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Abstract: 16 

For parasitoids, the host represents the sole source of nutrients for the developing immature. 17 

Subsequently, host quality is an important factor affecting immature development and the 18 

resulting fitness of the emerging parasitoid, with impacts on fecundity, longevity and offspring 19 

sex ratio. Host age is an integral component of host quality and a key factor in host selection by 20 

the female parasitoid. The current study aimed to investigate the effect of decreasing host quality 21 

(determined by increasing host age) on adult life history traits (size, wing loading, longevity, and 22 

fecundity) and nutritional reserves (protein, lipid and glycogen concentrations) of the parasitoid 23 

Trichogramma brassicae. Higher quality hosts resulted in the production of larger offspring with 24 

increased resource reserves and enhanced mobility. One day old eggs contained significantly 25 

more protein and triglyceride than 25 and 45 day old eggs. Quality of host and fitness of reared 26 

wasps decreased due to host aging. Parasitoids reared on one day old hosts were larger, with 27 

greater fecundity and longevity, a reduced wind loading index, and produced a higher proportion 28 

of female offspring when compared to those reared on 25 and 45 day old hosts. In addition, 29 

wasps reared on one day old hosts contained higher energy resources, as determined by 30 

triglyceride, glycogen and protein reserves, which are essential to successful offspring 31 

production. One day old hosts can therefore be considered as the best age for producing wasps 32 

with greater fitness since they contain the highest amount of protein, glycogen and triglyceride. 33 

This has implications for the mass rearing of T. brassicae and enhancing the efficacy of this 34 

biological control agent.  35 

Keywords: 36 

Protein, Triglyceride, Glycogen, Life History Trait, Fecundity, Energy Reserves, Developmental 37 

Requirements  38 



3 
 

Introduction: 39 

Host quality is a critical factor in determining developmental rate and success of parasitoids (Liu 40 

et al. 2013). For the immature parasitoid developing within the host, the host represents the sole 41 

source of nutrients. As a result, evaluation of host quality by the parental female parasitoid is 42 

vital to her reproductive success and offspring fitness, and a host selection trade-off results due 43 

to variation in host quality and the developmental requirements of the offspring (Harvey and 44 

Strand, 2002, Beckage & Gelman, 2004). The life stage of the host is an important factor in 45 

determining host quality and, as such, plays a key role in host selection (Godfray, 1994, Colinet 46 

et al., 2005, Kishani Farahani & Goldansaz 2013). Different host stages may represent qualities 47 

and quantities of various resources due to variation in size, physiological, behavioral and 48 

immunological status (Chong & Oetting, 2006). Many studies suggest that host quality 49 

preference by parasitoids affects adult size and reproductive performance of progeny (Harvey, 50 

2005, Lampson et al., 1996), female egg load at emergence (Liu, 1985, Mills & Kuhlmann, 51 

2000), as well as sex allocation, percent parasitism and immature developmental time of 52 

parasitoids (Godfray, 1994, Schmidt, 1994, Kishani Farahani and Goldansaz 2013).  53 

The major nutritive components involved in development are triglycerides, carbohydrates and 54 

proteins. Essential amino acids are necessary for viability, thus imbalances in dietary amino 55 

acids can lead to significant effects upon development and fitness of both immatures and adults 56 

(Dadd 1985) leading to dietary restrictions on lifespan (Grandison et al. 2009). Carbohydrates 57 

provide the required energy for development and also represent the mechanism by which energy 58 

is stored for future use (Dadd 1985). Lipids, primarily triglyceride, are storage lipids in insects 59 

and have several roles in energetic biological demands such as flight and reproduction, both of 60 

which are imperative in the efficiency of parasitoids (Bauerfeind and Fischer 2005, Fischbein et 61 
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al. 2013). Visser and Ellers (2012) believed that the addition of a lipid source improved or 62 

maintained nutrient availability for parasitoids and increased their effectiveness as biological 63 

control agents within agro-ecosystems. Thus, studying the content of these resources in adults 64 

may provide an index to correlate trade-offs in decision making during the host selection process 65 

by mothers and the obtained benefits by offspring.  66 

Numerous environmental factors including humidity, photoperiod and temperature (Pizzol et al. 67 

