcal, placebo = -62 + 184 kcal; p > 0.05) and respiratory
exchange ratio (n-3 PUFA =-0.02 + 0.09, placebo = +0.02 +
0.05; p > 0.05) in healthy subjects. Additionally, Bortolotti et al.
[43] investigated whether 14 days of 7.2 g/day n-3 PUFA
supplementation affect energy and substrate metabolism
during a 30 min cycling exercise at 50% VO,max. They reported
neither changes in energy expenditure derived from carbohy-
drate oxidation (83 +2% vs 84 + 1%, p > 0.05) nor from fat
oxidation (13 + 1% vs 11 + 1%, p > 0.05) in control conditions
and after n-3 PUFA supplementation, respectively. Moreover,
there was no difference in VOyppay (384 + 2.0 mL kg ' min~* vs
38.6 + 2.2 mL kg ' min~?, p > 0.05) between the 2 groups.

It is evident that, with only a few contradictory studies
available, drawing any conclusion on the effect of n-3 PUFA
on energy metabolism would be inappropriate.

4, Endurance Performance

There have been several studies investigating the effects of n-3
PUFA supplementation on cardiovascular responses to a bout of
endurance exercise. In myocardial infarction survivors, supple-
mentation with 810 mg/day of DHA and EPA, versus corn/olive
oil placebo, for 4 months reduced resting HR with concomitant
increases in stroke volume, cardiac ejection time, heart rate
variability (HRV) and HR recovery after exercise [44]. In the same
year Walser and colleagues [45] investigated the effects of
6 weeks of supplementation with 500 mg/day DHA and EPA,
versus safflower placebo, in healthy volunteers. In this study no
changes in blood pressure or HR, both at rest and during
exercise, were observed. Resting brachial artery diameter,
conductance and blood flow were not altered by n-3 PUFA
supplementation but the increases in these measures, during
contraction, were greater with the supplementation.

More recent studies, in young healthy people, have
generally confirmed that n-3 PUFA supplementation can
alter various aspects of the cardiovascular system. N-3 PUFA
supplementation has been found to lower submaximal and
peak HR, and whole body oxygen consumption during
exercise [46], reduce resting and submaximal HR and increase
high-frequency power for HRV [47], reduce diastolic BP and
submaximal HR [48], decrease systemic vascular resistance
[49], reduce oxygen consumption and RPE [50] and reduce
resting HRV and submaximal heart rate [51]. Furthermore in

in vivo studies, in rat hindlimb muscle, n-3 PUFA supplementation
reduced skeletal muscle oxygen consumption during contractions
[52]. 1t is worth pointing out that in our own work we have been
unable to find any differences in HR or oxygen consumption either
a rest or during submaximal exercise with either fish or krill oil
supplementation [53,54].

Whilst the majority of these studies show beneficial
cardiovascular effects of n-3 PUFA supplementation during
exercise, whether these result in any increases in exercise
performance is far from guaranteed. In fact, looking at the
literature it is evident that n-3 PUFA supplementation has no
effect on endurance exercise performance. For instance, no
differences in VO, .y, maximal power or endurance perfor-
mance (time to completion) were found in healthy well-
trained cyclists after 3 weeks of n-3 PUFA (6 g/day), n-3 PUFA
+ vitamin E (300 IU) or placebo (microcrystalline cellulose)
[55]. These findings have been supported by recent work
demonstrating no effect of n-3 PUFA supplementation on
endurance performance or recovery in Australian Rules
footballers (treadmill run to exhaustion) [48], well-trained
cyclists (cycle to exhaustion) [46] or young healthy people
(cycling simulated time trial) [54]. On the other hand, one
study did find that n-3 PUFA supplementation (1.1 g/day), versus
placebo (lactose monohydrate), resulted in a 3.7 mL kg™ min™*
increase in VO,p,ax, alongside an increase in endothelial function,
although no endurance performance measure was made [56].
Overall, while n-3 PUFA supplementation confers some “benefi-
cial” effects on cardiovascular function, during exercise, this does
not translate into an improvement in endurance performance.

