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Abstract	14	

The	global	reductions	in	disease	burden	and	the	continued	spread	of	drug	and	15	

insecticide	resistance	make	malaria	elimination	both	viable	and	imperative,	16	

although	this	may	be	more	easily	achieved	in	some	settings	compared	to	others.	17	

Whilst	the	focus	has	been	on	optimal	approaches	to	achieve	elimination,	less	18	

attention	has	been	paid	to	how	to	measure	the	absence	of	malaria.	Measuring	the	19	

absence	of	transmission	poses	a	specific	challenge	in	that	it	involves	proving	a	20	

negative.	The	concept	of	freedom	from	infection,	routinely	used	in	veterinary	21	

epidemiology,	can	provide	quantitative	and	reproducible	estimates	that	if	22	

infections	were	present	above	a	predefined	(low)	threshold,	they	would	be	23	

detected	with	a	known	uncertainty.	Additionally,	these	methods	are	adaptable	24	

for	both	passively	and	actively	collected	data	as	well	as	combining	information	25	
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when	multiple	surveillance	streams	are	available.	Here	we	discuss	the	potential	26	

application	of	this	approach	to	malaria.		27	

Measuring	Elimination	28	

Good	disease	surveillance	is	the	foundation	for	effective	public	health	planning.	A	29	

successful	system	should	generate	timely	and	actionable	information	to	30	

implement	or	scale	back	programs.	[1,	2]	There	is	currently	a	renewed	drive	to	31	

achieve	malaria	elimination.	[3-5]	As	countries	reorient	their	systems	to	report	32	

the	absence	of	transmission,	guidance	is	needed	on	how	to	generate	33	

reproducible	and	evidence-based	information	for	decision-making.	[6-8]	34	

	35	

Measuring	elimination	or	the	absence	of	disease/infection/transmission	poses	a	36	

specific	challenge	in	that	it	involves	proving	a	negative.	[9,	10]	Proving	that	37	

infection	is	present	in	a	population	is	relatively	straightforward,	as	a	single	38	

positive	case	would	falsify	the	hypothesis	that	no	infection	is	present.	39	

Conversely,	measuring	the	absence	of	infection	with	routine	statistical	methods	40	

is	impractical	unless	the	complete	population	is	sampled	with	a	perfect	41	

diagnostic	tool.	[11,	12]	Veterinary	epidemiologists	routinely	face	the	challenge	42	

of	‘proving	zero’	to	avoid	importation	of	diseased	animals	as	part	of	the	global	43	

trade	in	livestock.	[13]	The	freedom	from	infection	(FFI)	methodology	was	44	

developed	to	quantify	the	probability	that	disease	would	be	detected	if	it	exists	45	

in	populations	(e.g.	farms,	herds	or	flocks)	of	interest.	[14]	These	established	46	

methods	provide	a	set	of	tools	for	measuring	the	probability	of	having	achieved	47	

elimination	whose	concepts	are	highly	applicable	and	should	be	explored	for	use	48	

in	malaria	and	other	human	disease	systems.		49	

	50	
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In	this	paper,	we	introduce	the	concept	of	FFI	and	provide	examples	of	how	these	51	

tools	could	be	applied	to	the	context	of	malaria	elimination.	We	focus	on	52	

passively	collected	surveillance	data	(PCD),	as	this	is	currently	the	basis	for	53	

certification	of	malaria	elimination.	[15,	16]	However,	in	recognition	of	some	of	54	

the	frailties	of	the	health	systems	that	collect	and	report	these	data	and	that	55	

multiple	sources	of	data	will	become	increasingly	common,	we	also	discuss	how	56	

passively	collected	data	can	be	supplemented	with	active	surveillance	and	how	57	

information	can	be	combined	to	generate	realistic	estimates	of	the	probability	of	58	

having	achieved	FFI.		59	

	60	

Measuring	Zero	-	Freedom	from	Infection	61	

Statistical	methods	for	estimating	FFI	are	well	established	in	veterinary	62	

epidemiology.	[14,	17-19]	Briefly,	the	tools	estimate	the	probability	that	a	63	

surveillance	system	will	detect	at	least	one	infected	individual	if	the	number	of	64	

infections	is	above	a	pre-determined	threshold,	or	design	prevalence	(DP	-	see	65	

glossary	for	key	terminology	and	definitions).	This	calculation	can	then	be	66	

extended	to	estimate	the	confidence	of	freedom	from	the	infection	of	interest	(at	67	

the	DP)	given	accumulated	negative	surveillance	according	to	Bayesian	68	

probability	theory.	This	is	equivalent	to	the	negative	predictive	value	of	the	69	

surveillance	system.	[14]	Evidence	is	accumulated	over	time	to	calculate	the	70	

probability	of	FFI	at	the	pre-determined	time-step,	whereby	the	probability	that	71	

the	area,	or	flock	of	interest,	is	free	from	infection	at	the	set	DP	increases	with	72	

each	negative	result.	[20]	If	the	DP	is	set	at	a	level	below	which	transmission	is	73	

unlikely	to	be	sustained,	and	the	probability	of	FFI	remains	sufficiently	high	over	74	

a	period	of	time,	accounting	for	the	risk	of	disease	re-introduction,	then	one	can	75	
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state	with	a	level	of	confidence	that	the	disease	of	interest	has	been	eliminated.	76	