2012), in addition to biotic factors such as host age or size (Berrigan 1991, Martel et al. 2011) 68 

are known to influence effective parasitism by Trichogramma parasitoids. To date, limited 69 

studies have documented the potential effects of host egg age on Trichogramma wasp fitness 70 

(Pak et al. 1986, Moreau et al. 2009). However, the effect of host nutritional quality on adult 71 

wasp fitness across multiple life history traits has not been well studied. This study represents the 72 

first study to investigate the impact of host nutritional quality on multiple aspects of wasp fitness 73 

within a single study. Assessing multiple life history traits within a single study will provide 74 

valuable, comparative information on how and which traits are impacted by host nutritional 75 

quality, enabling us to elucidate the optimal host age to maximize wasp fitness.  76 

The study species of the current research is Trichogramma brassicae Westwood (Hym.: 77 

Trichogrammatidae). Species belonging to the Trichogramma genus are endoparasitoids of 78 

lepidoperan eggs, although some have the potential to attack eggs of other insect taxa such as 79 

Diptera and Coleoptera (Mansfield and Mills, 2002). Trichogramma brassicae is a biological 80 

control agent which has been used against various pests (van Lenteren, 2000, van Lenteren and 81 

Bueno, 2003, Bigler et al., 2010, Parra et al., 2010, Ebrahimi et al. 1998, Poorjavad et al. 2012) 82 

and is thus of great importance within agro-ecosystems. The current study aims to investigate the 83 

effect of host quality on adult fitness using T. brassicae as a study organism. By understanding 84 
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how and which traits are impacted by host nutritional quality, we may determine the optimal host 85 

age for maximum wasp fitness, with such knowledge feeding into the mass rearing of wasps for 86 

biological control purposes. More specifically, the study aims to test the following hypotheses: 87 

(1) hosts of different ages vary in nutritional quality, (2) parasitoids reared on hosts of different 88 

ages will be provided with different amounts of protein, triglyceride and glycogen during 89 

immature development and, this in turn will affect multiple aspects of their life history, including 90 

body size, longevity and fecundity.  91 

Materials and methods 92 

Parasitoids and their host 93 

Parasitoids were obtained from cultures maintained at the Biological Control Research 94 

Department (BCRD) of the Iranian Research Institute of Plant Protection (IRIPP). The original 95 

source of the cultures were parasitoids obtained from parasitized eggs of Ostrinia nubilalis 96 

Hübner (Lep.: Pyralidae), collected from northern Iran (Baboulsar Region, South of the Caspian 97 

Sea) in 2014. Parasitoids were reared at 25±1ºC, 50±5% RH, and 16:8 L: D on eggs of Ephestia 98 

kuehniella Zeller (Lepidoptera: Pyralidae). Eggs were obtained from a culture, reared at 25±1ºC 99 

on wheat flour and yeast (5%), maintained at the Insectary and Quarantine Facility of University 100 

of Tehran. Approximately 20 mated female moths were kept in glass containers (500 ml) to 101 

provide eggs for experiments. 102 

To produce adult wasps for experiments, one hundred one day old eggs (high quality eggs), 25 103 

day old (intermediate quality eggs) and 45 day old eggs (low quality eggs) were exposed to one 104 

day old females for 24 hours to rear wasps on different host qualities. After 24 hours, the eggs 105 

were removed and kept under controlled conditions of 25±1ºC, 16L: 8 D, and 50±5% RH in a 106 

growth chamber and checked until emergence of adult wasps. The twenty-five day old host 107 
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treatment was performed separately to show the intermediate host age effects on adult wasp 108 

fitness.  109 

Determination of glycogen, triglyceride and protein concentration 110 

To determine the resources obtained from high, intermediate and low quality hosts by adult 111 

wasps, 50 newly emerged wasps were exposed separately to one day old, 25 day old and 45 day 112 

old hosts for 24 hours, maintained in tubes (10×1 cm) and prepared with 100 host eggs glued on 113 

cardboard. To avoid superparasitism by adults, only one female was introduced to each tube. 114 

