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Flare differentially rotates sunspot on Sun’s surface

Chang Liu"23, Yan Xu'%3, Wenda Cao?3, Na Deng'?3, Jeongwoo Lee'4, Hugh S. Hudson®®, Dale E. Gary?3,
Jiasheng Wang'"?3, Ju Jing"?3 & Haimin Wang"?3

Sunspots are concentrations of magnetic field visible on the solar surface (photosphere).
It was considered implausible that solar flares, as resulted from magnetic reconnection in the
tenuous corona, would cause a direct perturbation of the dense photosphere involving
bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the
unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by
magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is
non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions
accelerate (up to ~50°h~") at different times corresponding to peaks of flare hard X-ray
emission. The rotation may be driven by the surface Lorentz-force change due to the back
reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux.
These results have direct consequences for our understanding of energy and momentum
transportation in the flare-related phenomena.
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unspots on the solar surface are the most visible

manifestation of solar magnetic field"2, which has a direct

and critical influence on space weather. Line-tied to the
dense (~10~7gcm~3) photosphere with high plasma beta
(ratio of gas to magnetic pressure, f>1; fx1 in sunspots),
magnetic fields of sunspots and the induced active regions (ARs)
extend into the tenuous (~10_15gcm_3) low-beta (f<<1)
corona. Thus, the long-term (in days) evolution of photospheric
magnetic field, as driven by surface flows and new flux
emergence, plays a key role in shaping coronal field structure
and, importantly, building up free energy in the corona that
powers solar flares via magnetic reconnection®*. For example, the
gradual rotational motion of sunspots (generally up to a few
degrees per hour) can, in principle, braid and twist the field,
leading to an increase of helicity and energy in the corona®~1°.
Sunspots frequently exhibit rotation and this has been linked in
the past to the storage of free magnetic energy associated with
currents flowing through the corona!!~13,

Once triggered, solar flares give rise to a variety of emission
signatures. It is generally accepted that accelerated particles can
stream down from the magnetic reconnection site in the corona
to the low atmosphere along newly formed magnetic loops,
producing chromospheric H-alpha and hard X-ray (HXR)
emissions'®. The former usually appears in eruptive flares as
two separating ribbons straddling the magnetic polarity inversion
line!®; the latter is thought to be due to thick-target
bremsstrahlung of high-energy particles'®, both reflecting the
reconnection process. Subsequently, the heated plasma evaporates
to fill flare loops, emitting soft X-rays (SXRs) and other
wavelength emissions as it cools. As magnetic flux tubes in the
corona are anchored in the dense photosphere, the possibility of a
non-particle-related, impulsive (in tens of minutes) and
permanent photospheric structure change has been ignored in
almost all models of flares and the often associated coronal mass
ejections (CMEs), which primarily focus on the coronal field
restructuring. Recently, a theory based on momentum
conservation predicts that as a back reaction on the solar
surface and interior, the photospheric magnetic field would
become more horizontal (that is, inclined to the surface) near
flaring magnetic polarity inversion lines after flares/CMEs!”!8,
This prediction has been confirmed in multiple observations (for
example, see refs 19-22). As the plasma beta within sunspot
umbrae and inner penumbrae could be lower than unity>23, the
Lorentz-force change at and below the photosphere, as quantified
by the above back reaction theory, may drive bulk plasma
motions in sunspots; however, related supporting observations
are extremely rare?»?°. There is only one study reporting the
rotation of a sunspot along with a flare?>, but a definite
conclusion on its relationship with the flare emission was
hampered by insufficient image resolution.