For	a	more	detailed	overview	of	the	FFI	methodology,	readers	are	referred	to	77	

supplementary	file	1	and	the	standard	text	in	veterinary	epidemiology.	[14]	78	

	79	

Freedom	Tools	in	Practice		80	

To	our	knowledge,	the	freedom	tools	have	only	been	fully	applied	to	human	81	

health	in	one	instance.	Using	historical	surveillance	data,	Watkins	et	al.	82	

calculated	the	sensitivity	of	the	surveillance	system	to	detect	wild	poliovirus	in	83	

Australia	and	calculated	the	corresponding	estimate	of	FFI.	[21]	A	similar	84	

approach	to	design	elimination	programs	has	been	employed	for	other	human	85	

diseases.	For	example,	the	transmission	assessment	surveys	used	in	the	86	

lymphatic	filariasis	elimination	campaigns	used	a	probabilistic	mathematical	87	

modeling	approach	to	determine	the	levels	of	disease	prevalence	whereby	below	88	

this	threshold,	disease	is	most	likely	to	die	out,	leading	to	elimination.	[22,	23]	89	

However,	there	has	yet	to	be	any	evidence	that	this	approach	will	lead	to	disease	90	

elimination	in	the	field	or	if	it	can	be	transferred	to	other	disease	systems.	With	91	

elimination	of	malaria	and	other	infectious	diseases	a	global	priority,	the	92	

available	and	highly	relevant	FFI	framework	should	be	explored.	93	

	94	

The	following	examples	are	generating	using	the	RSurveillance	package	for	R	(v	95	

3.2.3)	with	the	assumptions	and	parameters	used	outlined	in	box	1	(R	code	96	

available	upon	request).	All	parameters	can	and	should	be	changed	to	reflect	the	97	

specific	epidemiological	setting	in	the	region	of	interest.		98	

	99	

Passive	Case	Detection	100	
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The	freedom	tools	are	able	to	provide	actionable	information	using	routinely	101	

collected	health	system	data	in	several	ways.	First,	the	probability	of	freedom	102	

achieved	by	the	surveillance	system	can	be	determined	at	the	specified	DP	over	103	

the	period	since	negative	reporting	has	occurred.	[15]	For	example,	the	freedom	104	

methodology	was	used	to	confirm	the	absence	of	porcine	reproductive	and	105	

respiratory	syndrome	in	Sweden	using	passive	surveillance	data	with	an	106	

estimated	99.8%	probability	of	FFI.	[24]	Applying	this	to	malaria,	assuming	that	107	

our	population	consists	of	the	catchment	area	of	a	health	facility	and	that	our	108	

unit	sensitivity	(USe)	is	0.05	(a	number	that	will	be	highly	variable	in	practice),	109	

after	three	years	of	monthly	zero	reporting	we	can	be	99%	confident	that,	if	110	

malaria	is	present,	there	are	fewer	than	3	infections	(i.e.	the	preset	DP)	in	the	111	

population,	if	they	exist	(figure	1A	–	example	corresponds	to	the	light	blue	line).	112	

The	freedom	calculation	according	to	passive	case	detection	is	dependent	on	USe	113	

and	can	either	be	estimated	for	each	time	point,	here	assumed	to	be	monthly	114	

following	typical	health	system	reporting,	or	assumed	to	be	static	over	time	(as	115	

was	the	case	here).	USe	is	typically	estimated	according	to	a	scenario	tree	model,	116	

using	either	parameters	for	each	branch	according	to	available	data	or	if	117	

unknown,	parameters	can	be	derived	using	stochastic	modeling	to	account	for	118	

uncertainty	(see	box	1	for	tree	structure	and	parameters	used)	[14,	34].	Results	119	

can	be	used	to	identify	the	likelihood	of	having	achieved	elimination	per	health	120	

facility	or	to	identify	facilities	that	have	yet	to	achieve	the	desired	probability	of	121	

freedom	and	should	therefore	be	targeted	for	improvements	in	reporting	or	122	

surveillance	activities.	The	data	from	each	facility	in	the	surveillance	network	123	

can	also	be	aggregated	to	generate	an	overall	FFI	estimate	for	the	region.		124	

	125	
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If	the	level	of	confidence	achieved	within	the	desired	time	or	the	DP	attained	is	126	

not	sufficient,	the	number	of	additional	months	of	negative	reporting	required	127	

can	be	determined.	For	example,	5	years	of	negative	monthly	reporting	would	be	128	

required	to	achieve	a	99%	probability	of	freedom	at	a	DP	of	2	malaria	infections	129	