Females were fed with a 10% honey solution, and maintained under controlled conditions of 115 

25±1ºC, 70±10 RH and 16:8 (L: D). Wasps reared on each host quality were used for the 116 

extraction of macromolecules utilizing the methods detailed below.  117 

Glycogen determination 118 

Fat bodies of 30 adults per treatment were removed and immersed in 1 ml of 30% KOH 119 

w/Na2SO4. Tubes containing the samples were covered with foil to avoid evaporation and boiled 120 

for 20-30 min. Tubes were subsequently shaken and cooled in ice. Two ml of 95% EtOH was 121 

added to precipitate glycogen from the digested solution. Samples were again shaken and 122 

incubated on ice for 30 min. Following the incubation on ice, tubes were centrifuged at 13000 123 

rpm for 30 min. Supernatant was removed and pellets (glycogen) were re-dissolved in 1 ml of 124 

distilled water and shaken. Standard Glycogen (0, 25, 50, 75 and 100 mg/ml) was prepared 125 

before adding phenol 5%. Incubation was performed on an ice bath for 30 min. Standards and 126 

samples were read at 492 nm (Microplate reader, Awareness Co., USA) and distilled water was 127 

used as a blank (Chun and Yin, 1998). 128 

Triglyceride determination 129 
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A diagnostic kit from PARS-AZMOON® Co. was used to measure the amount of triglyceride in 130 

the adult parasitoids. One hundred wasps from each treatment group were used for triglyceride 131 

measurements. Reagent solution contained phosphate buffer (50 mM, pH 7.2), 4-chlorophenol (4 132 

mM), Adnosine Triphosphate (2 mM), Mg2+ (15 mM), glycerokinase 0.4 kU/L), peroxidase (2 133 

kU/L), lipoprotein lipase (2 kU/L), 4-aminoantipyrine (0.5 mM) and glycerol-3-phosphate-134 

oxidase (0.5 kU/L). Samples (10 µL) were incubated with 10 µL distilled water and 70 µL of 135 

reagent for 20 min at 25 °C (Fossati and Prencipe, 1982). The optic density (ODs) of samples 136 

and reagent as standard were read at 546 nm. The following equation was used to calculate the 137 

amount of triglyceride: 138 

𝑚𝑚/𝑑𝑑 =
𝑂𝑂 𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠
𝑂𝑂 𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

× 0.01126 

 139 

Protein determination 140 

Protein concentrations were assayed according to the method described by Lowry et al. (1951). 141 

The method recruits reaction of Cu2+, produced by the oxidation of peptide bonds with Folin–142 

Ciocalteu reagent. In the assay, 20 µL of the sample was added to 100 µL of reagent, and 143 

incubated for 30 min prior to reading the absorbance at 545 nm (Recommended by Ziest Chem. 144 

Co., Tehran-Iran). One hundred adult wasps from each treatment were used in this experiment. 145 

Morphometric measurements: 146 

Body size 147 

To correlate body size with fitness parameters, the length of the left hind tibia of each individual 148 

was measured using a binocular microscope (0.5×6.3, Olympus SZ-CTV) connected to a video 149 

camera (JVC KY-F). Tibia length is a commonly used indicator of body size in parasitoid wasps 150 
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and correlates strongly to other measures such as dry mass (Godfray1994). From photographed 151 

images, tibia length was determined using Image J software.  152 

The wing loading value was obtained by calculating the ratio between the body mass and the 153 

wing area. Wing loading of females establishes a good index of their flight capacity. Lower wing 154 

loadings are considered to represent better dispersal capacities for individuals (Gilchrist and 155 