To advance our understanding of the response of the
photosphere to the flare-associated coronal restructuring, here
we study the 22 June 2015 M6.5 flare (SOL2015-06-22T18:23)
using TiO broadband (a proxy for the continuum photosphere
near 7,057 A) and H-alpha red-wing (+1A) images with the
highest resolution (~60km) ever achieved and rapid cadence
(15 and 28s, respectively). These data are obtained from the
recently commissioned 1.6 m New Solar Telescope (NST)26-29 ot
Big Bear Solar Observatory (BBSO), which is equipped with a
high-order adaptive optics system (see Methods). The high
spatiotemporal-resolution imaging capability of NST offers an
unprecedented opportunity to investigate the low-atmosphere
dynamics in detail. Also used are time profiles of flare HXR and
SXR fluxes from the Fermi Gamma-Ray Burst Monitor>? and the
Geostationary Operational Environmental Satellite (GOES)-15,
respectively, and photospheric vector magnetograms from the
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Solar Dynamics Observatory’s (SDO’s) Helioseismic and
Magnetic Imager (HMI)*!. With these multiwavelength
observations, we clearly see the sunspot in this flaring AR
rotating when the flare ribbon propagates through it; more
importantly, different portions of the spot accelerate (up to
~50°h 1) at different times corresponding to the flare HXR
peaks. This fast rotation is distinct from the aforementioned slow
sunspot rotation seen in the pre-flare stage. As a comparison, the
only other similar study?® used the SDO/HMI intensity data, of
which the spatial (temporal) resolution is about 12 (3) times
lower than that of the current BBSO/NST data. Our highest
resolution makes it possible to resolve the differential sunspot
rotation and uncover its intrinsic relationship with the flare
emission. We also analyse the flare-related photospheric vector
magnetic field change and find that the observed sunspot rotation
may be driven by the Lorentz-force change due to the back
reaction of coronal magnetic restructuring. Furthermore, we
compute the temporal evolution of the energy (Poynting) and
helicity fluxes through the surface, and find that they reverse sign
during the flare, suggesting that the energy source for the sudden
rotation comes from the corona rather than from below the
photosphere. These results have direct consequences for our
understanding of energy and momentum transportation in the
flare-related phenomena.

Results

Event overview. The 22 June 2015 M6.5 flare occurred in NOAA
AR 12371 (8°W, 12°N) and was associated with a halo CME. The
flare starts at 17:39 universal time (UT), peaks at 18:23 UT and
ends at 18:51 UT in GOES 1.6-12.4keV SXR flux, and has three
(I-III) main peaks in Fermi 25-50keV HXR flux at 17:52:31,
17:58:37 and 18:12:25 UT, respectively. The flare core region was
covered by the field of view of BBSO/NST, showing two separ-
ating flare ribbons in H-alpha (see Fig. 1a and also Supplementary
Movie 1 of ref. 32). The ribbons in TiO are much weaker but still
discernible. In particular, the eastern flare ribbon sweeps through
the regions of two sunspot umbrae f1 and f2 of positive magnetic
polarity (Fig. 1a). From the movies constructed using the TiO and
H-alpha images (Supplementary Movies 1-3), one can clearly
find that f1 and f2 (especially f1) exhibit a sudden rotational
motion in the clockwise direction closely associated with the flare.
Such observation of a sudden sunspot rotation following a flare,
with great details revealed in high resolution, was never achieved.
Notably, the TiO data are ideal for tracing the photospheric
plasma flow motions, especially in sunspot umbrae. Figure 1b
shows the flow patterns in f1 and f2 right before the flare, derived
using the differential affine velocity estimator (DAVE)3
(see Methods). It portrays fine-scale umbral flows, with a
general pattern of inward motion>**°, The DAVE results allow
us to examine the sunspot rotation in a comprehensive way, as
described below.

Flare-induced sunspot rotation. We study the dynamics of the
sunspot (with an emphasis on f1) through two data analysis
approaches. We pay special attention to the relationship between
the sunspot rotation and the flare emission.

First, we evaluate the rotational motion of the whole sunspot in
a simplified solid-body approximation. Considering its shape we
fit an ellipse to the fl region determined based on the TiO
intensity (for example, see Fig. 1c,d and Methods) and plot the
temporal evolution of the angle between the derived major axis of
the ellipse (for example, yellow and orange dashed lines in
Fig. 1c,d) and the horizontal direction as the blue line in Fig. 2.
The result shows that f1 begins to rotate clockwise as a whole
from ~17:56 UT (about 3.5 min after the HXR peak I) and the
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Figure 1| Flaring region and sunspot dynamics observed with BBSO/NST. (a) H-alpha + 1A image at the second main HXR peak time showing two
separating H-alpha ribbons, with flare-related sunspot umbrae labelled as f1, f2, p1 and p2. The white (black) lines contour the 17:58:25 UT vertical magnetic
field from SDO/HMI at 1,100 (—1,100) G. The box denotes the field of view of b-d. (b) Pre-flare TiO image superimposed with arrows (colour-coded by
direction) representing the flow field in f1/f2 derived with DAVE (averaged between 17:33:53 and 17:38:54 UT). (¢) Pre-flare TiO image with the white
dashed line representing an ellipse fit to the f1 region and the yellow dashed line (also plotted in d) the major axis. (d) Same as ¢ but at a post-flare time,

with the major axis drawn in orange.