5. Immune Function

Over the last ~30 years many studies have investigated the
effects of exercise on the function of the immune system (see
[57]). In brief, those participating in high levels of endurance
exercise are more susceptible to the development of URTI [58],
and this can interfere with performance during training and
in competition. Furthermore, after a single bout of high-
intensity long-duration endurance exercise there is clear
evidence of an immunosuppression [59-64|. Based on previ-
ous work that n-3 PUFA supplementation can alter the
function of the immune system, it has been hypothesised
that such supplementation could modulate immune function
after exercise and potentially reduce the incidence of URTI.
Research investigating the effects of n-3 PUFA supplemen-
tation on immune function and exercise has, however, shown
mixed results. In the first such study it was shown that n-3
PUFA supplementation (3.6 g/day), in young endurance-
trained runners, for 6 weeks did not alter plasma cytokine
levels, creatine kinase levels or immune cell numbers [65],
with similar findings reported by Nieman and colleagues [66].
In further research in elite competitive swimmers it has been
shown that n-3 PUFA supplementation (1.8 g/day), versus
placebo (mineral oil), for 6 weeks in the run up to a major
competition reduces prostaglandin E2 levels, and increases
PBMC proliferation and the production of IFN-y [67]. In our
recent work we have found that n-3 PUFA supplementation
(1.6 g/day), versus placebo (olive oil), for 6 weeks in young
healthy males, results in an increase in PBMC IL-2 production
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and NK cell cytotoxic activity 3 h after a single bout of
endurance exercise [50]. Other measures that were found
not to change with n-3 PUFA supplementation were neutro-
phil phagocytosis and oxidative burst, plasma IL-6 and
cortisol, and PBMC IL-4 and IFN-y production. Interestingly,
we have also found similar results in our recent study
employing krill oil (360 mg/day), versus placebo (oil mix
similar to average European diet), when investigating young
healthy individuals [54]. Summarising, it appears that n-3
PUFA does have some effect in modulating the immune
system in the recovery period after exercise but whether it
can reduce the incidence of URTI remains to be established.

In a recent study we investigated the effects of a daily
supplement drink containing 1.1 gn-3 PUFA, 8 g whey protein
and 10 pg vitamin D3, versus placebo drink, for 16 weeks, in
the incidence of URTI in a young active population. The daily
supplement resulted in a reduction in the number URTI
symptom days, although the actual number of URTI episodes
and severity of each URTI did not differ between supplemented
and placebo groups, nor did the concentration and secretion
rate of IgA in saliva samples [68]. Whether this small effect on
URTI symptom days is due to the n-3 PUFA in the supplementis
not clear and so further work is needed to establish if n-3 PUFA
supplementation can reduce URTI incidence in athletic
populations.

N-3 PUFA have been shown to benefit people with
exercise-induced bronchoconstriction (EIB) [69]. While the
mechanisms underlying EIB are not fully uncovered, there is
strong evidence that airway inflammation is involved [70].
Many elite athletes suffer from EIB and this can be a limiting
factor in their performance [71]. Strategies to reduce the
effects of EIB were, therefore, clearly warranted. The group of
Mickleborough and colleagues [72] have investigated the
effects of n-3 PUFA supplementation (5.2 g/day), versus
placebo (olive oil), in asthmatics with documented EIB on
exercise-induced airway narrowing and inflammation. In this
study n-3 PUFA supplementation resulted in a marked
improvement in post-exercise lung function and reduced
concentrations of sputum immune cell (eosinophil and
neutrophil) count, pro-inflammatory eicosanoid (LTC,4-LTE,,
and PGD,) concentrations and cytokine (IL-13 and TNF-a)
concentrations. So, while it is unclear whether athletic
populations in general would benefit from n-3 PUFA supple-
mentation to improve immune function, there may be a
potential beneficial effect for those suffering from EIB,
although higher doses of n-3 PUFA were employed in this
specific population.

