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ABSTRACT 

Conflicting reports implicate the scaffolding protein RACK1 in the progression of breast 

cancer. RACK1 has been identified as a key regulator downstream of growth factor and 

adhesion signalling and as a direct binding partner of PP2A. Our objective was to further 

characterise the interaction between PP2A and RACK1 and to advance our understanding of 

this complex in breast cancer cells. We examined how the PP2A holoenzyme is assembled on 

the RACK1 scaffold in MCF-7 cells. We used immobilized peptide arrays representing the  

entire PP2A-catalytic subunit to identify candidate amino acids on the C subunit of PP2A that 

might be involved in binding of RACK1. We identified the RACK1 interaction sites on 

PP2A. Stable cell lines expressing PP2A with FR69/70AA, R214A and Y218F substitutions 

were generated and it was confirmed that the RACK1/PP2A interaction is essential to 

stabilize PP2A activity. We used Real-Time Cell Analysis and a series of assays to 

demonstrate that disruption of the RACK1/PP2A complex also reduces the adhesion, 

proliferation, migration and invasion of breast cancer cells and plays a role in maintenance of 

the cancer phenotype. This work has significantly advanced our understanding of the 

RACK1/PP2A complex and suggests a pro-carcinogenic role for the RACK1/PP2A 

interaction. This work suggests that approaches to target the RACK1/PP2A complex are a 

viable option to regulate PP2A activity and identifies a novel potential therapeutic target in 

the treatment of breast cancer.  

  



1. Introduction 

RACK1 plays a critical role in many fundamental cellular processes including cell adhesion, 

proliferation, migration and protein synthesis through its ability to act as a scaffold within 

signalling pathways [1-4]. RACK1 is known to interact with a diverse array of proteins and 

functions to recruit and shuttle these proteins to their substrates or other binding partners [1, 

2]. Alterations in RACK1 expression and function are associated with a variety of disease 

states including Alzheimer’s disease [5], bipolar disorder [6] and cancer including 

hepatocellular carcinoma, ovarian cancer and cancers of the prostate and breast [7-11]. The 

connection between RACK1 and cancer is complex, since RACK1 interacts with over 80 

binding partners, either directly or indirectly in large complexes, thereby impacting on 

multiple signalling pathways. Many of the proteins in the RACK1 interactome are 

phosphatases and kinases whose activity is altered in cancer. For example, RACK1 plays a 

critical part in cell adhesion and migration, in particular through its role in regulating focal 

adhesion kinase (FAK) activity and focal adhesion assembly [12, 13]. RACK1 is also a 

component of the signalling pathways downstream of FAK and phosphodiesterase 4D5 

(PDE4D5) that control both cell spreading and the direction sensing mechanisms required to 

establish cell polarity, which is an important element in the process of cell migration [14, 15]. 

RACK1 has also been shown to promote both cell migration and invasion in both 

oesophageal and lung cancers through a variety of different signalling mechanisms [16-18].  

Conflicting reports suggest a role for RACK1 in breast cancer. High RACK1 

expression has been reported in breast cancer patients, and this has been correlated with a 

poor clinical outcome [10]. RACK1 has also been found to promote breast cancer 

proliferation and invasion both in vitro and in mouse models through interaction with RhoA 

and activation of the RhoA/Rho kinase pathway [19]. This suggests that RACK1 has 

potential as a valuable prognostic indicator of advanced disease in breast cancer. However, 



other studies report findings that are in direct contrast to this. For example, decreased 

RACK1 is reported in a cohort of breast cancer patients and associated with a good clinical 

outcome in follow-up studies [11]. This apparent conflict in findings of RACK1 expression in 

cancer tissue could be due to the heterogeneous nature of breast cancer and the 

inconsistencies may be explained by a lack of information on breast cancer subtypes within 

these studies [20]. Also, because RACK1 is involved in the scaffolding of such a large 

number of proteins within such diverse signalling pathways, it is acknowledged that any 

change in RACK1 expression, either up or down, has the potential to have serious 

consequences for the tight regulation of these pathways and as a result, on the processes 

regulating the establishment, development and progression of cancer [1].  

Protein Phosphatase 2A (PP2A) is a major Ser/Thr phosphatase in cell signalling 

pathways. PP2A exists as a holoenzyme with three individual components. Once assembled, 

the structural subunit (A) and catalytic subunit (C) form the core dimer while the regulatory 

subunit (B) confers substrate specificity, full activity and subcellular location of the PP2A 

holoenyme when bound to the core dimer. There are two A isoforms (α and β) which share 

87% sequence homology and two C subunits (α and β) which share 97% homology [21-23]. 

Currently, there are up to 26 known regulatory B subunits [24]. As a phosphatase, PP2A is 

essential to promote the post translational modifications that reverse kinase activity in many 

of the major cell signalling pathways, including those that regulate the cell cycle, metabolism, 

cell migration and survival [24-27]. It is also widely accepted that PP2A negatively regulates 

growth factor signalling and MAP kinase activation downstream of growth factor signalling 

[28, 29].  

PP2A directly interacts with RACK1 in an IGF-1 dependent manner where RACK1 

serves to stabilise PP2A activity [30, 31]. A reduction in RACK1 expression decreases the 

phosphatase activity of PP2A, which has been shown to promote cell migration in cancer 



cells [31]. This indicates that RACK1 has a role to play in keeping a specific pool of PP2A 

‘active’ and thus facilitating the regulatory role of PP2A.  

PP2A has a well-established role in cancer. It is largely recognised as a tumour 

suppressor and has been found to be mutated in many cancer types [27, 32-34]. However, 

inhibition of PP2A has shown potential as an anti-cancer strategy in some cell models [23, 

35-38].  This apparent contradiction may arise, in part, because PP2A inhibition increases 

tumour chemo-sensitivity to many chemotherapeutic drugs (reviewed in [39]) but also 

because PP2A has been shown to play an anti-apoptotic role within signalling pathways 

(reviewed in [23]).   