rotation lasts for about 2h till ~20:00 UT, covering a total
angular range of ~13°. Clearly, the present case is distinct from
almost all previously studied events, where sunspots undergo a
rotation before the flare initiation in SXR. It is also noteworthy
that the time profile of the rotation angle can be well
approximated by an acceleration function between 17:56 and
18:12:29 UT (around the HXR peak III) followed by a
deceleration function (see Fig. 2 and Methods).

Second, a closer examination of the full-resolution movies
(Supplementary Movies 2 and 3) unambiguously shows that as
the flare ribbon moves across, different portions of the sunspot
start rotating at different times (meaning a differential rotation)
corresponding to the peaks of HXR emission. To characterize in
detail the non-uniform rotation, we resort to the tracking of
photospheric plasma flows with DAVE throughout the event
(see Fig. 3 and Supplementary Movie 4). Based on the derived
velocity vectors, we also compute the flow vorticity (curl of the
velocity; calculated by equation (1) in Methods) and examine the
spatial and temporal evolution of the negative vorticity
(corresponding to a clockwise rotation) in the sunspot region
(see Figs 4 and 5, and Supplementary Movie 5). Furthermore, we
remap TiO images to a polar coordinate system and trace several
distinct features (see Methods and Fig. 6) for a precise

determination of the timing relationship between the sunspot
rotation and flare emission. Below, we divide the whole event into
three phases and describe the characteristics of sunspot rotation
in each phase.

Phase 1 (from HXR peak I at 17:52:31 UT to peak II at 17:58:37
UT): the flare ribbon propagates towards f1/f2 and just enters into
their regions from the west at the time of the HXR peak I (see
Fig. 4a). Immediately, the sunspot umbrae underlying the ribbon
begin to rotate southwestward. This is clearly exhibited by the
space-time slice image (Fig. 6a) from the re-mapped TiO images
along the circle C1 (in Fig. 3b), in which the northeastern portion
of f1 (as represented by features 1-4, which are co-spatial with the
flare ribbon at this time; see Fig. 4a) starts rotating right after the
HXR peak I, at a mean angular velocity of 50°h ~ L. Later, as the
ribbon proceeds (Fig. 3a) the far western portion of f1/f2
seemingly forms a clockwise rotational pattern, which can be
visualized by the average flow field in this phase (Fig. 3b). The
mean angular velocity of f1 reaches a maximum of ~38°h~ ! at
17:56:23 UT (Fig. 4b), about 4 min after the HXR peak I (Fig. 5).
It is pertinent to point out that the afore-described ellipse fitting
under a solid-body assumption shows a significant rotation of f1
only after ~17:56 UT. This highlights the differential nature of
this sunspot rotation.
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Figure 2 | Overall sunspot rotation. Time profiles of SXR flux (black line),
HXR flux (gray shaded area; not available during 18:19-19:19 UT) and
orientation angle 0 of f1 (between the major axis and horizontal direction;
blue line) from an ellipse fit (see, for example, Fig. 1c,d). The intensity
threshold for delineating the f1 region was varied to evaluate the 1-s.d. error
bars of 0. Overplotted is the approximation of 0 evolution using a horizontal
line between 17:00 and 17:56 UT (green), a second-order polynomial
(acceleration) between 17:56 and 18:12:29 UT (yellow), and another
second-order polynomial (deceleration) between 18:12:29 and 20:50 UT
(red). See Methods for details. The vertical dashed lines mark the start and
end times of the flare in GOES 1.6-12.4keV SXR flux and the dotted lines
mark the three main Fermi 25-50 keV HXR peaks I-Ill.