6. Oxidative Stress

It is possible that due to the high number of double bonds
present an increase in n-3 PUFA fatty acid intake may lead to an
increase in lipid peroxidation and the generation of a state of
oxidative stress [73], which has been linked to many disease
states such as Parkinson’s [74] and cardiovascular disease [75].
However, an optimal level of reactive oxygen species (ROS)
production has a positive signalling role [76]. Indeed, there is
evidence that this ROS production is important in modulating
skeletal muscle contractile function, promoting mitochondrial

biogenesis and for normal skeletal muscle remodelling in
response to exercise [75]. In fact, supplementation with high
levels antioxidants (vitamins C and E) blunts many of these
beneficial adaptions [77], although others do not support this
finding [78].

The results of previous investigations into the effect of n-3
PUFA supplementation on resting levels of markers of
oxidative stress are conflicting. It has been demonstrated
that 6 weeks n-3 PUFA supplementation (3.4 g/day), versus
placebo (sunflower oil), in postmenopausal women resulted
in a 23% increase in thiobarbituric acid reacting substances
(TBARS), with no changes in plasma F,-isoporstanes [79].
Further evidence of increased oxidative stress has also been
found in further studies [80,81], while other work has shown
reductions in markers of oxidative stress with n-3 PUFA
supplementation [82-84].

In exercise studies the results are equally as ambiguous. N-3
PUFA supplementation was found to reduce, post-exercise, the
rate of LDL oxidation [55], TBARS and DNA damage [36]. On
the other hand McAnulty et al. [85] showed that supplementa-
tion with n-3 PUFA (2.4 g/day), versus placebo (soybean oil)
in trained cyclists resulted in a greater post-exercise plasma
concentration of F2-isoprostanes following three days of 3-hour
cycling sessions. In addition, there are studies which find no
effect of n-3 PUFA supplementation on exercise induce markers
of oxidative stress [86,87]. A great deal of the confusion in this
area likely relates to the many different participant groups,
exercise protocols and chosen marker/markers (and analytical
techniques) of oxidative stress. However, even when taking
these into account, it is not clear to which groups of people
participating in what form of exercise n-3 PUFA supplementa-
tion may have any effect. It is also not clear what effect, if
any, alterations in free radical production or antioxidant
capacity would have on adaptations to exercise training, and
so recommending n-3 PUFA supplementation on this basis
would be futile.

7. Neuromuscular Function

As mentioned above, supplementation with n-3 PUFA for
150 days has been reported to enhance strength [27] and also
neuromuscular recruitment following exercise training
programmes [88]. The main acid thought to be responsible
for this is DHA as it is the essential constituent of neuronal
membrane phospholipids [88,89] and thus considered funda-
mental for development of normal brain function and neuronal
pathways [90].

Strong evidence for this role of DHA exists on preterm
infants who have lower DHA levels when compared to term
infants [91] and as such are typically smaller and neurolog-
ically underdeveloped [92]. This is further supported by a
series of convincing studies demonstrating enhanced neural
and body mass development in preterm infants supplement-
ed with DHA [93-97]. Although the precise mechanisms for
such development is unclear, Lewis et al. [88] demonstrated
enhanced neuromuscular development after 21 days of n-3
PUFA supplementation during exercise training and the
authors proposed this may have been caused by increased
acetylcholine concentration and acetylcholinesterase activity
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at the neuromuscular junction. However, this theory was
derived from an animal study [98] therefore comparing this to
dynamics of human skeletal muscle makes the theory quite
speculative. Other potential theories include alterations in
membrane composition and fluidity [98], which may accelerate
conductance of action potentials down the neurons [99] to
increase motor unit firing rate onto the sarcolemma; but the
same issues exist when attempting to relate this to human
skeletal muscle. Nevertheless, it is possible that chronic n-3
PUFA supplementation may enhance neuromuscular activity,
via DHA, but more research needs to be carried out to establish this
proposed effect, particularly in well-adapted athletic populations.

8. Conclusion

Whilst n-3 PUFA supplementation has been recommended for
athletic populations on the basis of the available literature [1],
at this time, we find no merit in such a recommendation.
There are certain populations where n-3 PUFA supplementation
might be a potential aid (i.e. athletes with EIB) and it may be the
case that other groups would benefit (i.e. strength athletes) but
there is currently a paucity of data from high quality studies in
this area.
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