Here, we further characterise the RACK1/PP2A interaction  in breast cancer cells by 

identifying and mapping the interaction site of RACK1 on the catalytic (C) subunit of PP2A 

(PP2A-C). Using mutations of PP2A that disrupt the binding with RACK1, we show that 

RACK1 stabilizes PP2A activity and regulates the transformed phenotype in breast cancer.  



2. Materials and Methods. 

 

2.1 Cell Culture 

MCF-7 and HEK cells were maintained in DMEM supplemented with 5% L-glutamine, 5% 

penicillin/streptomycin and 10% FBS (Sigma-Aldrich Ltd).  

2.2 Preparation of cellular protein extracts 

Cellular protein extracts were prepared by placing cells on ice, removing media and washing 

three times in ice cold PBS. Cells were scraped into ice cold lysis buffer (20mM Tris HCl pH 

7.4, 50mM NaCl, 50mM NaF, 1% NP40) plus the tyrosine phosphatase inhibitor Na3VO4 

(1mM), protease inhibitors PMSF (1mM), pepstatin (1µM) and aprotinin (1.5µg/ml). Lysates 

were incubated on ice for 20 minutes before centrifugation at 14,000 rpm for 15 minutes at 

4ºC to remove nuclei and cellular debris. Lysates were analysed for protein concentration 

using the Bradford assay and boiled in sample buffer for SDS-PAGE or used in 

immunoprecipitation experiments. 

2.3 Immunoprecipitation of proteins and Western Blotting 

Protein extracts were precleared with 20µl Protein G beads by incubation at 4ºC for 1 hour 

rotating. The lysates were recovered from the beads by centrifugation at 3,000 rpm for 3 

minutes and transferred to a new tube containing primary antibody (2µg), 40µl Protein G 

beads, 500µl lysis buffer and made up to 1ml with dH2O. Samples were incubated at 4ºC 

rotating overnight. Immune complexes were pelleted with the beads by centrifugation at 

3,000 rpm for 3 minutes at 4 ºC. The beads were washed three times with ice cold lysis buffer 

and removed from beads by boiling for 5 minutes in 25µl of 2x SDS PAGE sample buffer for 

electrophoresis and western blot analysis. Protein samples for western blot analysis were 

separated by 12% SDS-PAGE gels. Following separation on the gel, proteins were 

transferred using electrophoresis onto a nitrocellulose membrane and blocked for 1 hour at 



room temperature shaking in 5% milk (w/v) in TBS containing 0.5% Tween-20 (TBS-T). 

Membranes were incubated overnight at 4ºC with the appropriate primary antibody; Anti-

PP2A-Cα subunit (Cell Signalling), Anti-RACK1 (BD Biosciences). Appropriate secondary 

antibodies (IRDye® 680LT and 800CW- Infrared Dye coupled anti-rabbit or anti-mouse (LI-

COR Biosciences)) were diluted 1:10000 in TBS-T/5% milk for 1 hour. Antibody reactive 

bands were detected with the Odyssey® infrared imaging system (LI-COR Biosciences).  

2.4 Spot Synthesis of peptides, overlay analysis and alanine substitution array analysis 

Peptide arrays of PP2A-C on nitrocellulose were generated as previously described [40-42]. 

Scanning libraries of overlapping 23-mer peptides covering the entire sequence of a protein 

were produced by automatic SPOT synthesis and synthesized on Whatman 50 cellulose using 

Fmoc (9-fluorenylmethyloxycarbonyl) chemistry with the AutoSpot-Robot ASS 222 (Intavis 

Bioanalytical Instruments). The interaction of GST and GST-tagged proteins, e.g. GST-

RACK1 with the protein array was investigated by overlaying the cellulose membranes with 

10 μg/ml concentrations of each recombinant protein. Bound protein was detected with 

specific mouse antisera for each protein and a secondary anti-mouse antibody coupled with 

LICOR dye 680 and scanned on the Odyssey Infrared Scanner. Once candidate binding 

regions for RACK1 on the full-length PP2A-C subunit array had been determined, specific 

alanine scanning substitution arrays were generated for the relevant sequences using the same 

synthesis procedure. The progeny peptide arrays were synthesized in 18-mer format such that 

each of the 18 amino acids of the PP2A-C sequence were sequentially substituted with 

alanine (or aspartic acid where the wild-type sequence exhibited alanine). The array was 

probed with GST-RACK1 at a concentration of 10μg/ml, which was detected by 

immunoblotting with anti-RACK1 antibody. Bound protein was detected with specific mouse 

antisera for the protein and a secondary anti-mouse antibody coupled with LICOR dye 680 

and scanned on the Odyssey Infrared Scanner. A decrease in intensity in binding to the 



peptides after alanine substitution is indicative of decreased binding of the PP2A-C subunit to 

RACK1. The binding of RACK1 to each alanine-substituted PP2A-C subunit peptide was 

quantified by densitometry and presented as a percentage of the control ‘‘parent’’ sequence. A 

cut off of less than 50% binding was applied. 

2.5 Generation of stable cell lines 

To generate stable transfectants of PP2A mutants, MCF-7 cells were transfected with 

pcDNA3/HA-Empty Vector, pcDNA3/HA-PP2A (Wild Type), pcDNA3/HA-FR69/70AA, 

pcDNA3/HA-R214A and pcDNA3/HA-Y218F using Lipofectamine 2000 transfection 

reagent. Then, 24 hours post transfection, the cells were split into DMEM medium containing 

10% FBS, 10mM l-glu and G418 (1mg/ml) and maintained for 14 days, with regular 

replenishment of medium and drug. At this time the pool was expanded, and screened for 

expression of the HA tagged plasmids by Western blotting. Clones of MCF-7 cells stably 

overexpressing the plasmids were maintained in DMEM supplemented with 1 mg/ml G418. 