Phase 2 (from HXR peak II at17:58:37 UT to about peak III at
18:12:25 UT): the flare ribbon, mainly its northern part, moves a
significant distance towards the east, across the main regions of
f1/f2 (Figs 3c and 4c-f). As can be seen in Fig. 6, the southern and
eastern portions of f1, represented by features 5-7 and 8-10
marked in Figs 3b,d and 4c-e, begin a rotation-like motion
immediately following the HXR peak II, at a mean angular
velocity of 52° and 30°h ~ 1, respectively. It can also be noticed
that the northwestern portion of f1 (for example, features 1-4)
keeps rotating in this phase. As a result, the entire f1 and f2
display a rotational flow pattern in the clockwise direction
(Fig. 3d). The mean angular velocity of fl has the second
maximum of 36°h ~ ! at about 4 min after the HXR peak II and
sustains roughly this speed till about 18:08 UT. As for f2, its
clockwise rotation keeps accelerating after the HXR peak I, and
peaks at 45°h ~ ! about 3.5 min after the HXR peak II (see Fig. 5).

Phase 3 (from about HXR peak III at 18:12:25 UT): the flare
ribbon almost moves out of the sunspot region (Fig. 3e). The
rotational flows involving both f1 and f2 diminish, as reflected by
the observations that the mean vorticity of f1/f2 largely returns to
the pre-flare level (Fig. 5), and that drifting features nearly flattens
in the re-mapped space-time slice images (Fig. 6). Interestingly,
f1 shows overall westward and southwestward flows (Fig. 3f),
and it continues to rotate clockwise as a whole (see Fig. 2 and
Supplementary Movie 1).

Taken together, the exceptionally high-resolution observations
from BBSO/NST make it possible to witness, for the first time,
a sudden sunspot differential rotation that exhibits an intrinsic
spatiotemporal relationship with the coronal energy release
process, manifested as flare ribbon propagation and HXR
emission profile. The measured angular velocity of rotation
amounts up to ~50°h ~ 1, which is much higher than that of the
reported pre-flare rotating sunspots. These strongly indicate that
the observed sunspot rotation on the photosphere is a result, not
a cause, of the flare magnetic reconnection in the corona, which
challenges the conventional view of the photosphere-corona
coupling.
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It is worth noting that similar to the propagating ribbon, the
negative vorticity feature also progresses from west to east across
the sunspot (see Supplementary Movie 5, vorticity evolution).
More exactly, the development of regions of intense negative
vorticity follows the flare ribbon motion and concentrates on the
portion swept by the ribbon (see Fig. 4). This implies that the
sunspot rotation is intimately linked to the flaring process. The
features 1-7 in the west start rotating as the flare ribbon sweeps
by and ensuing the peaks of the HXR emission (Figs 4a,c and 6).
In contrast, features 8-10 in the east begin to move northeastward
(with little rotation, that is, low vorticity) at the HXR peak II
(Figs 4c and 6), when the ribbon has not spread to their locations.
Enhancement of the negative vorticity in these regions occur only
when the ribbon arrives ~5min later (Fig. 4d,e). These two
movement stages of the eastern part of f1 are discernible in the
time-lapse movie (Supplementary Movie 2). For simplicity, we
still describe the earlier motions of features 8-10 as rotations. The
umbrae f1/f2 gain maximum angular velocity in a few minutes
after the initiation of rotation of sunspot features, consistent with
the low Alfvén speed of the photospheric plasma (~10-
20kms~! in sunspot umbrae). Unlike f1, no obvious internal
rotations are observed within f2; in fact, together they present a
coherent rotation (Fig. 3d), despite of the sunspot light bridge
lying between them. This connotes that f1 and f2 may be parts of
a unified magnetic structure. As the rotational motion of the
whole sunspot shows a deceleration after 18:12:29 UT (Fig. 2),
phase 3 could be an after-effect following phase 1 and phase 2 of
the rapid rotation directly related to the flare.