(figure	1B	–	example	corresponds	to	the	purple	solid	line).	The	current	malaria	130	

elimination	guidelines	specify	that	there	should	be	three	years	of	negative	131	

reporting.	It	follows	that	the	DP	that	can	realistically	be	achieved	in	that	time,	the	132	

time	required	for	the	desired	level	of	confidence	to	be	attained,	(figure	1B	–	133	

corresponding	to	the	dark	blue	line)	as	well	as	identifying	the	USe	required	to	134	

achieve	the	desired	DP	within	the	three	year	timeline	can	be	calculated.	[15]	For	135	

example,	to	achieve	a	99%	probability	of	freedom	from	infection	with	a	DP	of	1	136	

within	3	years,	a	system	sensitivity	of	15%	must	be	maintained	(figure	1C	–	137	

example	corresponds	to	the	dark	green	line).	These	estimates	would	then	be	138	

used	to	inform	evidence-based	guidelines	for	confirming	malaria	elimination	139	

that	are	biologically	and	operationally	tractable	by	the	passive	case	detection	140	

system	alone.		141	

	142	

Active	Case	Detection	143	

Where	PCD	alone	is	insufficient	to	achieve	acceptable	estimates	of	FFI,	actively	144	

collected	data	can	be	used	to	increase	the	surveillance	sensitivity.	[7]	For	145	

example,	active	screening	of	pigs	was	conducted	to	establish	the	elimination	of	146	

foot-and-mouth	disease	in	the	Luzon	region	in	the	Philippines.	[25]	Actively	147	

collected	data	is	common	in	many	malaria	control	programs	including	the	use	of	148	

large-scale	household	malaria	indicator	surveys	(MIS).	[26-29]	The	FFI	149	

methodology	can	assist	in	survey	design	with	the	aim	of	looking	for	infections	150	
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when	none	are	expected.	[19]	The	results	can	then	be	used	to	estimate	the	151	

probability	of	FFI	according	to	the	surveillance	sensitivity	achieved	through	the	152	

active	screening	or	combined	when	routine	surveillance	data	alone	are	153	

insufficient	to	achieve	the	desired	sensitivity.	For	example,	Cruz	et	al	conducted	a	154	

cross-sectional	serological	survey	to	supplement	evidence	of	freedom	from	155	

equine	infectious	anemia	virus	infection	in	Spanish	purebred	horses.	[30]	156	

	157	

Working	with	the	assumption	that	the	objective	is	to	detect	the	presence	of	158	

infections	if	the	true	prevalence	in	the	population	is	equal	to	or	exceeds	the	DP,	159	

the	required	sample	sizes	to	achieve	the	desired	level	of	surveillance	sensitivity	160	

assuming	simple	random	sampling	can	be	calculated.	Furthermore,	as	livestock	161	

tend	to	cluster	in	farms	and	pens	or	cages	within	farms,	sample	size	calculations	162	

for	clustered	populations	have	also	been	developed.	[18,	31]	These	calculations	163	

are	highly	applicable	for	malaria	and	the	two-stage	clustered	design	is	often	used	164	

for	MIS’s	where	no	accurate	sampling	frame	of	people	or	households	exists.	[32]	165	

For	example,	using	a	representative	two-stage	random	sampling	design	and	166	

assuming	a	large	population,	to	achieve	85%	surveillance	sensitivity	421	clusters	167	

with	25	people	per	cluster	are	required,	to	detect	1	infected	cluster	per	200	168	

clusters	(figure	2	–	example	corresponds	to	the	red	dashed	line).	This	is	only	169	

slightly	larger	than	the	sample	sizes	used	for	MIS	to	ascertain	infection	170	

prevalence.	[27,	28]	171	

	172	

An	additional	element	developed	as	part	of	the	freedom	toolbox	is	the	use	of	173	

risk-based	sampling.	Briefly,	instead	of	taking	a	representative	sample	of	the	174	

population,	detecting	the	presence	of	infection	becomes	more	efficient	by	175	
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randomly	sampling	those	animals	or	people	that	are	most	likely	to	be	infected.	176	