2.6 PP2A Phosphatase Activity Assay 

Cellular PP2A activity was measured using threonine phosphopeptide as the substrate with 

the PP2A immunoprecipitation phosphatase assay kit (Millipore). Cells were washed with 

PBS before being lysed using a lysis buffer (20mM imidazole-HCL, 2mM EDTA, 2mM 

EGTA, pH 7.0 with 10µg/ml aprotinin and 1mM PMSF). Cells were sonicated for 10 seconds 

and centrifuged at 2000g for 5 min. Clarified supernatants were incubated with anti- HA 

antibody (4µg) with protein A agarose slurry for 18 h at 4º with gentle rocking. Beads were 

washed 3 times with 700µl TBS, and once with 500µl Ser/Thr assay buffer. The beads were 

then incubated with 60µl diluted phosphopeptide and 20µl Ser/Thr assay buffer at 30ºC for 

10 min in a shaking incubator. The beads were centrifuged briefly and the samples were 

analysed in a colorimetric assay using malachite green at an absorbance of 650 nm.  



 

2.7 Cell adhesion, spreading, proliferation and invasion using the RTCA xCELLigence 

system 

Cells were harvested with trypsin/EDTA, washed with DMEM, and re-suspended in the 

DMEM with 10% FBS. The cells were counted using a haemocytometer. Cells were seeded 

in each well of the E-plate. The impedance values of each well were automatically monitored 

by the xCELLigence system and expressed as a cell index value (CI). The baseline 

impedance is recorded using control wells containing DMEM only with no cells. Unless 

otherwise stated, cells were seeded onto the E-plate at a density of 20,000 per well. The E-

plate was then placed into the xCELLigence system. Scans were run with sweeps every 

minute for the first eight hours to detect early stages of cell adhesion and spreading. 

Subsequent sweeps were taken every 15 minutes for the duration of the 48 hour experiment 

to examine proliferation. 

2.8 Adhesion Assay 

Collagen plates were prepared by coating wells of a 96 well plate with 100µl of 10µg/ml 

collagen I. The plates were incubated at 4°C overnight or alternatively incubated at 37°C for 

2-3 hours. The wells were washed twice with PBS and blocked with 50µl PBS/2.5% BSA 

and incubated at 37° for 1-2 hours. Cells were washed 3 times with PBS. 2000 cells were 

plated into the pre-prepared wells and incubated at 37°C in 5% CO2 for 1 hour. Then, cells 

were washed 3 times with PBS and fixed in 100µl methanol at -20°C for 5 minutes. The 

methanol was removed and cells were stained with 0.1% crystal violet for 15 minutes at room 

temperature. Cells were carefully washed with water and left overnight to dry. The plates 

were then read at 590 nm on a spectrophotometer. 

 



2.9 Migration Assay 

Plastic culture inserts (Ibidi®) with an adhesive bottom layer were placed into wells of a 24 

well plate. 20,000 cells were plated into the wells containing the inserts. The cells were left 

overnight to adhere fully. The insert was removed which leaves a cell free gap of 500µm ± 

50µm. The cells were photographed using a Nikon microscope with a x63 lens at 0 hours and 

24 hours. The migration of cells was analysed using Ibidi® Quantitative Image Analysis. 

2.10 Cell invasion using the RTCA xCELLigence system. 

Cell invasion was monitored in real-time with the xCELLigence system CIM-plates. 4 hours 

prior to conducting the experiment the PP2A stable mutant cells were serum starved. The 

upper chamber of the CIM plates was coated with 1 μg/μl of fibronectin and a 1:40 solution 

of Matrigel
TM

. A total of 20,000 cells were seeded in each well of the upper chamber in 

serum-free media. DMEM media containing 10% FBS was added to each well of the lower 

chamber. The CIM-plate was left in an incubator for 1 hour to allow cell attachment. The 

impedance value of each well was automatically monitored by the xCELLigence system for 

duration of the experiment and expressed as a CI value. 

2.11 Plating Efficiency Assay 

The stable PP2A mutant cell lines were harvested with trypsin/EDTA, washed with DMEM 

and counted using a haemocytometer. 500 cells of each were plated per well of a 6 well plate. 

The plates were incubated at 37° in 5% CO2 for 10 days. After 10 days, the cells were fixed 

in 96% ethanol for 10 min and subsequently stained with 0.05% crystal violet (made in 20% 

ethanol) for 20 min. The wells were washed carefully in trays of water and allowed to dry. 

Colonies were counted and recorded. A colony was deemed to be of 50 cells or more in size. 

This was done in triplicate. 

 



2.12 Soft Agar Assay 

Wells were coated with a 0.6% agarose layer which was made in DMEM with 10% FBS. 

This was left for 20 minutes to allow the agarose to solidify. The stable PP2A mutant cell 

lines were harvested with trypsin/EDTA, washed with DMEM, and re-suspended in the 

DMEM with 10% FBS containing 0.3% agarose. The cells were counted using a 

haemocytometer and plated in quadruplicate. The cells were overlaid very carefully with 

DMEM with 10% FBS. Cells were left to incubate for 14 days. Colonies were then stained 

with 0.01% crystal violet overnight and counted using a light microscope which aids in 

creating contrast.  

2.13 Statistics 

All statistics were done using SPSS 20 Statistical Package. Data is presented as mean ± 

standard error of the mean (SEM) unless otherwise stated. Differences were determined using 

Mann-Whitney (activity assay) or student t-test and differences between groups were 

determined using one-way ANOVA with multiple groups compared using Bonferroni 

correction. A P value less than 0.05 was considered statistically significant.  

  



3. Results. 

 

3.1 Mapping the interaction between RACK1 and the PP2A-C subunit. 

We have previously established that PP2A competes with β1 integrin for binding to WD7 of 

RACK1 and that the binding was regulated by IGF-I and required for IGF-I-mediated cell 

adhesion [30, 31]. We set out to further characterise the interaction between RACK1 and the 

PP2A holoenzyme. We first confirmed that RACK1 is in a complex with the PP2A-C 

subunit. RACK1 was immunoprecipitated from MCF-7 cells. The RACK1 IP was analysed 

for associated HA-tagged PP2A-C by western blotting. In the reciprocal experiment, PP2A-C 

was immunoprecipitated and analysed for associated RACK1 by western blotting, and the 

RACK1 and PP2A-C complex was confirmed (Fig. 1a (i) and (ii)). 