Flare-related magnetic evolution. As moving H-alpha ribbons
are regarded as a mapping of the reconnecting coronal magnetic
field onto the low solar atmosphere!* and HXR emissions could
gauge the magnitude of coronal magnetic reconnection’, the
revealed correlation between the sunspot rotation and flare
emissions motivates us to explore the changes of magnetic field
and related quantities, which can shed light on the mechanism of
the flare-induced sunspot rotation. To analyse the photospheric
magnetic field and its evolution, we use vector magnetograms
from SDO/HMI with 12min cadence and larcsec spatial
resolution (see Methods). We observe that the flare causes
apparent changes of the sunspot (especially f1) structure, in terms
of intensity and vector magnetic field (see Supplementary Fig. 1).
Here we mainly concern ourselves with the Lorentz-force change
exerted at and below the surface by coronal magnetic field from
above, which is attributed to the restructuring of coronal
magnetic field in the back reaction theory!”!8, There are two
HMI measurements made during the main phases of sunspot
rotation. At 18:00:44 UT (1.5 min into phase 2), the density map
of the horizontal component of the Lorentz-force change JF,
(calculated using equation (2) in Methods) is presented in Fig. 7a.
It is remarkable that OF;, forms a swirl in the western portion of f1
and also exhibits a coherent clockwise rotation over regions of
f1/f2, resembling a combination of TiO flow patterns of phase 1
and phase 2 (see Fig. 3b,d). As shown in Fig. 7b, the JF,, density
map at 18:12:44 UT (beginning of phase 3) changes to an overall
rotating structure also similar to the flow pattern of phase 3
(Fig. 3f). Intriguingly, similar to the flow vorticity (Fig. 4) the 6F;,
distribution seems to evolve with the ribbon motion; however,
this aspect needs to be further addressed when higher cadence
vector magnetograms become available. In any case, these hint
that the torque T produced by JF, may drive the sunspot
rotation, a scenario also suggested by the only other related
study?>. For simplicity, ignoring the differential rotation but
assuming a rigid rotation of the elliptical f1 around its centre
(cross in Fig. 7), the time profile of T on f1, as plotted in Fig. 8a,
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Figure 3 | Solar flare and induced sunspot rotation. BBSO/NST H-alpha + 1A images (a,c,e) and the co-temporal TiO images (b,d.f), showing the
sunspot rotation in three phases (see text for details and Supplementary Movies 1-4 for animations). SDO/HMI vertical magnetic field is contoured

at 1,300 G on H-alpha images. In b,df, the superimposed arrows (colour-coded by direction) illustrate DAVE flows in fl/f2 averaged between
17:52:38-17:58:38 UT (phase 1), 17:58:38-18:12:29 UT (phase 2) and 18:12:29-18:22:30 UT (in phase 3), respectively, subtracted by a pre-flare flow field
averaged between 17:32:23 and 17:52:23 UT to better show the rotational motion. The overplotted white curves delineate the co-temporal H-alpha flare
ribbons. The plus in b (d) is the origin for the polar re-mapping, with the circle C1 (C2) denoting the constant radius for constructing the space-time slice
image presented in Fig. 6a (6b). The angle starts at due South and increases anticlockwise. The beginning angle locations of features 1-10 along C1/C2 as

seen in Fig. 6 are marked as solid dots.

shows impulsive T signals closely associated with the rotation of
f1. A rough quantitative estimate also indicates that the amount
of T on f1 is sufficient compared with that required for the
measured rotation (see Methods). The torque rapidly decrease to
zero soon after the beginning of phase 3. Thus, the torque
evolution is also in line with the observed acceleration followed by
deceleration of the overall sunspot rotation (Fig. 2).

With SDO/HMI vector magnetic field data, we further track
the photospheric plasma flows using the DAVE for vector

magnetograms (DAVE4VM)® (see Methods), which can derive
not only the horizontal but also the vertical component of flows.
These vector photospheric velocity fields permit an accurate
assessment of the Poynting flux E and helicity flux H transported
through the photosphere, which are Ehysmal quantities
intimately associated with rotating sunspots thus may help
elucidate the essential physics needed to properly interpret our
observations. The temporal evolution of E and H throughout the
flare (calculated by equations (3) and (4) in Methods) is drawn in
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Figure 4 | Spatial evolution of vorticity. Time sequence of vorticity maps during phase 1 (a,b) and phase 2 (c-f) in the regions of umbrae f1 and f2,
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Fig. 8b,c. The former is integrated over the regions of f1 and f2,
considering the low cadence of HMI data and the fact that f1/f2
could make up a unified magnetic structure (see previous
discussion). The latter is integrated over the entire AR. It can
be seen that energy and negative helicity are injected upward
from below the surface both before and after the flare. The
negative sign of helicity conforms with the measured left-handed
twist of f1 and f2. However, during the flare time interval, both E
and H reverse sign. In particular, there is a downward Poynting
flux during the flare time interval (with a total energy about
1.6 x 10°%ergs), which could be the energy source driving the
photospheric motion. These point to a physical process associated

with the sunspot rotation (presumably the back reaction of
coronal magnetic reconfigurations) that contrasts with that in the
non-flaring period.