Huey 2004, Vuarin et al. 2012). Using weight as an index of size, for each treatment reared on 156 

high, intermediate and low quality hosts, a minimum of 40 females were selected randomly and 157 

frozen in liquid nitrogen on emergence to be weighed on a microbalance to ±0.1 µg (Mettler 158 

Toledo XP2U) (Ismail et al. 2012). At least 40 females for each host quality treatment were 159 

photographed under a binocular microscope (0.5×6.3, Olympus SZ-CTV) connected to a video 160 

camera (JVC KY-F). The Image J software was used to determine the area of the left wing.  161 

Longevity 162 

Following wasp emergence, adult longevity without food (but with access to water) was 163 

measured to estimate longevity with only capital resources available (n= 40 females reared on 164 

high, intermediate or low quality hosts, i.e. a total of 120 females). This represents the amount of 165 

energy reserves within the body after development. Individual adults were placed in small tubes 166 

(1.5 cm in diameter and 10 cm long) and were monitored hourly until death after the first 12 167 

hours of life.  168 

Fecundity 169 

To compare parasitoid fecundity among treatments, 120 randomly selected newly emerged 170 

wasps (40 per each host quality) were maintained in tubes (10×1 cm) prepared with 100 host 171 

eggs glued on cardboards. The females were fed with a 10% honey solution. Egg cards were 172 

replaced every 12 hours (until the wasp died) and maintained under controlled conditions of 173 
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25±1ºC, 70±10 RH and 16:8 (L: D). The preliminary test showed that adults oviposited the 174 

majority of eggs in the first 6 hours of life. Subsequently, 40 newly emerged wasps from each 175 

treatment group (a total of 120 females) were selected and exposed individually to 100 host eggs 176 

for 1 h before removing the egg cards. This was repeated for the first 6 hours of an individual 177 

wasp’s life. Lifetime fecundity was determined by counting the number of parasitized 178 

(blackened) eggs. Parasitoids were sexed according to antennae morphological differences (Pinto 179 

1998), providing sex ratios associated with different types of hosts. 180 

Statistical analysis:  181 

Numerical data were analyzed by Generalized Linear Models (GLM) based on a Poisson 182 

distribution and log-link function. Likelihood ratio tests were used to assess the significance of 183 

the 'host age' factor. The rate of produced females was analyzed by GLM based on a Binomial 184 

Logit distribution (Crawley 1993, Le Lann et al. 2014). All the recorded times were compared 185 

with Cox Proportional Hazards models. When a significant effect of the treatment was found, the 186 

tests were followed by Bonferroni’s post hoc multiple comparison tests, and the two-by-two 187 

comparisons were evaluated at the Bonferroni-corrected significance level of P = 0.05/k, where k 188 

is the number of comparisons. Data are presented as means ±SE. All statistical analyses were 189 

performed using SAS software (SAS Institute Inc. 2003). 190 

Results: 191 

Host eggs 192 

Host age significantly affected the protein content of the host (χ2= 94.79, p<0.0001), with the 193 

results showing that protein amount dropped significantly in response to egg aging. One day old 194 

eggs contained significantly more protein than 25 and 45 day old eggs respectively (χ2 
1 vs 195 

25=396.8, p<0.0001, χ2 
1 vs 45=327.9, p<0.0001), and 45 significantly more than 25 day old eggs 196 
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(χ2=9.42, p=0.009).  The amount of triglyceride in hosts was also significantly affected by host 197 

age (χ2=28.27, p<0.0001). One and 25 day old eggs showed no significant difference in the 198 

amount of triglyceride (χ2=1.36, p=0.51), while one and 45 day old eggs were significantly 199 

different (χ2=7.47, p=0.02), as were 25 and 45 day old eggs (χ2=11.98, p=0.0025). Finally, the 200 

glycogen content of the host was also significantly affected by host age (χ2=12.62, p=0.0004). 201 

One and 25 day old eggs (χ2=15.19, p<0.0001) and one and 45 day old eggs (χ2=12.57, 202 

p=0.0004) significantly differed with regards to glycogen content. However, no significant 203 

difference was revealed between 25 and 45 day old eggs (χ2=0.13, p=0.72) (Figure 1). 204 

