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Summary 

Burkholderia pseudomallei is the causative agent of melioidosis, an infectious 

disease with high incidence and mortality in South East Asia and Northern Australia. 

To date there is no protective vaccine and antibiotic treatment is prolonged and not 

always effective. Most people living in endemic areas have been exposed to the 

bacteria and have developed some immunity, which may have helped prevent 

disease. Here, we used a humanized mouse model (hu-PBL-SCID), reconstituted 

with human peripheral blood mononuclear cells (PBMCs) from seropositive donors, 

to illustrate the potential of three known antigens (FliC, OmpA and N-PilO2) for 

boosting both T- and B-cell immune responses. All three antigens boosted the 

production of specific antibodies in vivo, and increased the number of antibody and 

interferon gamma (IFN-γ) secreting cells, and induced antibody affinity maturation. 

Moreover, antigen-specific antibodies isolated from either seropositive individuals or 

boosted mice, were found to enhance phagocytosis and oxidative burst activities 

from human polymorphonuclear cells. Our study demonstrates that FliC, OmpA and 

N-PilO2 can stimulate human memory T and B cells and highlight the potential of the 

hu-PBL-SCID system for screening and evaluation of novel protein antigens for 

inclusion in future vaccine trials against melioidosis.   
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Introduction 

Melioidosis is an infectious disease caused by Burkholderia pseudomallei, 

Gram negative bacilli bacteria, commonly found in wet soil and water in South East 

Asia and Northern Australia 1. According to previous reports, people living in 

endemic areas have an increased chance of exposure to the bacterium; some 

acquire the infection and progress to disease, whereas others do not. The clinical 

manifestations of melioidosis are vast, ranging from acute to chronic infection 

phases 2. Despite the high incidence of melioidosis in endemic areas, with high 

mortality rates 3, to date, no licensed vaccine for melioidosis prevention exists 4, 5.  

Melioidosis shares several clinical and immunological characteristics with 

tuberculosis including induction of granulomatous pathology, a requirement for 

Interferon gamma (IFN-γ) activated macrophages for bacterial killing, the presence of 

extended periods of clinical latency and the requirement for prolonged antibiotic 

treatment 6, 7. In the case of tuberculosis, mathematical modelling indicates the most 

effective strategies for the elimination of tuberculosis will require both pre-exposure 

and post-exposure vaccines, in developing countries with high incidence rate 8. 

Applying this concept to melioidosis, Northeast Thailand is a highly endemic region. 

Populations in this area are frequently exposed to B. pseudomallei, and some 

individuals generate immunological memory against B. pseudomallei, exhibiting high 

titers of B. pseudomallei-specific antibodies and possessing memory T cells 9. 

Although, immunological memory is not sufficient for complete protection, boosting 

protective immunity in seropositive people in endemic areas may be considered 5, 8, 

10. To date, several vaccine antigen candidates have been identified and tested for in 

vivo protection in murine models of pre-exposure vaccination 11, 12. However, 
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validation of abilities of vaccine antigen candidates for boosting human immune 

responses for post-exposure vaccination in vivo is lacking. 

In a previous protein microarray study, we identified a number of B. 

pseudomallei proteins  as potential antigen candidates, based on their recognition by 

antibodies from healthy seropositive individuals and those recovered from 

melioidosis 13, 14. Furthermore, some of these proteins have been shown to induce 

the production of IFN-γ, a key cytokine with an established role in protection against 

melioidosis  14. Some antigens have been further studied in vivo. In particular, the 

peptidoglycan-associated lipoprotein (OmpA; BPSL2765) has been shown to be 

immunogenic in both mice and melioidosis patients 15. Recently, a multi-antigen 

formulation containing BPSL2765, in combination with three other chronic phase 

associated antigens, was found to offer enhanced protection against mice 

challenged with B. pseudomallei 16. Another seroreactive antigen candidate that has 

been tested in vivo is flagellin (FliC; BPSL3319), which has been shown to trigger 

IFN-γ responses from human T cells, and antibodies raised against FliC have been 

shown to protect mice in passive immunization trials 14, 17-20. A third candidate that is 

recognized by antibodies from melioidosis recovery individuals is BPSS1599 or type 

IV pilus assembly protein 2 (PilO2) 14. Based on such findings, we selected OmpA, 

FliC and PilO2 for further study.  

Effective antigen candidates are those that are recognized by human immune 

responses and that can boost pre-existing immune responses in seropositive 

individuals 21. To address the ability of these antigens for boosting of human immune 

responses in vivo, we made us of the ability to measure human lymphocyte 

frequency and function following transplantation into severely immunocompromised 

mice 22-25. The humanized non-obese diabetic / severe combined immunodeficiency 
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(NOD/SCID) mouse model has been a useful tool to study human immune 

responses studies against a variety of pathogens including Epstein Barr virus (EBV) 

26, Hepatitis C virus (HCV) 27, Human Immunodeficiency virus (HIV) type 1 28-31, 

influenza virus 32, and Salmonella typhi 33, 34. The NOD/SCID/JAK3null mouse is a 

powerful model of in vivo human immunity studies, due to the complete lack of 

murine T, B, NK and NKT cell function. In addition, into this type of mouse, various 

type of human cells can be transplanted without graft rejection 22, 24, 35. Humanized 

mice, reconstituted with human PBMCs (hu-PBL-SCID mice), represent a suitable 

preclinical in vivo model to address human immunity boosting and to test for vaccine 

candidates 24, 36, 37.  