Discussion
Our observations demonstrate that sunspots f1/f2 rotate as a
response of the flare energy release, and that the rotation is
progressive and differential, ensuing the flare emissions. We notice
that f1 and f2 are at the footpoints of erupting flux loops, which
develop into a halo CME accompanying the present flare. These
loops connect to two other sunspots pl and p2 in negative field
regions (Fig. 1la), which vaguely show a similar flare-related
clockwise rotation in SDO/HMI data (details, however, are
unknown as pl/p2 are out of the field of view of BBSO/NST).
This alludes to the possibility that on the large scale, the observed
sunspot dynamics may be linked to the properties of a twisted flux
tube. With related to sunspot rotation, let us consider theoretically
the emergence of a vertical, twisted magnetic flux tube from the
interior into the corona®”3%, During its emergence, rapid expansion
and stretching occur to the coronal portion of the tube, where the
twist rate of the field (=] - B/B?) decreases rapidly. As a result,
along the field lines a gradient of the twist rate gets established, and
it drives torsional Alfvén waves that propagate twist from the
interior into the corona, until a twist balance is reached on a time
scale of a few days. This constitutes an explanation of rotating
sunspots in emerging flux regions (for example, see refs 8,39).
However, if an eruption suddenly happens that stretches out the
coronal field again, the gradient of twist rate and hence the torque
on the photosphere would increase, which can consequently cause a
sudden increase of the sunspot rotational motion in the same
direction as before the eruption, as seen in the only other
observation of a flare-related sunspot rotation?>. Under this
scenario, it would be expected that the Poynting flux E and also
helicity flux H (with the same sign as that before the eruption)
injected into the atmosphere by the emerging flux tube would also
suddenly enhqnce‘*o. However, we observe the exact opposite
behaviours of E and H during this eruptive flare event.
Therefore, we are led to conclude that the driving agent behind
and the energy source of the observed sunspot rotation originates
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Figure 6 | Space-time slice image for sunspot rotation. The results in a
and b are constructed from TiO images re-mapped to a polar coordinate
system, at a constant radius of 2.7 (C1in Fig. 3b) and 4.1” (C2 in Fig. 3d),
respectively. The shown angular range is 0-180° for C1 and 230-330° for
C2, and these ranges are denoted using solid lines when drawing C1/C2
in Figs 3b,d and 4a,c-e. The black dotted lines trace several distinct
features 1-10 in f1 by a linear approximation. The numbers in bracket are the
corresponding angular velocity (in degree per hour) from the linear fit. The
initial locations of these features are also indicated in Figs 3 and 4.

The vertical dashed lines mark the start and end times of the flare in
GOES 1.6-12.4 keV SXR flux and the dotted lines mark the three main
Fermi 25-50 keV HXR peaks I-Ill.

from the corona rather than below the photosphere, most
probably associated with the back reaction of the flare-related
restructuring of coronal magnetic field. We also postulate that
the torque produced by coronal transients might drive the
low atmosphere down to a certain depth. Certainly, more
observations of the low solar atmosphere in high resolution,
together with simulations of photospheric sunspot dynamics*!
and further understanding of the photosphere-corona coupling,
are desired to tackle the problem of energy and momentum
transportation in the flare-related phenomenon.

Methods

Instrumentation and data. The broadband TiO and H-alpha red-wing images
used in the present study, with a spatial resolution of ~61 and 66km and a
cadence of 15 and 28s, respectively, are obtained with the 1.6 m BBSO/NST,
which is currently the largest-aperture ground-based solar telescope. It combines a
high-order adaptive optics system using 308 sub-apertures and the post-facto

a HMI 8F,, 18:00:44—17:48:44

Y (arcsec)

15

Y (arcsec)
S

X (arcsec)

451% 5 x 10* dyne cm™

EE 1 (G)
0 1,000 2,000

Figure 7 | Horizontal Lorentz-force change. SDO/HMI vertical magnetic
field, with the white (black) colour representing positive (negative) polarity,
superimposed with arrows (colour-coded by direction) displaying the
horizontal Lorentz-force change vectors between 17:48:44 and 18:00:44 UT
(@), and between 18:00:44 and 18:12:44 UT (b). The projected and re-
mapped HMI data product is used. See Methods for details. Arrows are
only shown at locations with vertical field >1,200 G. The cross is the fitted
centre of the elliptical f1 for the torque calculation shown in Fig. 8a. The
black line illustrates the front of the co-temporal H-alpha flare ribbon.