Adult parasitoids 205 

Host age significantly affected the protein content of the emerging wasps (χ2= 121.53, p<0.0001) 206 

(Figure 1). Wasps reared on 1 day old eggs contained significantly more protein than 25 and 45 207 

day old respectively (χ2 
1vs 25=35.6, p<0.0001, χ2 

1 vs 45=30.4, p<0.0001) while no significant 208 

differences were observed between 25 and 45 day old eggs (χ2=0.14, p=0. 93).  Host age 209 

significantly affected triglyceride amount in wasps reared on different host ages (χ2=36, 210 

p<0.0001). One and 25 day old eggs showed significant differences in triglyceride (χ2=8.29, 211 

p=0.015) as did one and 45 day old eggs (χ2=15.6, p=0.0004). In addition, triglyceride content 212 

differed between 25 and 45 day old eggs (χ2=7.61, p=0.022). According to our findings, 213 

glycogen amount in the emerging wasps was not affected significantly by host age (χ2=0.37, 214 

p=0.544). The glycogen content of wasps reared on one and 25 day old (χ2=1.15, p=0.56), one 215 

and 45 day old (χ2=1.46, p=0.48) and 25 and 45 day old eggs (χ2=0.06, p=0.96) did not show 216 

significant differences (Figure 1). 217 

Host age showed significant effects on wasp fecundity (χ2= 5.67, P =0.01).  Adult wasps reared 218 

on one-day-old hosts produced the same offspring number when compared to wasps reared on 25 219 
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day old hosts (Figure 2). However, adult wasps laid more female eggs in one day old hosts with a 220 

sex ratio of 1:3 (M: F), whereas the wasps laid more male eggs in 25 and 45 day old hosts with a 221 

sex ratio of 2:1 and (M: F). Adult wasp longevity was significantly affected by host age (χ2= 222 

19.47, P <.0001), with wasps reared on high quality hosts living longer than those reared on 25 223 

and 45 day old eggs respectively (Figure 2). Survival curves of wasps reared on different host qualities 224 

are shown in Figure 3. 225 

Tibia length (χ2= 61.83, P <.0001) and weight (χ2= 6.58, P=0.01) were significantly affected by 226 

host age. Wasps reared on 1 day old eggs showed higher tibia length (χ2= 7.75, P =.0054) and 227 

weight (χ2= 61.83, P <.0001) than wasps reared on 25 day old eggs (Figure 4).  228 

Wing area was significantly affected by host age (χ2= 53.94, P<.0001), with this parameter 229 

decreasing with host age (1 to 25 days old) (Figure 5). Furthermore, wing loading index was 230 

significantly affected by host age (χ2= 7.03, P=0.009) (Figure 5). 231 

Discussion: 232 

The current study provides the first study to investigate the effect of host quality across multiple 233 

fitness parameters within a single study. The study thus provides comparative information, 234 

enabling us to elucidate how host quality affects multiple life history traits (body size and wing 235 

loading, longevity, fecundity and adult energy reserves) of parasitoid wasps, and ultimately wasp 236 

fitness. From a biological control perspective, this knowledge can inform the commercial mass 237 

rearing of parasitoid wasps, informing which age of host should be utilized to maximize both the 238 

proportion of female offspring and the fitness of the emerging parasitoids, and ultimately their 239 

efficacy as biological control agents.  240 

Host eggs of different ages were shown to provide differing nutritional resources for the 241 

developing immature, thus supporting our first hypothesis. Results showed that host age, acting 242 
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as a proxy for host quality, significantly affected life history traits and the nutritional reserves of 243 