[14]	In	terms	of	malaria,	if	the	populations	that	are	at	higher	risk	of	having	a	177	

malaria	infection	(e.g.	migrant	populations	or	school-aged	children)	can	be	178	

identified	and	oversampled	as	part	of	the	surveillance	activities,	the	likelihood	of	179	

detecting	an	infection	increases	and	the	same	sensitivity	can	be	achieved	with	a	180	

smaller	sample	size	as	compared	to	representative	sampling.	[14,	33]	For	181	

example,	if	a	population	with	5	times	greater	risk	of	infection	is	targeted,	for	182	

example	the	population	around	known	malaria	vector	breeding	sites,	to	achieve	183	

a	85%	surveillance	sensitivity	with	a	DP	of	1	infected	cluster	per	200	clusters,	184	

only	199	clusters	with	25	people	per	cluster	would	have	to	be	sampled	using	a	185	

risk-targeted	design	(figure	2	–	example	corresponds	to	the	red	dashed	line).	186	

This	is	over	a	50%	reduction	in	sample	size	compared	to	representative	187	

sampling.	If	the	populations	can	be	identified	and	risk	quantified,	the	risk-188	

targeted	approach	is	likely	to	become	an	accepted	approach	as	malaria	189	

transmission	becomes	more	heterogeneous	and	conventional	MIS	less	sensitive.		190	

	191	

Similar	to	data	generated	with	PCD,	evidence	generated	through	freedom	192	

surveys	can	be	accumulated	over	time	with	the	probability	of	achieving	FFI	being	193	

updated	at	each	time-step,	discounting	the	likelihood	of	re-introduction.	This	194	

means	that	smaller	annual	surveys	in	the	target	population	(e.g.	schools)	can	195	

achieve	the	same	sensitivity	as	a	single	large	freedom	survey.	[20]	196	

	197	

Complex	Surveillance	Systems	198	

As	in	the	veterinary	domain,	information	from	multiple	sources	of	passive	and	199	

active	malaria	surveillance	are	commonly	available	and	can	be	combined	in	200	



	 9	

determining	FFI.	[17,	34]	The	scenario	tree	modeling	used	to	estimate	USe	of	201	

passive	surveillance	systems	can	be	extended	to	estimate	the	sensitivity	of	each	202	

component,	or	source	of	information	contributing	to	the	surveillance	system	203	

(figure	3A).	Components	can	then	be	combined	to	provide	an	overall	estimate	of	204	

the	surveillance	sensitivity	and	FFI,	after	subtracting	any	potential	overlap.	By	205	

calculating	the	sensitivity	of	each	component	separately,	the	strength	of	the	206	

component	based	on	the	quality	and	weight	of	evidence	is	accounted	for	in	the	207	

resulting	overall	sensitivity	estimate	according	to	how	the	components	are	208	

combined.	[14,	34]	For	example,	this	combined	approach	has	been	used	in	209	

estimating	FFI	of	porcine	reproductive	and	respiratory	syndrome	in	Sweden.	210	

[24]	Components	common	in	malaria	surveillance	could	include	routine	health	211	

system	reporting,	active	household	screening	for	malaria	by	community	health	212	

workers	and	active	household	surveys	conducted	through	research	activities	or	213	

MIS.	[29,	35]	The	sensitivity	of	each	component	can	be	calculated	and	combined	214	

to	estimate	the	probability	of	FFI	accounting	for	all	available	data	(figure	3B).	215	

[17]		216	

	217	

Although	these	models	are	sometimes	difficult	to	parameterize,	the	scenario	tree	218	

approach	offers	the	flexibility	to	adapt	to	the	structure	of	the	surveillance	system	219	

of	interest.	[14]	When	constructing	the	scenario	trees,	the	parameters	can	be	220	

associated	with	distributions	and	stochastic	modeling	used	to	account	for	any	221	

uncertainties.	This	is	described	in	detail	by	Martin	et	al.	[34]	This	tool	could	222	

provide	a	mechanism	to	compare	systems	and	identify	areas	for	improvement.	223	

Also,	by	identifying	the	tree	branches	with	low	probabilities	the	use	of	scenario	224	

trees	could	inform	what	areas	of	the	surveillance	system	could	be	targeted	for	225	
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improvement	to	achieve	the	desired	system	sensitivity.	[17]	The	scenario	tree	226	

modeling	approach	can	also	provide	a	benchmark	with	which	to	gauge	the	ability	227	

of	the	system	to	detect	the	disease	of	interest.		228	

	229	

Concluding	Remarks	230	

The	optimum	methods	for	confirming	that	a	region	is	free	from	malaria	infection	231	

would	ideally	be	both	flexible	to	account	for	the	significant	microepidemiological	232	

variation	present	in	transmission	while	providing	a	consistent	standard	to	233	

monitor	achievements	by	programs.	The	FFI	concepts	presented	here	offer	a	set	234	

of	well-established	methods	on	which	such	specific,	yet	flexible	guidelines	can	be	235	

based	to	support	the	malaria	elimination	certification	process	required	by	the	236	