speckle image reconstruction techniques to achieve diffraction-limited imaging
of the solar atmosphere. The H-alpha data are taken by the Visible Imaging
Spectrometer, which is a Fabry—Pérot filter-based system that can scan in the
wavelength range of 5,500-7,000 A. For this observation run, five points were
scanned around the H-alpha line centre at * 1.0, +0.6 and 0.0 A. For data
processing, the images were aligned with sub-pixel precision and the intensity
was normalized to that of a quiet-Sun area. The TiO and H-alpha images were
co-aligned by matching sunspot and plage areas, with an alignment accuracy of
about 0.2 Mm. All the images presented in this paper were registered with respect
to 22 June 2015 17:38:54 UT.

For the analysis of photospheric magnetic field, we use the observation from
HMI on board SDO with 12 min cadence and 1 arcsec spatial resolution.
Specifically, for the context study in Figs 1 and 3, and Supplementary Fig. 1, we use
the full-disk HMI vector magnetogram data product hmi.B_720s (refs 31,42). For
the calculation of Lorentz-force change, tracking of plasma flows with DAVE4VM
and computation of Poynting and helicity fluxes, we use the Space-weather HMI
Active Region Patches vector magnetogram data product hmi.sharp_cea_720s
(ref. 43). The Space-weather HMI Active Region Patches data are re-mapped using
Lambert (cylindrical equal area) projection centred on the studied AR.
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Figure 8 | Temporal evolution of magnetic properties. (a) Torque on f1
resulted from horizontal Lorentz-force change. The error bars represent

1 s.d. calculated from the provided uncertainty of HMI vector field.

(b) Poynting flux integrated over the rotating sunspots f1 and f2.

(€) Magnetic helicity flux integrated over the whole flaring AR. Error bars in
b and c represent an uncertainty of 17% for energy flux and 23% for helicity
flux due to noise in the HMI data. See Methods for details. The vertical
dashed lines mark the start and end times of the flare in GOES 1.6-12.4 keV
SXR flux and the dotted lines mark the three main Fermi 25-50 keV HXR
peaks I-IIl.

Sunspot rotation analysis. To evaluate the overall rotation of f1, we (1) use the
REGION_GROW function in IDL with a pre-set TiO intensity threshold to define
the region of f1, (2) conduct an ellipse fit to the f1 region using the FIT_ELLIPSE
function in IDL and (3) vary the intensity threshold from 3,900 to 4,000 data
number and perform a total of 11 runs of calculation for error estimation. These
threshold values are selected so that the umbra f1 can be well delineated
throughout the studied time period. The temporal evolution of the angle 0 between
the major axis of the fitted ellipse and the horizontal direction, as shown in Fig. 2, is
approximated using a least-squares fit to a horizontal line between 17:00 and 17:56
UT, a second-order polynomial 0=14.9 +3.63 x 10 ~ 3+ 1.84 x 10 ~ %2 between
17:56 and 18:12:29 UT where t is in units of second from 17:56 UT, and another
second-order polynomial 0 =21.0+1.72 x 10 ~ 3t — 1.11 x 10 ~ 72 between
18:12:29 and 20:50 UT (the end of this BBSO/NST observation run) where ¢ is in
units of second from 18:12:29 UT.

To track the photospheric plasma flows, we employ the DAVE method,
which is a well-established, state-of-the-art technique using the advection
(adopted here) or continuity equation and a differential feature tracking algorithm
for flow detection. In this study, a 2 x 2 binning is applied to the TiO data to
increase the S/N ratio. The tracking window size is set to 23 pixels, which
balances the needs for including enough structure information and a
good spatial resolution. We then calculate the vorticity @ (in units of

(s 1) as:

0 0

wzavyfavx, (1)

where v, and v, are velocity vectors after a 5min running average of the DAVE
flow fields, which is to alleviate the effects of the atmospheric disturbances and
photospheric 5 min oscillation contained in the observation. In this definition,
vorticity is equal to twice the angular velocity.

Re-mapping of TiO images to a polar coordinate system is carried out with the
centre of the rotational flow pattern (plus signs in Fig. 3b,d) as the origin, where the
two axes of the re-mapped frames represent the polar angle around and the
distance R from the origin. To construct the space-time slice images shown in
Fig. 6, we stack one slice per frame, which is averaged for 11 pixels between
R—0.17" and R+ 0.17", where R=2.7" (4.1”) for the circle C1 (C2) drawn in Fig.
3b(3d). The size and location of these circles are determined in such a way that the
right (left) half of C1 (C2) closely follows the rotational flows in the western
(eastern) portion of f1 during phase 1 (phase 2).