In this report, we tested the potential of  recombinant OmpA, FliC and the N-

terminal domain (residues 1-192) of PilO2 (N-PilO2) to boost human seropositive 

immune responses in hu-PBL-SCID mice in vivo. Our findings show that all three 

antigens boosted antibody production and affinity maturation from human B cells. 

The cognate antibodies stimulated bacterial uptake by host phagocytes. Moreover, 

boosting of hu-PBL-SCID mice also enhanced IFN-γ production from human T cells, 

a mechanism that may also enhance protection against B. pseudomallei. This study 

provides the first report on the potential of hu-PBL-SCID mice as a tool to identify 

protein antigens from B. pseudomallei that can boost both T and B cell immune 

responses from seropositive individuals in vivo, in order to facilitate the development 

of a vaccine against B. pseudomallei.  
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Materials and Methods  

Human samples 

Heparinized blood samples from seronegative and seropositive (Indirect 

heamagglutination assay; IHA titer ≤ 40 and > 40 respectively) healthy individuals 38, 

39 were obtained from the Blood Bank Center, Khon Kaen Hospital, Khon Kaen, 

Thailand. All donors were adults and had received research information before 

signing the consent form. The project was approved by the Khon Kaen University 

(KKU) and National Institute of Infectious Diseases in Japan (NIID) Ethics Committee 

for Human Research no. HE470506, HE561234, and 471. The study was carried out 

in accordance with the approved guidelines and informed consent was obtained from 

all subjects. Plasma and peripheral blood mononuclear cells (PBMCs) were collected 

and frozen at -80oC until use. Demographic distribution and sample quality after 

thawing are shown in Table 1.   

 

Mouse strain  

NOD/SCID/JAK3null mice (aged between 6-8 weeks) were kindly provided by 

S. Okada (Kumamoto University) and maintained under specific pathogen free 

condition. All animal procedures were approved by the Animal Ethics Committee of 

the NIID (114022-2) and carried out in accordance with the NIID guidelines. 

 

Recombinant antigen production  

FliC, OmpA and N-PilO2 were generated as recombinant proteins, as 

previously described and exchanged into 1X PBS or sterile water (N-PilO2) 17, 40, 41. 

LPS removal was carried out by incubating each purified protein sample overnight at 
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4oC, in a Pierce High Capacity Endotoxin Removal Spin Column (Pierce), according 

to the manufacturer’s instructions. LPS removal was assayed using the Pierce LAL 

Chromogenic Endotoxin Quantitation Kit (Pierce). 

 

Transplantation of human peripheral blood mononuclear cells (PBMCs) and 

boosting 

The transfer of human PBMCs into recipient NOD/SCID/Jaknull mice was 

performed as previously described 42. Briefly, 3-5 x 107 human PBMCs were 

transferred to mice by intravenous (i.v.) injection via the lateral tail vain. After 24 h, 

mice were boosted with 80 μg of FliC, OmpA or N-PilO2 by i.v. administration or not 

boosted (given PBS only). Mice were maintained for 14 days prior to sacrifice by 

cervical dislocation. Blood was taken by heart puncture, and the spleens were 

collected for further analyses. 

 

Human cell surface marker staining and analysis by flow cytometry  

Erythrocyte depleted splenocytes from hu-PBL-SCID mice were stained for 

live/dead marker (AmCyan), and then stained for human leukocyte surface markers 

with fluorescent anti-human CD4 (Alexa Fluor 700), anti-human CD3 (Pacific Blue), 

anti-human CD45 (phycoerythrin) and anti-human CD19 (fluorescein isothiocyanate) 

monoclonal antibodies. After washing twice with 1 ml of FACS buffer, cells were 

fixed with 100 μl of 2% paraformaldehyde in PBS and stored on ice in the dark. 

Then, cell populations from 2 x 105 acquired cells were analyzed by FACS Canto II. 

Cells within the viable lymphocyte gate were further analyzed for human T cell 

(CD45+, CD3+) and B cell (CD45+, CD19+) populations. Human helper T cells 
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(CD45+, CD3+, and CD4+) were revealed on CD3+ gated panel. Gating strategies are 

shown in Fig. S1. 

 

Detection of human antibodies in hu-PBL-SCID mouse sera by indirect enzyme 

linked immunosorbent assay (ELISA) 

Purified B. pseudomallei derived protein antigens were coated onto 96 well 

polystyrene plates at 10 µg/ml overnight. After blocking with 1% BSA in PBS, mouse 

sera were added in 4-fold serial dilutions in duplicate, and incubated at RT for 2 h.  