WHO.	[36]	Despite	the	heterogeneity	in	malaria	ecology	and	transmission	237	

potential,	consistent	thresholds	for	the	DP	and	acceptable	probability	of	freedom	238	

can	be	established	based	on	the	biology	of	the	malaria	transmission	and	239	

acceptable	levels	of	uncertainty,	greatly	simplifying	the	implementation	of	these	240	

tools.	The	pressing	need	would	be	to	determine	and	quantify	a	standardized	set	241	

of	surveillance	tree	branches	to	estimate	USe	for	each	type	of	surveillance	242	

system	as	well	as	how	to	combine	the	components.	Quantifying	the	risk	of	re-243	

introduction	of	infections	and	determining	at	what	spatial	scales	re-introduction	244	

can	and	should	be	estimated	are	also	important	steps	towards	being	able	to	245	

effectively	apply	this	methodology.	[7]		246	

	247	

In	an	era	of	accelerating	the	timelines	toward	elimination	new	analytical	248	

approaches	for	defining	surveillance	for	negative	reporting	are	required.	[37]	249	

Despite	the	concepts	of	the	FFI	being	relatively	simple	and	intuitive,	they	have	250	
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yet	to	be	investigated	for	human	health	surveillance.	Developing	tools	analogous	251	

to	FFI	for	malaria	surveillance	data	will	be	needed	before	achievable	and	252	

evidence-based	thresholds	and	guidelines	can	be	determined	(see	Outstanding	253	

Questions).	Appropriately	repurposed,	FFI	tools	could	be	used	to	provide	robust	254	

evidence	that	the	lack	of	cases	being	reported	through	the	passive	and/or	active	255	

surveillance	systems	suggests	that	malaria	elimination	has	been	achieved.	The	256	

FFI	tools	provide	novel	methods	that	should	be	validated	for	malaria	and	other	257	

human	disease	systems	to	ensure	that	there	is	sufficient	confidence	in	achieving	258	

elimination.	A	logical	extension	is	the	potential	to	provide	evidence	to	inform	the	259	

requirements	for	certification	of	malaria	elimination,	a	major	goal	for	many	260	

endemic	countries.	261	
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	372	

Boxes:	373	

Box	1:	Assumed	parameters	for	illustrating	the	freedom	tools.		374	

- The	prior	probability	of	freedom	is	0.5	-	a	conservative	estimate	suggesting	375	

that	ongoing	transmission	and	having	achieved	elimination	are	both	equally	376	

likely;	377	

- There	is	minimal	risk	of	re-introduction	of	infections	meaning	that	an	378	

infection	is	imported	and	transmission	re-established	in	the	population	379	

(p=0.001);	380	

- The	sensitivity	of	the	surveillance	system	and	the	probability	of	detecting	an	381	

infected	individual	does	not	vary	over	time;	382	

- The	branches	used	in	the	scenario	tree	model	to	derive	USe	were	the	383	

probability	that	an	infection	is	symptomatic	(0.5),	they	seek	care	(0.5),	the	384	

clinician	suspects	malaria	(0.3),	they	are	tested	for	malaria	(0.8)	and	the	385	

diagnostic	test	identifies	the	infection	(0.95).	These	figures	and	were	used	as	386	

an	example	only	and	are	not	meant	to	be	representative	of	a	specific	387	

environment.		388	

- The	diagnostic	test	sensitivity	could	be	the	result	of	a	single	test	or	multiple	389	

tests	conducted	in	series	or	in	parallel;	390	

- The	diagnostic	test	specificity	is	1.0	which	could	be	the	result	of	a	perfect	test	391	

or	because	any	positives	are	followed	up	and	re-tested	to	confirm	that	they	392	

are	in	fact	false	positive	readings	as	is	standard	practice	in	an	operational	393	

context	and	therefore	is	a	valid	assumption	however,	formulae	are	available	394	

to	incorporate	imperfect	test	specificity;	395	

- The	population	represents	a	single	health	facility	catchment	area.	396	
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- All	of	the	above	parameters	can	and	should	be	adjusted	according	to	the	397	

specific	scenarios	where	it	is	applied.	398	

	399	

Figure	Legend	400	

	401	

Figure	1:	Calculated	probability	of	freedom	from	infection	illustrating	concepts	402	