T. brassicae adults. Wasps reared on high quality hosts were bigger, with greater fecundity and 244 

longevity, and produced more female offspring compared to those reared on intermediate and 245 

low quality hosts. Furthermore, wasps reared on high quality hosts showed lower wing loading 246 

index compared to wasps reared on low quality hosts. Wasps reared on high quality hosts also 247 

contained greater energy reserves, as determined by the body content of triglyceride, glycogen 248 

and protein. 249 

 For many endoparasitic Hymenopterans such as Trichogramma spp., their eggs possess no yolk 250 

and, as such, the parasitoids lay their eggs inside the body of a host which subsequently provides 251 

all nutrients for both embryonic and larval development (Chapman, 2012).  In the body of 252 

insects, glycogen, triglyceride and protein represent the three main storage macromolecules 253 

responsible for several energetic demand processes. Phosphorylation of glycogen and 254 

triglyceride, as well as transamination of protein molecules, provides intermediate components 255 

for the electron transport system providing energy, oxygen and water (Nation, 2008, Arrese & 256 

Soulages 2010). The presence of these components, as obtained from the egg host, is thus 257 

essential for embryo development. In particular, it is the fatty acids stored as triglyceride, and fat 258 

reserves that are the most important reserve used by insects to provide energy for the developing 259 

embryo (Athenstaedt & Daum 2006, Ziegler & Van Antwerpen 2006). Reserves are 260 

subsequently carried through to adulthood and are depleted during periods of starvation or 261 

reproduction. In larval stages, glycogen is stored in fat bodies followed by active feeding by 262 

wasps larvae. In addition, glycogen represents the primary source of energy fuel for biological 263 

activity of larvae (Chapman 2012, Klowden 2007). Due to the precise processes behind the 264 

utilization of storage macromolecules, changes in the amounts of triglyceride, protein and 265 
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glycogen may alter the suitability of the host for the development of parasitoid offspring, and 266 

host acceptance by the parental parasitoid. This is supported by a previous study by Barrett and 267 

Schmidt (1991) which investigated discrepancies in the amino acid content of the egg hosts of 268 

Trichogramma minutum. Whilst variation in amino acid content was evident, variation was 269 

greater in the egg hosts than in the emerging parasitoids, suggesting that metabolic compensation 270 

is occurring, although at a detriment to development. Furthermore, ovipositing females are 271 

believed to allocate eggs in accordance with the nutritional quality of the host, allocating 272 

proportionately fewer eggs to low quality hosts (Barrett and Schmidt 1991).   273 

The nutritional content of host eggs is known to vary with age, as the chemical composition of 274 

the insect eggs changes rapidly from a more fluid medium to complex tissues as the egg 275 

develops. Our results showed that the total amount of protein and triglyceride in 45 day old eggs 276 

(low quality eggs) significantly decreased as a result of egg aging. Such changes to egg 277 

composition can further exert a negative effect on parasitism via pre-imaginal mortality, most 278 

likely the result of poorer resource availability (Brodeur & Boivin 2004, Da Rocha et al. 2006). 279 

According to Benoit and Voegele´ (1979) Trichogramma parasitoids do not oviposit in old host 280 

eggs, with modification to the host tissues offering an explanation as to why Tricogramma wasps 281 

do not accept older hosts within which to oviposit. 282 

The present study revealed that host quality significantly affected life history traits of the 283 

emerging parasitoids. Adults of T. brassicae reared on high quality hosts (one day old eggs) 284 

displayed higher longevity than those reared on low quality hosts (45 day old eggs). Several 285 

studies have reported a relationship between host quality and parasitoid survival (Lauzière et al. 286 

2001, Sagarra et al., 2001, Li & Sun 2011, Kishani Farahani & Goldansaz 2013). In parasitoids, 287 

like other insects, large adult body size is often related to an increase resource carry-over from 288 
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the larval stage, and is manifested in higher energy reserves (Lopez et al. 2009, Kant et al. 2012). 289 

Our results support this, indicating that host age at oviposition affects adult survival because 290 

larger hosts provide more resources for the larval stages of the parasitoid. Lopez et al. (2009) 291 

stated that host quality influenced the life expectancy of Diachasmimorpha longicaudata (Hym.: 292 