Plates were washed 5 times with 0.1% Tween20 in PBS (PBST), and in the case of 

measuring antibody affinity, 7 M urea (treated) or PBS (untreated) was added and 

incubated for 15 min 43. Then horse radish peroxidase (HRP) conjugated anti-human 

IgM (Southern Biotech No. 2020-05) or anti-human IgG (Southern Biotech No. 2040-

05) detection antibodies were added and incubated at RT for 1h. Plates were 

washed 5 times with PBST, and then 100 l of O-Phenylenediamine Dihydrochloride 

(OPD) substrate was added. The reaction was stopped with 2 N H2SO4 and the 

optical density (O.D.) was measured at 490/595 nm.  

Concentration of detected antibodies were analyzed by dose-response curves 

44 in comparison with reference serum, (defined as 1000 U/ml serum), and 

expressed as U/ml of antibody activity. Antibody affinity was represented as % Urea 

Resistance, calculated from dose-response curves and compared between with or 

without urea treatment.  
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Detection of human antibody secreting cell (ASC) detection by Enzyme Linked 

Immunospot (ELISpot) assay 

Nitrocellulose membranes were pre-coated with 20 µg/ml B. pseudomallei 

protein antigens overnight. On the day of assay, antigen coated membranes were 

blocked with 1% BSA in PBS for 2 h at RT. Erythrocyte depleted spleen cells in 200 

μl of DMEM media were added onto the membrane at 1 x 105 cells per well in 

duplicate, incubated at 37oC with 5% CO2 for 4 h. The membrane was then washed 

with 10 mM EDTA in PBS until all attached cells were completely removed. Next, the 

membrane was soaked in HRP conjugated anti-human IgM or IgG detection 

antibodies solution, incubated at RT for 2 h. After 5 washes, the membrane was 

soaked in HRP substrate solution for 5-10 min and the reaction stopped with tap 

water.  The number of spots on the membrane was counted and presented as 

antibody-secreting cell (ASC) per 2 x 105 spleen cells. 

 

Restimulation of hu-PBL-SCID mouse spleen cells for secretion of human 

interferon gamma (IFN-γ) 

Polyvinylidene difluoride (PVDF) membrane ELISpot plates were pre-coated 

with IFN-γ capture antibody (Mabtech) overnight. Prior to the assay, plates were 

washed with sterile PBS and blocked with 10% BSA in DMEM medium at RT for 2 h. 

Erythrocyte-depleted splenocytes at 5 x 105 cells per well were restimulated with 

their boosting antigen at 20 µg/ml in duplicate, and incubated at 37oC for 48 h. Then, 

after splenocytes were detached from the PVDF membrane plate by washing with 

distilled water and 0.1% Tween20 in PBS, each well was probed with a biotinylated 

IFN-γ detection antibody (Mabtech), incubated at RT for 2 h, the membrane was 

washed 5 times with 0.1% Tween20 in PBS, HRP-streptavidin added, and incubated 
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at RT for an hour, the plates were washed again, the AEC (3-amino-9-

ethylcarbazole) substrate was added, and spot forming units (SFU) were counted. 

Data are presented as IFN-γ SFU/106 spleen cells. 

 

Purification of B. pseudomallei specific antibodies from human plasma by 

ammonium sulfate precipitation and affinity chromatography 

B. pseudomallei-specific antibodies from human plasma were purified by 

ammonium sulfate precipitation with gel filtration affinity chromatography 45. Briefly, 

human plasma from seropositive donors were pooled, and depleted of unwanted 

macromolecule proteins by adding an equal volume of saturated ammonium sulfate 

((NH4)2SO4), stirred 1 h at 4oC, then centrifuged for 10 min at 4oC.  The supernatant 

was removed and the protein pellet was resuspended in PBS and dialyzed with 

stirring at 4oC against 2 L of PBS.  

Meanwhile, Sepharose 4B gels (GE healthcare) were coupled to FliC, OmpA 

or N-PilO2 proteins, following the manufacture’s guidelines. Protein-coupled gels 

were packed into the chromatography column case (equilibrated with 20 mM 

phosphate buffer containing 0.3 M NaCl until use). Next, the dialyzed plasma protein 

was introduced into the column at a flow rate at 0.5 ml/min. This step was repeated 3 

times, prior to washing with 20 mM phosphate buffer containing 0.3 M NaCl. Finally, 

antibody specifically bound to the protein-coupled gel matrix were eluted in 0.17 M 

glycine/HCl (pH 2.7), and neutralized by addition of 1M Tris-HCl (pH 9.0). Eluted 

antibody was concentrated using with a centrifugal concentrator with a MW cut-off of 

100 kDa (Vivaspin100, Sartorius, Germany), and the protein concentration was 

determined by measuring the absorbance at 280 nm.  
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Phagocytosis and oxidative burst activity of human PMNs  

The detailed protocol adopted for the phagocytosis and oxidative burst 

analyses are previously described 41, 46. Briefly, B. pseudomallei were grown in Luria-

Bertani broth, and killed by using 1% paraformaldehyde (PFA) in PBS. Then, 108 

CFU/ml PFA fixed B. pseudomallei were labeled with 1 μg/ml fluorescein 

isothiocyanate (FITC) (Sigma, United States) in the dark at RT for 1 h. Unbound 

FITC was removed by washing in PBS twice. FITC intensity was measured by flow 

cytometry prior to opsonization tests, using 20 μg/ml of each purified human antibody 

against the cognate protein antigen.  