To refine the binding site of RACK1 on PP2A-C, we employed peptide array 

technology to identify the potential binding sites. Peptide arrays of immobilised overlapping 

23-mer peptides, each shifted to the right by 5 amino acids encompassing the entire PP2A-C 

sequence were generated as previously described [12, 31, 43]. Arrays were probed with GST 

alone or GST-RACK1, and bound GST was detected by immunoblotting with anti-GST 

antibody as described in Materials and Methods (Fig. 1b). Positively interacting peptides 

generated dark spots and non-interacting peptides left blank spots. Two areas of positive 

binding were identified encompassing peptide spots A12-A15 and C9-C13 (Fig. 1b).  

Next, we generated a series of alanine substitution arrays derived from the 23-mer 

parent peptides that identified positive on the array. For each parent peptide, 18 progeny 

peptides were generated such that each new peptide in the array had a single alanine 

substitution introduced for successive amino acids in the sequence (or aspartic acid where the 

wild-type residue is already alanine) (Fig. 2a). The alanine substitution peptide arrays were 

then probed with recombinant GST-RACK1 which was detected by immunoblotting with 

anti-GST antibody. A decrease in intensity in binding to the peptides after alanine 



substitution is indicative of decreased binding of PP2A-C to RACK1. The binding of RACK1 

to each alanine-substituted PP2A-C peptide was quantified by densitometry and presented as 

a percentage of the control ‘‘parent’’ sequence. A cut off of less than 50% binding was 

applied to identify those amino acids important in the interaction. 

Results showed that RACK1 binding to these peptides was either severely attenuated 

or ablated by substituting phenylalanine 69 (F69), arginine 70 (R70), arginine 214 (R214) or 

tyrosine 218 (Y218) (Fig. 2a). In contrast, interaction between the GST-RACK1 probe and 

progeny peptides appeared to be enhanced in cases of alanine substitution for aspartic or 

glutamic acids (E67, D77, D223, E226) (Fig. 2a). These results suggested that the detection 

of array peptide binding to RACK1 might be biased towards cationic and hydrophobic 

sequences, thus requiring careful validation of any residues implicated in order to eliminate 

potentially artefactual associations. To this end, we first examined the available crystal 

structures of the PP2A catalytic subunit and its holoenzyme complexes (PDB: 2NPP, 2NYL, 

2NYM [44]; 2IAE [45]; 3DW8 [46]; 3FGA [47]; 4I5N, 4I5L[48] in order to assess whether 

F69, R70, R214 and Y218 might be accessible in the intact protein and so contribute to a 

potential RACK1 binding site. This revealed that F69 and R70 are indeed exposed, on a 

heavily contoured surface proximal to the interface between the PP2A catalytic and 

scaffolding subunits of the holoenzyme, while R214 and Y218 are similarly surface exposed 

but on the opposite face of PP2A-C at or near the catalytic centre (Fig. 2b (i) and (ii)).  

The guanidinium group of R214 is positioned adjacent to the catalytic metal ions in 

the activated PP2A-C protein and plays a dual role both as part of the substrate binding site, 

directly binding to phosphorylated substrates, and in stabilising a loop conformation adjacent 

to the catalytic site. As such, protein binding to this residue might at first sight be expected to 

inhibit PP2A function, and indeed the tumor-inducing toxins, okadaic acid and microcystin-

LR, directly engage R214 when binding to PP2A in an inhibitory capacity [49]. However, 



R214 is also known to play a role in binding proteins that facilitate activation of PP2A and 

holoenzyme assembly. Thus, PP2A holoenzyme assembly is a highly regulated process that 

involves activation of the conformationally flexible PP2A-C subunit by an ATP-dependent 

chaperone protein, PP2A phosphatase activator (PTPA) [50, 51]  and by C-terminal carboxyl 

methylation, mediated by leucine carboxyl methyltransferase 1 (LCMT-1) [52-54]. Both 

PTPA-ATP and LCMT-1 directly engage R214 as a pivotal residue in their associations with 

PP2A-C. 

Y218 is located quite close to the catalytic pocket and interestingly, in one crystal 

structure (PDB: 3FGA [47]), Y218 forms part of the surface contact for a helical fragment 

derived from the shugoshin protein, Sgo1, which facilitates recruitment of PP2A to 

centromeric cohesion [47, 55] . Although it is not thought that the interaction between 

RACK1 and PP2A mimics this interaction precisely (because RACK1 is unlikely to 

reorganise so as to present a helical motif), the observed complex between PP2A-C and Sgo1 

does establish a precedent for Y218 as part of a binding surface for a partner protein. Taken 

together, these analyses confirm the binding of RACK1 to PP2A-C and identify key amino 

acids that may be required for binding of the two proteins. 

3.2 Disrupting the RACK1/PP2A interaction decreases the phosphatase activity of 

PP2A.  

Having determined putative interaction sites for RACK1 on the PP2A-C subunit, we used 

MCF-7 breast cancer cells to generate stable cell lines expressing HA-tagged PP2A-C with 

residue substitutions at the candidate RACK1 binding sites together with appropriate 

controls. HA-Empty Vector, HA-PP2A WT, HA-PP2A FR69/70AA, HA-PP2A R214A and 

HA-PP2A Y218F were transfected into the MCF-7 breast cancer cell line and transfected 

cells were selected and maintained using media containing the selection agent G418 (Fig. 

2c). HA-PP2A FR69/70AA had no effect on the binding of PP2A to RACK1 (Fig. 2c); 



however, HA-PP2A R214A and HA-PP2A Y218F were deficient in binding to RACK1 in 

comparison to HA-PP2A WT (Fig. 2c). The deficiency in HA-PP2A R214A and HA-PP2A 

Y218F binding to RACK1 was also confirmed by using HA-Empty Vector, HA-PP2A WT, 

HA-PP2A R214A and HA-PP2A Y218F to transiently transfect HEK cells. The cells were 

lysed and a RACK1 IP was performed and analysed for associated HA-tagged PP2A-C 

mutants by western blotting (Supplementary Fig. 1a).  