and	applicability	for	decision-making.	A)	Estimated	probability	of	freedom	from	403	

infection	calculated	assuming	monthly	reporting	and	a	unit	sensitivity	of	0.05	for	404	

different	thresholds	for	the	number	of	infections	to	detect	The	red	vertical	405	

dashed	line	corresponds	to	the	probability	of	freedom	achieved	after	3	years	of	406	

negative	reporting	as	is	specified	in	the	current	guidelines	for	certifying	malaria	407	

elimination	while	the	horizontal	red	dotted	line	represents	the	0.99	probability	408	

of	freedom	threshold. B)	The	probability	of	freedom	achieved	after	3	(blue),	5	409	

(purple),	and	10	(aqua)	years	according	to	different	levels	of	design	prevalence	410	

and	a	unit	sensitivity	of	0.05.	C)	The	probability	of	freedom	from	infection	411	

achieved	over	monthly	time	steps	assuming	a	design	prevalence	of	1,	calculated	412	

according	to	surveillance	system	sensitivities	ranging	from	0.01	(dark	blue)	to	413	

0.20	(orange).	The	red	vertical	dashed	line	corresponds	to	the	probability	of	414	

freedom	achieved	at	3	years	while	the	horizontal	red	dotted	line	represents	the	415	

0.99	probability	of	freedom	threshold.	Details	on	methodologies	and	the	416	

generation	of	curves	are	available	in	the	FAO	guidelines	[14]	as	well	as	the	417	

RSurveillance	R	package.	418	

	419	

Figure	2:	Sample	size	calculations	for	active	surveillance	to	support	freedom	420	

from	infection	estimates.	Sample	sizes	required	for	two-stage	clustered	sampling	421	
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designs	assuming	a	representative	random	sample	(blue)	and	a	risk-targeted	422	

approach	assuming	80%	of	your	sample	is	targeting	the	20%	of	clusters	with	5	423	

times	higher	risk	(red)	to	achieve	85%	surveillance	sensitivity.	The	red	dashed	424	

line	corresponds	to	the	sample	size	required	to	detect	1	infected	cluster	per	200	425	

clusters.	Details	on	methodologies	and	the	generation	of	curves	are	available	in	426	

the	FAO	guidelines	[14]	as	well	as	the	RSurveillance	R	package.	427	

	428	

Figure	3:	Applying	the	freedom	from	infection	tools	to	account	for	multiple	429	

streams	of	surveillance	data.	A)	Example	of	a	simple	scenario	tree	modeling	for	430	

estimating	the	surveillance	sensitivity	of	each	component.	Probabilities	are	431	

assigned	at	each	branch	point	and	stochastic	modeling	can	be	used	to	account	for	432	

uncertainty	in	the	parameter	estimates.	In	this	example	age	is	a	risk	factor	for	433	

the	probability	of	infected	individuals	having	clinical	malaria	and	being	identified	434	

as	positive	according	to	clinical	decision	making	whereas	traveling	is	a	major	435	

risk	factor	for	contracting	malaria	in	those	sampled	as	part	of	community	based	436	

surveys;	adapted	from	Martin	et	al	2007	[17];	B)	Probability	of	freedom	achieved	437	

by	combining	active	and	passive	surveillance	data.	The	sharp	increase	in	the	438	

curves	that	occur	at	month	0,	12,	and	24	represent	the	boost	in	surveillance	439	

sensitivity	due	to	freedom	surveys	whereas	the	gradual	increase	in	the	440	

probability	of	freedom	in	between	active	surveys	corresponds	to	the	441	

contribution	of	routine	surveillance.	The	different	colored	curves	correspond	to	442	

freedom	surveys	designed	according	to	achieve	different	survey	sensitivities	443	

with	a	greater	sample	size	required	to	achieve	a	higher	survey	sensitivity.	The	444	

sensitivity	of	the	passive	surveillance	system	reporting	between	survey	time	445	

points	was	assumed	to	be	0.05.	The	probability	of	freedom	is	discounted	by	the	446	
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probability	of	disease	re-introduction	over	time.	Details	on	methodologies	and	447	

the	generation	of	curves	are	available	in	the	FAO	guidelines	[14]	as	well	as	the	448	