Whole blood from B. pseudomallei seropositive individuals were assayed by 

complete blood count, and the number of PMNs in whole blood was diluted to 

achieve 2 x 106 PMNs/ml. Diluted whole blood samples were incubated with 

previously-opsonized FITC-labeled dead B. pseudomallei at a ratio of 10:1 (bacteria: 

PMNs) at 37oC for 30 min. Phorbol 12-myristate 13-acetate (PMA; 800 ng/ml) 

(Sigma) was used as a positive control for oxidative burst activities. Hydroethidine 

(HE; 2,800 ng/ml) (Sigma, United States) was added and incubated for 5 min at RT. 

During this step, respiratory oxidative activities were measured by following the 

oxidation of HE into ethidium bromide (EB), which can be directly detected by flow 

cytometry at excitation and emission wavelengths of 473 nm and 593 nm, 

respectively. Red cells were lysed with BD FACS Lysing Solution (BD Biosciences, 

United States), and the remaining leukocytes were washed twice, and fixed with 2% 

paraformaldehyde.  

Phagocytosis of FITC labeled bacteria and oxidative burst activities were 

analyzed by flow cytometry (FACSCalibur, BD Biosciences). Results are represented 

as % Total Phagocytosis and % Oxidative Burst in phagocytosed cells. 
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% Total Phagocytosis = (%FITC+, %EB+) + (%FITC+, %EB-) 

% Oxidative Burst in phagocytosed cell = (%FITC+, %EB+) / ((%FITC+, 

%EB+) + (%FITC+, %EB-)) x 100. 

 

Statistical analysis 

Analysis of statistical significance was performed using Prism version 5 (Graphpad). 

Multiple comparisons were carried out, using one-way ANOVA, and post-test, using 

Bonferroni’s Multiple Comparison test. * P < 0.05, ** P < 0.01, *** P < 0.001, ns, not 

significant. The correlation was done by linear regression. A P value < 0.05 was 

considered statistically significant.  

 

Results 

Recombinant FliC, OmpA and N-PilO2 induce specific human B cell clonal 

expansion and antibody (IgM and IgG) production in vivo. 

We measured IFN-γ production by human seronegative and seropositive PBMCs 

in response to dead, whole B. pseudomallei bacteria and the three recombinant 

proteins. Results show that PBMCs from seronegative individuals induced low levels 

of IFN-γ in response against whole bacteria of B. pseudomallei and the three 

proteins, while PBMCs from seropositive individuals strongly produced IFN-γ upon 

stimulation (Figure 1). This data suggests that PBMCs from seronegative individuals 

have no pre-existing immunity in response to B. pseudomallei and FliC, OmpA and 

N-PilO2 proteins. On the contrary, seropositive PBMCs recognize B. pseudomallei 

and FliC, OmpA and N-PilO2 proteins, resulting in strong cell activation and 

production of IFN-γ upon stimulation. This implies that seropositive individuals have 
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developed immune memory against B. pseudomallei and FliC, OmpA and N-PilO2 

proteins.        

To study in vivo human immune responses from seropositive individuals against 

vaccine candidate antigens, we reconstituted NOD/SCID/JAK3null mice 35 with human 

PBMCs from 5 healthy seropositive individuals from the melioidosis endemic region 

of Northeast Thailand. To characterize the immune status of these donors, baseline 

antibodies (IgM and IgG) for all human plasma samples were determined (Table 1), 

and the cellularity of frozen isolated human PBMC samples was determined before 

transplantation into the mice (Table 1). After thawing, all samples contained 96-99% 

viable cells as counted by trypan blue exclusion, and 86-93% based on AmCyan 

negative cells analyzed by FACS analysis. The compositions of T and B 

lymphocytes were 82-92% and 7-22% respectively (Table 1). These results revealed 

that the samples used for this study were mostly viable, and have normal 

composition of T and B lymphocytes 47. These hu-PBL-SCID mice were then 

boosted by injection of OmpA, FliC, or N-PilO2, or phosphate buffer saline (PBS) as 

a negative control. At 14 days after boosting, hu-PBL-SCID mice were sacrificed and 

spleen cells were collected, to address the changes in human T and B cell 

populations between antigen-boosted and control mice. Results show that the 

number of human B cells (hCD45+ and hCD19+) was significantly increased in mice 

boosted with recombinant FliC (P < 0.05), OmpA (P < 0.05) and N-PilO2 (P < 0.01), 

in comparison to the non-boosted control (Figure 2A and 2B). However, for the 

human T cell (human CD45+ and human CD3+) and helper T cell (human CD45+, 

human CD3+ and human CD4+) populations, no increase in cell number was 

observed (Figure 2C and 2D).  
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Subsequently, sera were collected from hu-PBL-SCID mice to determine 

whether FliC, OmpA and N-PilO2 protein antigens stimulate human B cells in hu-

PBL-SCID mice to elicit the production of IgM and IgG antibodies. Specific IgM and 

IgG serum levels were measured by indirect enzyme linked immunosorbent assay 

(ELISA). All three proteins were found to significantly boost IgM and IgG antibody 

levels, when compared to control mice (Figure 3A; P < 0.05). Such findings were 

further supported by the results of enzyme-linked immunospot (ELISpot) assay for 

antibody secreting cells (ASCs) from spleen cells, showing that antigen-boosted 

mice exhibit more antigen-specific ASCs relative to the controls (Figure 3B, P < 

0.05). Our findings imply that antibody production from human B cells in seropositive 

individuals increased upon boosting with FliC, OmpA or N-PilO2.  