Magnetic evolution analysis. The change of the horizontal Lorentz force exerted
at and below the photosphere can be formulated as:

. 1 [
o= / dA3(B.By), 2)

where B, is the photospheric vertical magnetic field and By, is the horizontal field
vector!”18, Assuming that f1 has a geometry of rigid elliptical disk rotating about
its centre, the torque T resulted from 0F, can produce an angular acceleration
a=T/I1= T/{%pnhab(a2 + b?)}, where I is the moment of inertia relative to its
center, p is the photospheric density, 4 is the depth (a coherent depth of rotation is
presumed), and a and b are the length of the semi-major and semi-minor axes of
the ellipse that can be derived from the shape fitting. Here we take p ~ (4-

11) x 10 ~7gem =3, hx270km (a density scale height at the photosphere),
ax6.8 Mm and b~ 3.2 Mm. At 18:00:04 UT in phase 2, the clockwise torque
exerted on f1 (relative to the centre marked as the cross in Fig. 7) produced by JF,
(relative to a pre-rotation time 17:48:44 UT) amounts to T~ 3.1 X 1030 dyne cm
(Fig. 8a), which can produce an « of (1.1-3.0) x 10 ~®rads 2. This is more than
sufficient compared to the observed o~ 2.3 x 10 ~”rad s ~ 2, when considering that
the angular velocity of fl increases ~6.8 x 10 ~°rads ! from ~17:51:30 to
17:56:23 UT in phase 1 (Fig. 5). In addition, if considering a total angular distance
of ~5° till the end of phase 2 (Fig. 2), the work done by the torque (that is, the
rotational kinetic energy of f1) is roughly 3 x 10?° ergs. We caution that our
calculation has a large uncertainty due to the assumption of 4 and ignorance of the
differential rotation nature of f1.

The DAVE4VM technique based on the magnetic induction equation is
employed to track both the horizontal and vertical components of the photospheric
plasma flows. For this analysis, we use time series of SDO/HMI data with a window
size of 19 pixels, which is selected according to previous studies*443,

The vertical component of Poynting flux across the plane S at the photospheric
level can be derived as?:

dE
dt

1

1
s:@/ BlV,,dS— E/(Bt -V 1,)B,dS, (3)
S S

where B; and B,, are the tangential (horizontal) and normal (vertical) magnetic
fields, and V', ; and V| , are the tangential and normal components of velocity V|
(the velocity perpendicular to the magnetic field lines, as the field-aligned plasma
flow is irrelevant*). Contributions from flux emergence and surface shearing
motions are represented by the first and second terms, respectively. According to
ref. 44, V| =V — (V-B)B/B?, where V is the velocity vector derived by
DAVE4VM. Similarly, the magnetic helicity flux across S can be expressed by the
combination of an emerging and a shearing terms*’:

‘;—7 =2/(Ap~Bt)VLndS—2/(AP~VM)BndS, (4)
$ N N

where A, is the vector potential of the potential field B,,. As the helicity flux

density is not a gauge invariant quantity, we study the helicity flux integrated over
the whole AR. The Poynting and helicity fluxes derived with the DAVE4VM results
based on SDO/HMI vector magnetograms have an uncertainty of 17% and 23%,
respectively***°. These were determined by ref. 44 using a Monte Carlo experiment
where noises are randomly added to the HMI vector data. We also note that
DAVE4VM has intrinsic method errors and may underestimate both Poynting and
helicity fluxes by 29 and 10%, respectively>®-43.

Software availability. DAVE and DAVE4VM flow tracking codes as used in this
study can be obtained from http://ccmc.gsfc.nasa.gov/lwsrepository/index.php.

Data availability. All the data used in the present study are publicly available. The
BBSO/NST TiO and H-alpha images can be downloaded from http://bbso.njit.edu.
The Fermi X-ray flux data can be downloaded from http://hesperia.gsfc.nasa.gov/
fermi_solar. The GOES X-ray flux data can be downloaded from http://
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www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html. The SDO/HMI vector
magnetograms can be downloaded from http://jsoc.stanford.edu.
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