Generation of HA-tagged PP2A stable mutant cell lines allowed us to investigate 

whether the interaction between RACK1 and the PP2A-C subunit is required for stabilisation 

of PP2A activity. PP2A activity was assessed using threonine phosphopeptide as the substrate 

with a PP2A immunoprecipitation phosphatase assay kit. The HA-tagged PP2A mutant cell 

lines were lysed and a HA immunoprecipitation was performed as described in Materials and 

Methods. Samples were also analysed in a colorimetric (malachite green) phosphatase assay, 

reading the absorbance at 650nm.  Our results showed that the activity of the stable HA-

tagged PP2A mutant cell lines, HA-PP2A FR69/70AA,  HA-PP2A R214A and HA-PP2A 

Y218F, was decreased by over 50% in comparison to the activity levels of cells expressing 

WT HA-PP2A (Fig. 2d).   

Given the key role of R214 in substrate interaction and maintenance of the PP2A-C 

structure (Fig. 2b), we might expect that phosphatase activity for the R214A mutant would be 

undermined irrespective of any compromising effect on the binding of RACK1. Moreover, 

with this mutant, general perturbation to the conformation of the R214-containing loop as a 

result of alanine substitution might cause loss of RACK1 binding, as indeed observed in the 

IP experiments, through an indirect action (potentially also affecting the presentation of 

Y218). These results do not, therefore, unambiguously implicate R214 in a direct RACK1-

binding capacity. In contrast, the available PP2A-C crystal structures reveal no role at all for 

the phenolic group of Y218 in maintaining the structure of the protein. The phenol is 



orientated towards solvent and is accessible for protein binding, as seen in the Sgo1 co-

crystal structure (PDB: 3FGA), where the Y218-OH serves as a hydrogen bonded bridge 

between glutamic acid and lysine side chains on Sgo1 [47]. Loss of RACK1 binding with the 

Y218F substitution and the associated reduction in phosphatase activity would thus be fully 

consistent with the hypothesis that RACK1 plays a role in stabilising PP2A activity in cells 

and that Y218 contributes to a RACK1-binding surface on PP2A-C.  

3.3 The RACK1/PP2A complex is required for cell adhesion and spreading.  

We next asked whether the RACK1/PP2A complex plays a role in a number of 

important cellular mechanisms that promote the transformed phenotype. We monitored 

cellular adhesion and spreading in real time using the xCELLigence system (Fig. 3a). Cells 

were seeded in each well of the E-plate at a density of 20,000 cells/well. The impedance 

values of each well were automatically monitored by the xCELLigence system and readings 

taken every 60 seconds over an 8 hour period. Readings were expressed as a cell index value 

(CI) and data presented as a representative graph and bar graph from the xCELLigence 

system, which compares the adhesion and spreading of HA-PP2A WT, HA-PP2A R214A, 

and HA-PP2A Y218F cells over time. The xCELLigence assays show clearly that disruption 

of R214 and Y218 decrease the ability of the cells to adhere. We confirmed this using a more 

traditional cell based adhesion assay (Fig. 3b). We cannot unambiguously conclude that the 

effects in the R214A-PP2A-C expressing cell line might not be due to intrinsic loss of 

catalytic function in the expressed phosphatase. However, the results with cells expressing 

Y218F-PP2A-C support the view that disruption of RACK1/PP2A interaction causes 

decreased cell adhesion and spreading when compared to the control cells overexpressing 

WT PP2A. Although disruption at FR/AA did alter PP2A activity levels, the HA-PP2A 

FR69/70AA cell line showed no difference in the ability to adhere (Supplementary Fig. 2).  

 



3.4 Disruption of the RACK1/PP2A complex decreases cellular proliferation and 

migration.  

Our next objective was to determine whether disruption of the RACK1/PP2A complex had an 

effect on cellular proliferation. Proliferation was monitored in real time using the RTCA 

xCELLigence system as described in Materials and Methods. 20,000 cells/well were plated 

into wells of an E-plate and impedance readings were recorded automatically every 60 

seconds for the first 10 hours and every 15 minutes for the remainder of the experiment. The 

xCELLigence graph (Fig. 4a (i)) is representative of duplicate wells and n=3 experiments 

comparing proliferation of HA-PP2A WT, HA-PP2A R214A and HA-PP2A Y218F cells 

over 48 hours. A comparison of the CI over 12, 24 and 48 hours (Fig. 4a (ii) (iii)) shows that 

cells stably expressing R214A and Y218F mutant PP2A-C consistently exhibit reduced 

proliferative capacity compared to the wild type control.  

To assess the effects on migration, we employed traditional scratch wound assays to 

show that HA-PP2A WT migrated faster than both HA-PP2A R214A and HA-PP2A Y218F 

cells (Fig. 4b). This indicates a role for the RACK1/PP2A complex in the fundamental 

process of cell migration. The role of RACK1 as a scaffolding protein involved in signalling 

pathways important for cell migration has been well studied [1]. This data suggests that the 

effects of RACK1 on cell migration are likely mediated, at least in part, by stabilising the 

activity of PP2A.  

3.5 Cellular invasion is regulated by the RACK1/PP2A complex. 

To test whether the RACK1/PP2A complex plays a role in cellular invasion, we employed 

the xCELLigence system CIM-plates configuration as a 3D invasion model (Fig. 5). To do 

this, prior to conducting the experiment, the cells were serum starved for 4 hours. The upper 

chamber of the CIM plates was coated with a 2mm layer of Matrigel
TM

 on a fibronectin 

coating
 
to provide a barrier through which the cells would have to invade. 20,000 cells/well 



were seeded in each well of the CIM plate upper chamber in serum-free media. DMEM 

media containing 10% FBS was added to each well of the lower chamber to create a gradient 

(as described in Materials and Methods). The impedance value of each well was 

automatically monitored by the xCELLigence system for duration of the experiment (72 

hours) and expressed as a CI value (Fig. 5a (i)). Invasion was compared over 24, 36, 48, 60 

and 72 hours (Fig. 5a (ii)). Percentage difference in cell index of HA-PP2A WT was 

compared to HA-PP2A R214A and HA-PP2A Y218F at 72 hours (Fig. 5a (iii)). In this 

experimental set up, the invasive potential of the cells was markedly reduced when the 

RACK1/PP2A complex was disrupted and it was clear that cells expressing HA-PP2A WT 

invaded faster than both HA-PP2A R214A and HA-PP2A Y218F cells. Again, the HA-PP2A 

FR69/70AA cell line showed no difference in the ability to invade (Supplementary Fig. 2). 