 

Recombinant FliC, OmpA and N-PilO2 increase the number of IFN-γ producing 

cells from boosted hu-PBL-SCID mice after antigen restimulation. 

To examine the frequency and function of human B. pseudomallei specific T 

cells, spleen cells from boosted hu-PBL-SCID mice were restimulated in vitro with 

their respective protein antigen, and the number of IFN-γ producing cells was 

quantified by ELISpot. The results showed that spleen cells from boosted hu-PBL-

SCID mice had significantly more IFN-γ producing cells, in comparison with control 

hu-PBL-SCID mice, after restimulation with the same protein antigen (Figure 4). In 

details, the number of IFN-γ producing cells was significantly increased in hu-PBL-

SCID mice boosted with FliC (1.85 fold, ranged between 1.30 - 2.67, P < 0.05), 

OmpA (2.1 fold, ranged between 1.38 – 2.48, P < 0.05) and N-PilO2 (2.33 fold, 

ranged between 1.29 – 3.33, P < 0.01) when compared with mice, which had not 

been boosted.  
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Affinity maturation of anti-B. pseudomallei IgG affinity occurs after boosting 

hu-PBL-SCID mice with FliC, OmpA or N-PilO2 proteins in vivo. 

The affinity of human IgM and IgG antibodies against B. pseudomallei 

antigens obtained from hu-PBL-SCID mice was estimated by the detachment of low-

affinity antibodies through urea wash as previously described 43. Results revealed 

that IgG antibodies from antigen boosted mice sera are more resistant to urea 

compared to antibodies from the same donor sera used to boost mice; P < 0.01. On 

the contrary, the affinity of IgM antibodies from both boosted mice and donor sera 

were the same (Figure 5). Overall, we propose that human B cells in hu-PBL-SCID 

mice are activated and develop into antigen-specific ASCs, in response to boosting 

with FliC, OmpA or N-PilO2. Moreover, FliC, OmpA or N-PilO2 protein antigens also 

induce T cell responses that help B cells in the process of affinity maturation.  

 

Antisera against B. pseudomallei FliC, OmpA or N-PilO2 from boosted hu-PBL-

SCID mice enhance bacterial phagocytosis and oxidative burst activities of 

human polymorphonuclear cells (PMNs). 

We next investigated the ability of specific antibodies against FliC, OmpA and 

N-PilO2, present in plasma from seropositive donors to induce phagocytosis of B. 

pseudomallei and the oxidative burst response by PMN. Human anti-FliC, anti-OmpA 

and anti-N-PilO2 antibodies were purified from plasma pooled from five seropositive 

donors living in endemic areas. Antigen-specific recognition against each purified 

human antibody was assessed; no cross-reaction was observed between protein 

antigens (Figure S2). Purified antibodies were then incubated with FITC-labeled 

intact dead B. pseudomallei, and cultured with human whole blood. Oxidative burst 
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was detected by the addition of hydroethidine (HE), which is converted into ethidium 

bromide (EB) in the presence of oxidative radical species, and counting the number 

of FITC and/or EB positive cells in the PMN gate by flow cytometry. Purified 

antibodies from human plasma were found to enhance both PMN phagocytosis (P < 

0.05) and oxidative burst activities (P < 0.05) (Figure 6A), suggesting that these 

antibodies may play a role in host defense against B. pseudomallei infection. We 

then tested for the enhancement of human PMN phagocytosis and oxidative burst 

activities, in the presence of humanized antibodies from antigen boosted hu-PBL-

SCID mice. Sera from hu-PBL-SCID mice (antigen boosted and non-boosted 

controls) were incubated with FITC-labeled intact dead B. pseudomallei, and 

cultured with human whole blood. Sera from all antigen boosted hu-PBL-SCID mice 

were found to significantly enhance both phagocytosis (P < 0.05) and oxidative burst 

activities (P < 0.01) in human PMNs, in whole blood compared to sera from non-

boosted mice (Figure 6B).  

We then analyzed the correlation of the effects of PMN phagocytosis and 

oxidative burst enhancement and the concentration or affinity of IgG antibodies from 

FliC, OmpA and N-PilO2 boosted hu-PBL-SCID mice. We found a positive 

correlation of PMN phagocytosis and oxidative burst enhancement with the level and 

affinity of IgG in boosted mice sera (Figure 6C and 6D). For FliC or OmpA boosted 

mice, a significant positive correlation between % total phagocytosis and the level of 

IgG (FliC P < 0.05; OmpA P < 0.01) was observed, however the IgG affinity was not 

altered (FliC P = 0.1698; OmpA P = 0.1743). Accordingly, the % oxidative burst in 

phagocytosed cells was also significantly positively correlated to the level of IgG 

(FliC P < 0.01; OmpA P < 0.05) but not to IgG affinity (FliC P = 0.2544; OmpA P = 

0.0516). With regards to N-PilO2, we did not observe any significant changes. Our 
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data suggest that enhancement of PMN phagocytosis and oxidative burst activities 

by antibodies from boosted hu-PBL-SCID mice may depend on the level of 

antibodies and/or affinity. 