Braconidae) as starved females and males emerging from high quality hosts lived significantly 293 

longer than wasps emerging from lower quality hosts.  294 

In addition to longevity, host quality was also shown to affect gross and net fecundity of the 295 

parasitoid, with females emerging from high quality hosts being the most fecund. According to 296 

our results, female fecundity was affected by host age, with the most fecund wasps emerging 297 

from high quality hosts (1 day old eggs) than low quality hosts (45 days old eggs). Host egg age 298 

is known to affect the fecundity and parasitism rate of Trichogramma parasitoids (Brand et al. 299 

1984, Calvin et al. 1997, Pizzol 2004, Pizzol 2012, Moreno et al. 2009). In female parasitoids, 300 

fecundity is often correlated with the adult body size and quality of the food resources available 301 

to the parasitoid during development (Jervis et al., 2008, Saeki & Crowley 2013). According to 302 

obtained results, low quality hosts contained less protein. Large amounts of proteins, such as 303 

storage proteins are used as an amino acid reservoir for morphogenesis, lipophorins responsible 304 

for the lipid transport in circulation, or vitellogenins for egg maturation (Guo et al. 2011, Fortes 305 

et al. 2011). Total amount of available protein during adulthood strongly affects reproduction 306 

(vitellogenins) (Fortes et al. 2011). Cônsoli and Parra (2000) showed that rearing Trichogramma 307 

galloi Zucchi and T. pretiosum Riley on artificial diets containing high amounts of protein led to 308 

an increased number of produced eggs. It seems that lower fecundity of low quality reared wasps 309 

may be due to less protein available during embryo growth and adulthood. Our results therefore 310 

show that there is a direct relation between the protein content of host eggs and the resultant 311 
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number of eggs produced by adult wasps. As a consequence, rearing wasps on hosts with greater 312 

protein content, which can provide enhanced protein resources carried over into adulthood, may 313 

result in more fecund wasps. This finding has implications for biological control programs, since 314 

more fecund wasps would result in greater rates of parasitization, thus enhancing the efficacy of 315 

natural biological control.   316 

Most parasitoid wasps, including T. brassicae, have a haplo-diploid sex determination system 317 

(Beukeboom & van de Zande 2010, Quicke, 1997). This system allows the ovipositing female to 318 

control the sex of her offspring by controlling sperm access to eggs. In fact, the adult females of 319 

many parasitoid species respond to a number of environmental variables by changing offspring 320 

sex ratio. Among the variables, host type (e.g. host size, age, and species) is one of the most 321 

important factors influencing the offspring sex ratio of parasitoid wasps (Kishani Farahani et al. 322 

2015, Ueno 2015, Kraft and Van Nouhuys 2013). The relationships between offspring sex ratio 323 

and host quality has been investigated in many parasitoid wasps (Godin & Boivin 2000, Kishani 324 

Farahani & Goldansaz 2013, Ueno 2015, Ode and Heinz 2002). Host age or quality is considered 325 

a major factor affecting offspring sex ratio (King, 1993, Ueno 2015). A correlation between host 326 

quality and offspring sex ratio has commonly been demonstrated for solitary parasitoids (King, 327 

1993, van Baaren et al. 1999, Ode and Heinz, 2002), a higher proportion of female offspring tend 328 

to emerge from higher-quality hosts compared to low-quality hosts. Accordingly, we showed that 329 

increased host quality results in a bias towards female production in T. brassicae. In the mass 330 

rearing of biological control agents, the number of produced females is a key factor in the 331 

success of mass release programs (Ode and Heinz 2002). As such, utilization of higher quality 332 

eggs in the mass rearing of biological control agents such as T.brassicae would result in the 333 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Beukeboom%20LW%5BAuthor%5D&cauthor=true&cauthor_uid=20877000
http://www.ncbi.nlm.nih.gov/pubmed/?term=Beukeboom%20LW%5BAuthor%5D&cauthor=true&cauthor_uid=20877000
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production of a higher proportion of females, thus increasing the efficiency of biological control 334 

programs.  335 

Previous work has suggested that wing size and shape may increase parasitoid fitness and 336 