RSurveillance	R	package.	449	

	450	

Glossary:	451	

Cluster:	A	group	of	individuals	that	are	epidemiologically	related	and	are	452	

considered	to	be	a	distinct	primary	sampling	unit	(e.g.	a	political	unit,	health	453	

facility	or	school	catchment	area	etc.)	in	the	context	of	designing	an	active	454	

surveillance	program	455	

Design	Prevalence	(DP):	The	hypothetical	level	of	infection	against	which	the	456	

system	is	evaluated	and	is	considered	to	be	the	number	of	cases	to	detect	so	that	457	

transmission	is	not	likely	sustained	below	this	level.	458	

Prior	Probability	of	Freedom:	The	assumed	probability	of	population	freedom	459	

prior	to	undertaking	the	surveillance	being	analyzed.	460	

Probability	of	Freedom	from	Infection:	The	probability	that	the	population	is	461	

“free”	from	infection	(at	the	design	prevalence)	given	the	negative	surveillance	462	

results	and	is	analogous	to	the	negative	predictive	value	of	the	surveillance	463	

system.	In	this	context	“free”	is	defined	as	either	eliminated	or	present	at	a	464	

prevalence	less	than	the	specified	design	prevalence.	465	

Surveillance	System	Sensitivity	(SSe):	The	probability	that	the	surveillance	466	

system	would	detect	one	or	more	infected	individuals	if	the	population	is	infected	467	

at	or	above	the	design	prevalence	and	is	calculated	as:	1	–	(1	–	USe)^(DP)	468	

Unit	Sensitivity	(USe):	The	probability	that	an	individual	with	the	infection	will	469	

be	detected	by	the	surveillance	system	and	is	typically	estimated	according	to	470	
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scenario	tree	modeling	and	is	the	product	of	the	tree	branches	representing	the	471	

flow	of	an	infected	individual	through	the	system.	472	

	473	

Outstanding	Questions	Box:	474	

- What	is	the	acceptable	design	prevalence	to	use	for	malaria	and	should	it	be	475	

consistent	or	allowed	to	vary	based	on	microepidemiological	characteristics?	476	

- What	is	the	acceptable	probability	of	freedom	that	should	be	sustained	for	477	

what	amount	of	time	for	an	area	to	be	considered	free	from	infection?	478	

- Are	the	sample	size	calculations	for	freedom	surveys	designed	for	use	in	479	

veterinary	epidemiology	sufficient	to	detect	malaria	infections	if	it	is	present	480	

at	or	above	the	stated	threshold?	481	

- How	should	data	generated	through	multiple	surveillance	streams	be	482	

combined?	483	

- Does	scenario	tree	modeling	accurately	quantify	the	sensitivity	of	a	passive	484	

surveillance	system?	485	

- Which	branches	in	the	scenario	trees	are	required	and	how	can	the	486	

probabilities	associated	with	these	branches	be	accurately	quantified.	487	

- What	information	is	essential	to	collect	before	malaria	is	eliminated	to	488	

inform	effective	implementation	of	the	freedom	methodologies?	489	

	490	

	 	491	



	 21	

	492	

	493	
Supplementary	File	1:	Overview	of	Freedom	From	Infection	Methodology	494	

	495	

The	key	concepts	and	formulae	associated	with	this	work	are	presented	here.	496	

For	additional	details	including	the	broader	literature	on	health	surveillance	497	

systems,	metrics	associated	with	diagnostic	tool	performance,	probability	theory	498	

readers	are	encouraged	to	refer	to	the	supporting	literature.	This	text	has	been	499	

adapted	from	documentation	prepared	by	Martin	et	al	[1]	and	from	the	FAO	[2]	500	

to	highlight	the	mathematical	formula	associated	with	the	concepts	presented	in	501	

the	accompanying	manuscript	on	freedom	from	malaria	infection.		502	

	503	

Freedom	From	Infection	–	Concept:	504	

	505	

The	hypothesis	of	freedom	from	infection	being	tested	is:	506	

	507	

HO:	The	area	is	infected	at	a	level	at	or	above	the	stated	design	prevalence	508	

HA:	The	area	is	free	from	the	infection	or	the	level	of	infection	is	below	the	stated	509	

design	prevalence	510	

	511	

Probability	of	freedom	is	therefore	the	probability	that	the	area	is	free	from	512	

disease,	given	that	the	surveillance	did	not	detect	any	infected	individuals.	Using	513	

Bayes	theorem,	we	can	calculate	the	probability	of	freedom	as:	514	

	515	

P(free)		 =	 !"#$	&$'()*+$
!"#$	&$'()*+$,-(./$	&$'()*+$

	 	 Equation	1	516	
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	517	

	 	 =	 012 ×45
012 ×45,2× 014$

	518	

	519	

Where:		520	

Sp	and	Se	are	the	sensitivity	and	specificity	of	the	surveillance	system,	and		521	