The summary of this humanized mouse model (hu-PBL-SCID) reconstituted 

with human peripheral blood mononuclear cells (PBMCs) from B. pseudomallei 

seropositive donors, to illustrate the potential of three known antigens (FliC, OmpA 

and N-PilO2) for boosting both T- and B-cell immune responses is shown in Figure 

7.  

 

Discussion 

In this study, we used the humanized NOD/SCID/Jak3null mouse model to 

study in vivo boosting of seropositive PBMCs by three protein antigen candidates 

known to induce human antibody responses in seropositive and/or melioidosis 

recovery individuals 14. The humanized NOD/SCID/Jak3null mouse model can receive 

PBMCs from seropositive donors as it completely lacks T-, B-, NK- and NKT cell 

functions 35, 48. All three target antigens pertain to protein families that are known 

immunogens across diverse bacterial species, namely flagellar proteins (FliC), outer 

membrane proteins (OmpA) and pilus subunits (N-PilO2) 13-16, 49, 50.   

Here, we show that the IFN-γ response from PBMCs from seropositive 

individuals living in a melioidosis endemic area, upon stimulation with B. 

pseudomallei antigens, is significantly greater than from seronegative individuals. 

This correlates with our previous studies showing that human antibodies and PBMC 

can recognize FliC and OmpA proteins, and magnitude of the response from human 

seropositive individuals is higher than seronegative individuals 14, 17, 41. Additional 
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studies on larger sample sizes from endemic area of Thailand also confirm that the T 

cells from seropositive healthy or melioidosis recovery individuals against B. 

pseudomallei antigens is significantly greater than seronegative healthy individuals 9, 

51, 52. During IFN-γ production upon stimulation of human seropositive PBMC with B. 

pseudomallei, NK cells are transient and are prominent in the first 24 h of stimulation 

whereas CD4 and CD8 T cells have more contribution in the later phase of 

stimulation by primarily response through terminally differentiated effector memory T 

cell (TEMRA) 9. Our use of purified proteins here rather than intact bacteria, and that 

we boosted mice for 14 days prior to restimulation ex vivo makes it less likely for us 

to adequately probe the human NK cell response under these conditions, and is 

consistent with our results that the majority of IFN-γ production from humanized 

spleen cells after stimulation for 48 h was T cell mediated. In other studies with such 

donors there is no difference in IFN-γ production upon stimulation of human 

seronegative versus seropositive PBMC with cytomegalovirus, Epstein Barr virus 

and influenza virus (CEF) pooled peptides 9, 52. Thus, the difference of IFN-γ 

production in response to B. pseudomallei between seropositive and seronegative 

individuals seen here in hu-PBL-SCID mice most likely reflects differences in human 

T cell memory against the bacteria.  

Our analyses of the human lymphocyte population in spleen samples 

collected from hu-PBL-SCID mice boosted with each of the three target antigens, 

showed an increase in the number of B cells (CD45+, CD19+), but not T cells. In 

previous examples of human PBMC transplantation, the number of T and B cells 

substantially decreased due to cell death, however, from day 3 to day 7, the number 

of B cells sharply increased, and then slowly declined. On the other hand, T cell 

numbers slowly increased from day 3 onwards 53. Interestingly, despite a gradual 
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increase in T cell numbers, they were converted into a reversible anergy state 54, 55. 

When human T cells were reconstituted in the SCID mouse, the human T cell 

phenotypes were CD45RO+ and HLA-DR+, suggesting that they were mature 

memory T cells 55. Moreover, those T cells also expressed CD25, CD69 and CD71, 

suggesting that human memory T cells were continuously stimulated by 

xenoantigens, and lead to anergy and loss of function in the hu-SCID mouse 55, 56. 

This anergy was found to be reversible upon T cell re-activation by a TCR activator 

and IL-2 in vitro 54, 55. These humanized models may also underestimate the 

magnitude of the human CD8+ T cell response 57, but CD4 T cells proliferation and 

responses can clearly be found 58. Here we did not observe T-cell proliferation in vivo 

by flow cytometry, however, the number of IFN-γ secreting cells increased when 

antigen boosted hu-PBL-SCID mice spleen cells were restimulated in vitro with the 

relative antigen. We propose that when human T cells from healthy seropositive 

donors were reconstituted into NOD/SCID mice, these T cells (especially naïve T 

cells) which have never been exposed to B. pseudomallei die upon transplantation, 

but some memory T cells survive and respond to the cognate antigen by producing 

IFN-γ. 