3.6 The RACK1/PP2A complex is required for optimal plating efficiency and colony 

formation in soft agar. 

Decreased cell adhesion, spreading, proliferation, migration and invasion in cells where 

RACK1 and PP2A binding is deficient suggests that the RACK1/PP2A complex has a role to 

play in maintaining the transformed phenotype in breast cancer. In order to investigate this 

hypothesis further, we determined whether disruption of the RACK1/PP2A complex had an 

effect on plating efficiency and/or the cells’ ability to form colonies in soft agar. Results 

show that cells expressing a disruption to the RACK1/PP2A complex are deficient in plating 

efficiency (Fig. 6a). Data also shows that cells expressing a disruption to the RACK1/PP2A 

complex are deficient in the ability to form colonies in soft agar (Fig. 6b). This data supports 

our hypothesis that the interaction between RACK1 and PP2A helps to maintain the 

transformed phenotype in breast cancer cells.  

 

  



4. Discussion 

 

This study highlights that RACK1 stabilises PP2A activity and that the interaction between 

RACK1 and PP2A plays an essential role in cell adhesion, proliferation, migration and 

invasion of MCF-7 cells. PP2A is active when bound to RACK1 and we have demonstrated 

that reduced PP2A activity correlates with a reversal of the transformed phenotype. We have 

identified putative RACK1 interaction sites on the catalytic subunit of PP2A, and 

characterised a key role for the RACK1/PP2A complex in the progression and maintenance 

of the cancer phenotype. The first interaction locus we identified was FR69/70, and although 

surface exposed on the structure of RACK1, was found to have no effect on the binding of 

PP2A to RACK1. Although disruption at this site did alter PP2A activity levels in cells, the 

HA-PP2A FR69/70AA cell line showed no difference in the ability to adhere or invade. 

(Supplementary Fig. 2). The second RACK1 interaction site on PP2A that we identified 

encompassed Y218 and R214, residues proximal to the catalytic pocket of PP2A. Mutation of 

these two residues expressed in the context of full length RACK1 were deficient in RACK1 

binding and also led to a decrease in PP2A activity, cell adhesion, cell proliferation, 

migration and invasion. 

This work highlights a number of intriguing possibilities. It suggests that PP2A in 

complex with RACK1 may not be functioning as a tumour suppressor. Rather, we show that 

inhibition of PP2A activity through disruption of the RACK1/PP2A complex reduces cell 

adhesion, proliferation, migration and invasion. This strongly points towards PP2A having a 

pro-carcinogenic role to play in this cancer cell model when in complex with RACK1. 

RACK1 appears to have the ability to scaffold PP2A to sites and substrates involved in 

cancer progression, while, at the same time, RACK1 also plays an essential role in stabilizing 

PP2A phosphatase activity. Thus, the RACK1/PP2A complex may be considered as a 

potential therapeutic target for breast cancer in the future, and development of compounds 



that disrupt the interaction between these two proteins might, in principle, serve to slow down 

the development and progression of a malignancy. 

Inhibition of PP2A has already been the subject of many investigations as a 

therapeutic strategy in cancer in recent years (reviewed in [23]. Indeed, two PP2A-inhibitory 

compounds, LB-100 and LB-102 (from Lixte Biotechnology, Inc.), are now showing promise 

as chemotherapy drug sensitizers. LB-102 inhibits PP2A to increase the efficacy of drugs, 

including doxorubicin, in xenograph animal models of glioblastoma by blocking cellular 

DNA damage defence mechanisms that are targeted by the chemotherapeutic agent [37]. The 

related PP2A inhibitor, LB-100 (currently in clinical trials; NCT01837667 [56]), similarly 

enhances chemo-sensitivity to drugs in a number of cancer cell types, including sarcoma [57], 

pheochromocytoma [58], nasopharyngeal carcinoma [59], hepatocellular carcinoma [60], 

medulloblastoma [61] and pancreatic cancer [62, 63] as well as both breast [64] and ovarian 

cancers [65].  

Given the broad substrate specificity and diverse cellular functions of PP2A, it is 

conceivable that selective disruption of RACK1-complexed pools of PP2A, as suggested by 

our model studies, might offer a more focused strategy for harnessing PP2A inhibition to 

treat cancer therapy, potentially decoupling pro-carcinogenic consequences of indiscriminate 

PP2A inhibition through PP2A-C site-directed competitive inhibitors. Interest in such 

finessed approaches to chemotherapeutic target exploitation is clearly increasing, as evinced 

by the growing body of work with IQ motif-containing GTPase activating protein 1 

(IQGAP1) a scaffold within the MAPK pathway that is responsible for assembling the 

kinases within this pathway to effect signal transmission [66, 67]. IQGAP1 has been linked to 

the progression of cancer and drives tumourigenesis in both mouse models and human tissue 

[66, 68]. Up-regulation of the ERK1/2 MAPK cascade is seen in 30% of cancers and 

IQGAP1 binds to ERK1/2 through a highly conserved 32 amino acid ‘WW domain’ to 



facilitate activation of ERK in response to certain stimuli. A specific YY/AA mutation in the 

IQGAP1 WW domain was found to disrupt the IQGAP1/ERK1/2 interaction, and this was 

sufficient to inhibit RAS driven-tumourigenesis, significantly increasing the life span of 

tumour bearing mice without having a negative effect on other proteins in the IQGAP1 

interactome [66].  