dispersal ability in the field (Kölliker-Ott et al., 2003, 2004) and as such, could act as a predictor 337 

of field performance of mass reared parasitoids. In the current study, we investigated the effect 338 

of host quality on parasitoid wing loading and the potential implications for parasitoid mass 339 

rearing. Results revealed that the wing loading index of T. brassicae reared on high quality hosts 340 

was reduced when compared to wasps reared on low quality hosts. Wing loading corresponds to 341 

the pressure exerted by the wings on the surrounding air (Gilchrist & Huey, 2004). Thus, the cost 342 

of transport is influenced in an important way by the wing surface area, which supports the body 343 

mass (Starmer & Wolf, 1989, Duthie et al. 2015). The lower the wing loading, the less costly the 344 

act of flight is to the individual. This reduced wing loading may facilitate flight (Gilchrist & 345 

Huey, 2004, Duthie et al. 2015) in an environment where females have to move over large 346 

distances to find hosts that are patchy in distribution. Flying over large distances to find hosts is 347 

an energy demanding activity (Ruohomaki 1992, Ellers et al., 1998). A study by Kalcounis and 348 

Brigham (1995) investigated the relationship between wing loading and habitat usage in bats. 349 

Results showed that bats with a higher wing loading index foraged in less cluttered areas. In the 350 

current study, the wing index suggests a higher maneuverability of wasps when reared on high 351 

quality hosts, which will enable them to forage in environments further afield to exploit new 352 

patches, whilst utilizing less energy resources. From a biological control perspective, an 353 

enhanced dispersal activity may allow wasps to cover a greater area for foraging and searching. 354 

This in turn could increase the efficiency of mass reared wasps by increasing the potential to 355 

parasitize more hosts.  356 



17 
 

In conclusion, our results show how host nutritional quality impacts adult wasp fitness by 357 

affecting wasp life history traits. Wasps reared on high quality hosts are provided with higher 358 

food resources (protein, glucose and triglyceride) during immature development, resulting in 359 

enhanced adult resource reserves. Higher amounts of protein and triglyceride will enhance the 360 

production of offspring, while higher glycogen amount will enhance energy reservoirs. This in 361 

turn has implications for adult fitness, resulting in larger body sizes, increased longevity, greater 362 

fecundity, and lower wing loading index. A reduced wind loading has the potential to increase 363 

adult maneuverability, aiding dispersal ability and thus access to patchy resources. Such 364 

individuals could be at an evolutionary advantage, providing their offspring with increased 365 

energy and structural resources during development. According to our results, the optimum host 366 

age for the mass rearing of this parasitoid is one day old eggs of E. kuehniella, which offer 367 

greater nutritional resources, enhancing wasp fitness and, in turn, their efficiency in biological 368 

control programs.  369 
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Figure legend: 

Figure 1. Total concentration (Mean± SE) of protein, triglyceride and glycogen in 1, 25 and 45 

day old eggs of E. kuehenliea and the adult wasps reared on these hosts.  

Figure 2. Longevity (H) and fecundity (Mean± SE) of 50 wasps, T. brassicae, reared on 1, 25 

and 45 day old eggs of E. kuehenliea. Different letters indicate significant differences between 

the treatments after Bonferroni correction (P=0.0166).  

Figure 3. Survival curves of 50 wasps, T. brassicae, reared on 1, 25 and 45 day old eggs of E. 

kuehenliea.  

Figure 4. Mean (±SE) weight (µg), tibia length (mm) of 50 wasps, T. brassicae, reared on 1, 25 and 45 

day old eggs of E. kuehneilla. Different letters indicate significant differences between the 

treatments after Bonferroni correction (P=0.0166).  

Figure 5. Mean (±SE) wing area (mm2) and wing loading index (mg/m2) of 50 wasps, T. brassicae, 

reared on 1, 25 and 45 day old eggs of E. kuehneilla. Different letters indicate significant differences 

between the treatments after Bonferroni correction (P=0.0166).  
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