Next, we examined the production of specific human IgM and IgG antibodies 

in response to boosting antigens. We found that both antigen-specific human IgM 

and IgG antibodies, in mouse sera and ASCs, were increased in boosted mice in 

comparison with the controls. Furthermore, we also found that after boosting with 

specific antigen, human IgG antibody was affinity-matured, implying that antigen-

specific memory B cells with higher affinity were preferentially restimulated by 

booster antigens. Our findings support the report that human cells, immunized with 

tetanus toxoid and transplanted into SCID mice, upon a second boosting with 
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tetanus toxoid, resulted in an increase in antigen-specific IgG titers in a T-cell 

dependent manner, and also induced affinity maturation 59. 

Finally, we have shown that human antibodies against FliC, OmpA and N-

PilO2, from both seropositive donor plasma and antigen boosted hu-PBL-SCID mice 

are able to enhance phagocytosis and oxidative burst activities of human PMN 

against intact B. pseudomallei. This is consistent with our previous studies that 

antibodies raised against FliC 17 and OmpA 41 enhance bacterial uptake and 

oxidative burst by neutrophils. B. pseudomallei binding antibody enhances 

complement deposition which subsequently enhances bacterial uptake and killing by 

neutrophils 60, 61, even though, B. pseudomallei can evade and survive inside 

macrophage-like cells upon infection 62, 63. Our previous study on primary human 

neutrophils infected with B. pseudomallei has demonstrated that neutrophils could 

kill intracellular B. pseudomallei through autophagy 64. Moreover, induction of 

autophagy in neutrophils leads to formation of neutrophil extracellular traps (NETs) 

65, 66, and both autophagy and NETs are important antibacterial mechanisms against 

B. pseudomallei 67, 68. Thus, the enhancement of bacterial uptake and oxidative burst 

of neutrophils by antibodies against FliC, OmpA and N-PilO2 would be an important 

mechanism in host defense against B. pseudomallei infection.  

In conclusion, we have shown that FliC, OmpA and N-PilO2 can boost 

memory B and T cell responses in vivo in hu-PBL-SCID mice reconstituted with 

PBMC from B. pseudomallei-exposed seropositive individuals. Such boosting effects 

resulted in the enhancement of host immune function likely to be important in 

defense against B. pseudomallei infection. Our data indicate that hu-PBL-SCID mice 

provide a useful tool to identify and evaluate bacterial proteins which can boost 
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human immune responses to B. pseudomallei and support the possibility of using 

FliC, OmpA and N-PilO2 as vaccine candidates in the future.  
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Table 1: Human plasma antibody baseline (IgM and IgG) against FliC, OmpA 

and N-PilO2 from B. pseudomallei, and cellular quality of PBMC samples from 

seropositive donors before transfer to NOD/SCID/Jak3null mice. 

Total number of samples = 5  
Protein specific antibody baseline U/ml (range)

  anti-FliC  
    IgM 1801 (585-3500)
    IgG 1192 (797-1755)
  anti-OmpA  
    IgM 1434 (581-2542)
    IgG 1490 (1062-2450)
  anti-N-PilO2  
    IgM 1305 (435-2054)
    IgG 1209 (510-2490)
         
Cellular properties % Average (range)

  Viability (tryphan blue exclusion) 97 (96-99)
  Lymphocyte viability (FACS 

analysis) 
89 (86-93)

    CD3+ 89 (82-92)
      CD3+, CD4+ 49 (34-70)
    CD19+ 14 (7-22)
         
 

Note: Human PBMCs were stained for human surface markers including CD19, CD3 

and CD4. Dead cells were stained with AmCyan before analysis by flow cytometry. 
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Figure Legends 

Figure 1: IFN-γ production upon stimulation of human PBMC from 

seronegative and seropositive individuals. Isolated human PBMCs (5 x 105) from 

seronegative (N = 3) and seropositive (N = 5) individuals were stimulated at 37oC for 

48 hours induplicate with dead B. pseudomallei whole bacteria (Bp), 3 μg/ml 

phytohaemagglutinin (PHA) or 10 μg/ml B. pseudomallei proteins; FliC, OmpA or N-

PilO2. IFN-γ production upon stimulation was determined by ELISA. Statistical 

significance was analyzed using one-way ANOVA, and post-test using Bonferroni’s 

Multiple Comparison test. * P < 0.05, ** P < 0.01, *** P < 0.001, ns, not significant.  

 

Figure 2: Expansion of human B cell population induced by B. pseudomallei 

FliC, OmpA and N-PilO2 protein antigens in vivo in hu-PBL-SCID mice. 

NOD/SCID/Jak3null (SCID) mice were reconstituted with PBMCs from seropositive 

donors and boosted with PBS (non-boosted controls) or B. pseudomallei FliC, OmpA 

or N-PilO2 proteins. After 14 days, spleen cells from hu-PBL-SCID mice were 

collected, processed and stained with the viability marker (AmCyan), and markers of 

human CD45, CD19, CD3 and CD4, before analysis by flow cytometry. Statistically 

significant differences between the results obtained from non-boosted mice versus 

antigen-boosted mice were analyzed, using one-way ANOVA, and post-test, using 

Bonferroni’s Multiple Comparison test. * P < 0.05, ** P < 0.01, *** P < 0.001, ns, not 

significant. 