P	is	the	prior	probability	that	the	country	was	infected	522	

	523	

The	prior	probability	(P)	that	infections	exist	in	an	area	will	significant	influence	524	

the	resulting	P(free)	estimates.	Unless	a	strong	evidence	base	is	available	to	525	

suggest	otherwise,	the	acceptable	value	for	P	is	0.5	for	the	first	round	of	negative	526	

surveillance	providing	a	conservative	prior	and	suggesting	that	both	infections	527	

and	freedom	are	equally	likely.	This	prior	is	then	updated	at	each	time-step	of	528	

surveillance	reporting	based	on	the	P(free)	result	obtained	at	the	previous	time	529	

period.	530	

	531	

Disease	re-introduction:	532	

As	negative	surveillance	results	accumulate	over	time	increasing	the	certainty	in	533	

achieving	freedom.	However,	historical	data	decreases	in	value,	depending	on	534	

the	risk	of	re-introduction	of	new	infections	that	would	change	the	infection-free	535	

status	of	the	population.	When	the	risk	of	introduction	of	disease	is	small,	older	536	

information	retains	more	of	its	value	and	vice	versa.	To	account	for	the	risk	of	re-537	

introduction	of	infections	into	a	population,	the	p(freedom)calculation	is	538	

adjusted	as:	539	

	540	
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P(free)	=	 1 − 𝑃𝑓𝑟𝑒𝑒)510 + 𝑃𝐼𝑛𝑡𝑟𝑜)5 − 𝑃𝐼𝑛𝑡𝑟𝑜)5(1 − 𝑃𝑓𝑟𝑒𝑒)510)									Equation	2	541	

	542	

Where:	543	

Pfree	is	calculated	as	in	equation	1	544	

PIntro	is	the	probability	that	infection	is	re-introduced	into	the	area	and	545	

transmission	is	resumed,	and	546	

tp	is	the	surveillance	time	point	being	assessed	(with	tp-1	representing	the	547	

previous	time	period)	548	

	549	

Surveillance	System	Sensitivity:	550	

Passive	Surveillance:	551	

The	probability	that	the	surveillance	system	(SSe)	would	detect	one	or	more	552	

infected	individuals	if	the	population	is	infected	at	or	above	the	DP	and	is	553	

calculated	as:	554	

		555	

SSe	=	1 − (1 − 𝑈𝑆𝑒)E2	 	 	 	 	 					 													Equation	3	556	

	557	

	558	

Where	the	USe	is	the	unit	sensitivity	or	the	probability	that	an	infected	individual	559	

will	be	detected	by	the	surveillance	system	and	is	typically	estimated	according	560	

to	scenario	tree	modeling.	The	tree	approach	uses	branches	to	represent	the	561	

steps	related	to	the	detection	of	an	infected	unit	with	the	probability	that	the	562	

individual	will	transition	to	the	next	level	assigned	to	each	branch	(e.g.	the	563	

probability	of	being	symptomatic,	seeking	care,	is	a	suspected	case,	tested	for	the	564	

disease	and	the	test	correctly	identifies	the	infection).	The	sensitivity	that	that	565	
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individual	will	be	detected	is	the	product	of	the	probabilities	assigned	to	each	566	

branch.	Probabilities	can	be	quantified	using	available	data,	expert	opinion,	or	567	

stochastic	modeling	to	account	for	uncertainty	if	unknown.	568	

	569	

Active	Surveillance:	570	

	571	

The	sensitivity	of	a	survey	is	the	probability	that,	if	the	population	is	infected	at	a	572	

given	DP,	at	least	one	infected	individual	will	be	detected.	The	more	people	that	573	

are	sampled,	the	greater	the	probability	that	an	infected	individual	will	be	574	

detected	and	therefore	sample	size	for	a	desired	level	of	surveillance	sensitivity	575	

can	be	determined.		576	

	577	

Assuming	simple	random	sampling,	imperfect	diagnostic	test	sensitivity	and	578	

specificity,	and	large	population	sizes:	579	

	580	

Survey	Sensitivity	=	1 − [1 − ( 𝐷𝑃×𝑆𝑒 + 1 − 𝐷𝑃 × 1 − 𝑆𝑝 )]J						Equation	4	581	

	582	

Where	DP	is	the	expected	number	of	infections	to	be	detected,	583	

Se	is	the	diagnostic	test	sensitivity	(note,	if	this	is	1,	this	term	drops	out),	584	

Sp	is	the	diagnostic	test	specificity	(note,	if	this	is	1,	this	term	drops	out),	and	585	

n	is	the	required	sample	size	to	achieve	the	desired	sensitivity	586	

	587	

For	extensions	of	sample	size	formula	for	two-stage	cluster	and	risk-targeted	588	

sampling	designs	see	Cameron	and	Baldock	[3]	and	[4]	589	

	590	
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