Deletion of RACK1 is embryonically lethal [69], whereas IQGAP1 knockout mice are 

viable [66], and clearly there may be challenges to achieving selective disruption of the 

RACK1-PP2A complex whilst avoiding interference with other RACK1 protein-protein 

interactions, at least in the case where a binding site on RACK1 is to be exploited. A key 

question, then, is whether it is feasible to block a scaffold protein such as RACK1 at a 

specific interaction point to gain a therapeutic benefit without disruption of its other 

functions. To date, no small molecule ligands for RACK1 have been reported, although 

foundational studies with peptidic ligands derived from RACK1 partner proteins have shown 

demonstrable potential as RACK1 complex disruptors in cell-based studies, notably in the 

case of the ternary FAK/RACK1/PDE4D5 ensemble that also plays a role in regulating 

cancer cell polarity, initiation of cancer cell spreading and metastasis [14, 15]. In this case, 

RACK1 binds to the FERM domain of FAK and serves to recruit PDE4D5, which in turn 

shapes cAMP gradients at nascent integrin adhesions. Disruption of the ternary complex by 

mutagenesis of two amino acids in the FAK FERM domain, so as to compromise the FAK-

RACK1 interface, impaired cellular directional responses, and the same effect was achieved 

with a cell-permeabilised 38-mer peptide derived from the N-terminal region of PDE4D5 

[70] that presumably binds to RACK1 and competitively blocks PDE4D5 recruitment. In this 

study by Serrels et al [14], disruption of the RACK1-PDE4D5 interaction with the peptide 

was achieved without evident disturbance to other vital RACK1 functions. Although small 

molecule ligands for RACK1 have yet to be identified, such compounds are beginning to 



emerge for other RACK1-like β-propeller scaffolding proteins, with examples of both 

competitive and allosteric mechanisms of protein binding disruption [71-73]. Taken together 

with the work of Serrels et al, this suggests that selective disruption of RACK1 scaffolding 

interactions may be possible with small molecule ligands to provide a novel approach for 

therapeutic modulation of PP2A function whilst avoiding indiscriminate interference with 

other essential RACK1 functions.  

Clearly, efforts to develop RACK1-PP2A disrupting agents would benefit from 

further definition of the nature of the RACK1-PP2A interaction, ideally with structural 

characterisation of the association. We have identified a candidate RACK1-binding surface 

on PP2A-C involving Y218 and possibly also the catalytic site residue, R214. Given the role 

of R214, it seems unlikely that RACK1 might bind to this residue whilst the enzyme is 

catalytically operational. However, at present we cannot exclude the possibility that RACK1 

might have multiple roles in orchestrating PP2A function. For example, a direct interaction 

with R214 could conceivably invoke a ‘transient’ role in activating PP2A (cf. PTPA and 

LCMT-1, vide supra, Section 3.1), whilst Y218 might feature in a switched RACK1 

association mode that serves to stabilise a particular PP2A holoenzyme assembly and/or 

target the complex to specific subcellular sites. The nature of the PP2A-binding site on 

RACK1 also requires clearer definition. Y302 in the WD-7 repeat of RACK1 has been 

implicated in the binding of both PP2A and β1 integrin [31]. Curiously Y302 is buried and 

does not exhibit surface exposure in the available RACK1 crystal structures. Any direct 

binding interaction involving Y302 would therefore require a conformational change in 

RACK1, and potentially involve propeller blade hairpin extrusion, as characterised [74] in the 

x-ray crystal structure of the yeast homologue (Asc1p) of RACK1 and postulated for other 

RACK1 protein associations [31]. Y302 is located on strand-B of propeller blade-7, as 

defined in [31], and might be exposed by extrusion of the outer C/D-strands in either blade-7 



or blade-6, with the former linked to a conformationally mobile loop in the RACK1 structure. 

Such extrusion would expose a groove in the propeller rim as a potential protein binding site 

and might, in principle, be regulated by the phosphorylation status of the Y302. 

In summary, in this study, we have further characterised the interaction between 

RACK1 and PP2A. Both proteins have a well-established relevance to breast cancer. We 

have determined that disruption of the RACK1/PP2A complex has implications for a wide 

range of cellular processes involved in maintenance and progression of cancer, including 

migration and invasion. Disruption of the RACK1/PP2A complex may have potential 

therapeutic benefit in breast cancer. 
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Figure Legends. 

Figure 1. Mapping the interaction between RACK1 and the PP2A-C subunit. (a)(i) HA-

tagged Empty Vector and PP2A WT were transfected into MCF-7 cells. The cells were lysed 

and a RACK1 IP was performed and analysed for associated HA-PP2A-C by western blotting 

using a HA antibody. Panel on the right shows the corresponding cell lysates. (ii) MCF-7 

cells were lysed and a PP2A-C IP was performed and analysed for associated RACK1 by 

western blotting. n=3. (b) Peptide arrays encompassing the entire PP2A-C subunit were 

generated. Arrays were probed with GST-RACK1, which was detected by immunoblotting 

with anti-GST antibody. Two arrays gave a similar pattern of RACK1 binding. Array shown 

is representative of the two independent arrays. Positively interacting peptides generated dark 

spots and non-interacting peptides left blank spots. The array control conditions used GST 

alone as the probe. After immunoblotting with anti-GST antibody, we considered peptides to 

be positive when the interaction was distinctly higher that any spots when probed with GST 

alone (n=3).   