 

Figure 3: In vivo human IgM and IgG antibodies are induced by boosting hu-

PBL-SCID mice with FliC, OmpA and N-PilO2. Mouse spleen and sera were 

collected at day 14 after boosting with PBS, FliC, OmpA or N-PilO2. Levels of 
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specific human antibodies, produced against boosting antigens in hu-PBL-SCID 

mice sera, were measured by indirect ELISA (panel A). The number of specific 

antibody secreting cells (ASC) in antigen boosted or control mice were enumerated 

by ELSpot assay (panel B). Statistical significant differences between results from 

control and antigen-boosted hu-PBL-SCID mice were analyzed, using one-way 

ANOVA, and post-test, using Bonferroni’s Multiple Comparison test. * P < 0.05, ** P 

< 0.01, *** P < 0.001, ns, not significant.  

 

Figure 4: B. pseudomallei antigen specific IFN-γ secreting cells are present in 

hu-PBL-SCID mice and are increased by boosting in vivo with FliC, OmpA and 

N-PilO2. After boosting for 14 days, spleen cells were removed from hu-PBL-SCID 

mice, and were restimulated in vitro with cell culture medium, containing FliC, OmpA 

or N-PilO2 for 48 h, prior to IFN-γ detection, counting the number of IFN-γ spot 

forming units (SFU) by ELISpot assay. Statistically significant differences were 

analyzed by using one-way ANOVA, and post-test by using Bonferroni’s Multiple 

Comparison test. * P < 0.05, ** P < 0.01, *** P < 0.001, ns, not significant. 

 

Figure 5: Affinity maturation of anti-B. pseudomallei IgG antibody after 

boosting hu-PBL-SCID mice with FliC, OmpA and N-PilO2. Antibody avidities of 

IgM and IgG were evaluated by using indirect ELISA following treatment with 7 M 

urea (N = 5). % Urea resistance of IgM and IgG antibodies from human sera 

(Human) and antigen boosted hu-PBL-SCID mice sera (Hu-mice) were compared, 

statistically significant differences were analyzed, using one-way ANOVA, and post-

test, using Bonferroni’s Multiple Comparison test. * P < 0.05, ** P < 0.01, *** P < 

0.001, ns, not significant. 
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Figure 6: B. pseudomallei specific antibody in hu-PBL-SCID mice promotes 

phagocytosis and oxidative burst activities of human PMNs, in a concentration 

and affinity dependent manner. Antigen-specific purified pooled human plasma 

antibodies by affinity chromatography (A) and sera from hu-PBL-SCID mice 14 days 

after boosting with either PBS (non-boosted), FliC, OmpA and N-PilO2 (B) were 

used for FITC-labeled opsonization of dead, intact B. pseudomallei. Elution buffer 

passed through a column with uncoated beads (No Ab) was used as a negative 

control for purified human antibody (A), while sera from non-boosted hu-PBL-SCID 

mice (Non-boosted) were base line control for hu-PBL-SCID sera (B). Whole blood 

from seropositive donors were cultured with pre-opsonized FITC B. pseudomallei, 

and oxidative burst activities from human PMNs were detected by flow cytometry. 

Statistical significance was analyzed using one-way ANOVA, and post-test using 

Bonferroni’s Multiple Comparison test. * P < 0.05, ** P < 0.01, *** P < 0.001, ns, not 

significant compared between results from conditions with and without antibody. The 

correlation between level (C) or avidity (D) of IgG antibody in each antigen boosted 

hu-PBL-SCID mice and % total phagocytosis (closed circles) and % Oxidative burst 

in phagocytosed cells (open circle) was analyzed by linear regression. 

 

Figure 7: Summary of the humanized mouse model (hu-PBL-SCID) 

reconstituted with human peripheral blood mononuclear cells (PBMCs) from B. 

pseudomallei seropositive donors, to illustrate the potential of three known 

antigens (FliC, OmpA and N-PilO2) for boosting both T- and B-cell immune 

responses.     
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Supplementary Figure Legends 

Figure S1: Gating strategies of human cell surface marker staining in hu-PBL-

SCID mice spleen cells. Hu-PBL-SCID mice spleen cells were stained for human 

leukocyte surface markers including CD45, CD19, CD3 and CD4. Dead cells were 

excluded by AmCyan. Firstly, we gated on lymphocyte population and focused on 

viable cells (AmCyan negative). Then, we analyzed the proportion of human B cells 

(CD45+, CD19+), T cells (CD45+, CD3+) and helper T cells (CD45+, CD3+, CD4+). 

 

Figure S2: Dose dependent antigen specific binding of purified human anti-

FliC, anti-OmpA and anti-PilO antibodies. Heparinized human plasma samples 

were collected and pooled together (N = 5) for purification of human antibodies 

against FliC, OmpA and N-PilO2 by affinity chromatography using antigen coated 

sepharose gel. Specific binding of purified human antibodies, both IgM and IgG, 

were determined by indirect ELISA with serial 3 fold dilutions of each purified 

antibody. 
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