Figure 2. Candidate RACK1 binding site analysis and disrupting the RACK1/PP2A 

interaction decreases the phosphatase activity of PP2A. (a) Interaction-positive sequences 

identified in Figure 1(b) were further analysed using alanine substitution. Alanine-scanning 

progeny arrays were generated by successive substitution of individual residues in the parent 

peptide array sequences with alanine (or aspartic acid for alanine). The progeny arrays (in 18-

mer format) were probed with GST-RACK1 as per Figure 1(b). Representative results are 

shown for progeny arrays derived from parent peptides A14 and C12. The alanine-substituted 

residues in progeny peptides with reduced GST-RACK1 binding relative to wild-type 

sequence control peptide (Co) are potentially implicated in RACK1 binding. Attention was 

focused on residues whose substitution by alanine afforded an average of 50% less binding 

over the three experiments. In each case the array shown is representative of one of three 18-

mer alanine scanning progeny arrays analysed for the regions encompassing parent peptides 

A12-A15 and C9-C13, with F69, R70, R214 and Y218 consistently implicated as key 

residues for RACK1 interaction. (b) Inspection of the available PP2A crystal structures 

confirmed the accessibility of residues (F69, R70, R214, Y218) identified from the progeny 

peptide arrays as candidate RACK1 interaction points. The surface-exposed locations of 

F69/R70 (i) and R214/Y218 (ii) are shown, here mapped onto the PP2A ternary holoenzyme 

co-crystal structure (PDB: 3DW8) with microcystin-LR. R214 plays a key role in substrate 

binding and maintenance of the active site region architecture as shown in (iii) (c) HA-tagged 

PP2A mutants were transfected into MCF-7 cells and stable cell lines were selected using 

G418. A RACK1 IP was performed on the HA-tagged PP2A stable mutant cell lines and 

analysed for associated HA by western blotting. Lysates were analysed for associated HA and 

actin by Western blotting n=3 (d) Cellular PP2A activity was measured using a PP2A 

immunoprecipitation phosphatase assay kit. MCF-7 cells expressing HA-PP2A WT, HA-

PP2A FR69/70AA, HA-PP2A R214A and HA-PP2A Y218F were immunoprecipitated using 

an anti-HA antibody and the samples were analysed in a colorimetric assay at 650 nm. PP2A 

activity levels of MCF-7 cells expressing  HA-PP2A FR69/70AA, HA-PP2A R214A and 

HA-PP2A Y218F were compared to activity levels of HA-PP2A WT. *p<0.01 (n=3).  



Figure 3. The RACK1/PP2A complex is required for cell adhesion and spreading. 

Cellular spreading was monitored using the xCELLigence system. (a) The xCELLigence 

graph is representative of the average of duplicate wells from one experiment comparing 

cellular spreading of PP2A mutant stable cell lines HA-PP2A WT cells to the cellular 

spreading of HA-PP2A R214A and HA-PP2A Y218F cells. Bar graph shows difference in 

cell index between the cellular spreading of HA-PP2A WT (control) cells and both HA-PP2A 

R214A and HA-PP2A Y218F cells. Readings expressed as CI values. (b) 2,000 cells of the 

PP2A mutant stable cell lines HA-PP2A WT, HA-PP2A R214A and HA-PP2A Y218F were 

plated in collagen coated wells, incubated for one hour, washed, fixed in 100µl methanol and 

stained with 0.1% crystal violet. Cells were washed again and Triton X was added to the 

wells. After drying, the plates were read at 590 nm. Adhesion of HA-PP2A R214A and HA-

PP2A Y218F cells were compared to adhesion of HA-PP2A WT. *p<0.05, **p<0.01, 

***p<0.001. n=3.  

Figure 4. Disruption of the RACK1/PP2A complex decreases cellular proliferation and 

migration. Proliferation was monitored in real time using the xCELLigence system. 

Readings expressed as CI values. (a) (i) The xCELLigence graph is the average of duplicate 

wells comparing proliferation of PP2A mutant stable cell lines HA-PP2A WT cells compared 

to HA-PP2A R214A cells and HA-PP2A Y218F cells over 48 hours. (ii) Bar graph 

comparing the mean CI over 12, 24 and 48 hours. (iii) Bar graph representing a comparison 

of the percentage difference in mean cell index of PP2A mutant stable cell line HA-PP2A 

WT with HA-PP2A R214A and HA-PP2A Y218F cells at 48 hours. *p<0.05, ***p<0.001 

compared to the WT control. n=3. (b) Migration of the stable PP2A mutants compared to the 

wild type control. Percentage wound closure of HA-PP2A WT was compared to the 

percentage wound closure of HA-PP2A R214A and HA-PP2A Y218F after 24 hours. 

Figure 5. Disruption of the RACK1/PP2A complex decreases cellular invasion. Cell 

invasion of PP2A mutant stable cell lines HA-PP2A WT, HA-PP2A R214A and HA-PP2A 

Y218F was monitored in real-time with xCELLigence system CIM-plates. (a)(i) 

Representative xCELLigence graph (ii) Invasion of HA-PP2A WT compared to HA-PP2A 

R214A and HA-PP2A Y218F was compared over 24, 36, 48, 60 and 72 hours. ***p<0.001 

compared to the WT control. (iii) Percentage difference in cell index of HA-PP2A WT 

compared to HA-PP2A R214A and HA-PP2A Y218F at 72 hours (n=3). 

Figure 6. The RACK1/PP2A complex is required for the maintenance of the 

transformed phenotype. (a) Plating efficiency assay showing difference in colony number 

between HA-PP2A WT, HA-PP2A R214A and HA-PP2A Y218F. (b) Cell were grown in 

soft agar, counted and compared against the wild type control.  

Supplementary Figure 1.  

HEK cells were transiently transfected with the HA-tagged PP2A mutants, HA-PP2A WT, 

HA-PP2A R214A and HA-PP2A Y218F. A RACK1 IP was performed and analysed for 

associated HA by western blotting. 

 



Supplementary Figure 2.  

Mutating the PP2A-C subunit  at site F69/R70 has no effect on cellular adhesion or 

invasion.  

2,000 cells of the PP2A mutant stable cell lines HA-PP2A WT and HA-PP2A FR69/70AA 

were plated in collagen coated wells, incubated for one hour, washed, fixed in 100µl 

methanol and stained with 0.1% crystal violet. Cells were washed again and Triton X was 

added to the wells. After drying, the plates were read at 590 nm. Adhesion of HA-PP2A 

FR69/70AA cells were compared to adhesion of HA-PP2A WT. Cell invasion of PP2A 

mutant stable cell lines HA-PP2A WT and HA-PP2A FR69/70AA was monitored in real-

time with xCELLigence system CIM-plates. (d)(i) Representative xCELLigence graph (ii) 

Invasion of HA-PP2A WT compared to HA-PP2A FR69/70AA was compared over 72 hours. 
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